
Constraint Logic Programming -
a Framework for Qualitative Reasoning

Abstract

We propose to use Constraint Logic Programming
(CLP) for the specification and implementation of
Qualitative Reasoning (QR) problems that are spe-
cialized Constraint Satisfaction Problems . The use of
CLP has two advantages : (i) CLP gives a well de-
fined and understood logical framework for the prob-
lem specification, and (ii) CLP is not only a logical
framework, it is also a family oflanguages specially de-
veloped for solving classes of CSP problems . Thus we
obtain a class of powerful implementation languages
for rapid prototyping .
To illustrate the steps of specification and implemen-
tation we describe in detail the core of the QSIM al-
gorithm (Kuipers 1994), namely the filtering of the
state transitions in the CLP framework . We show how
the basic constraints are specified in this framework
and describe the technical aspects of an implementa-
tion . We want to demonstrate the advantages of CLP
through an example for a large and complex qualita-
tive reasoning algorithm .

Motivation

In the last fifteen years many frameworks were de-
veloped in the Qualitative Reasoning (QR) commu-
nity to describe different qualitative reasoning prob-
lems . Some of these frameworks contain, or are spe-
cial subproblems of the general class of constraint sat-
isfaction problems (CSP) like qualitative simulation
(QSIM), (Kuipers 1994), qualitative spatial reasoning
(Hernandez 1994) or qualitative temporal reasoning
(van Beek 1992) to mention some important branches .
However, as the problems are formulated in different
areas, the specification is also done in different frame-
works . This makes the understanding and compari-
son of the methods rather laborious . On the other
hand, the implementation of these algorithms requires

This work is funded by the Deutsche Forschungs-
gemeinschaft through the Sonderforschungsbreich 350
Project .

Lasz1o Teleki*
Institut fur Photogrammetrie

Universitat Bonn
Nussallee 15, 53115 Bonn
laszlo@ipb.uni-bonn .de

a substantial amount of work due to the specialized
algorithms developed for every class of problems : one
classical example is the c-filter of the QSIM algorithm
in (Kuipers 1994) .
We propose in this paper

framework for the constraint
namely the Constraint Logic Programming (CLP) (Jaf-
far & Maher 1994) . We claim that by using CLP there
are two advantages :

a common specification
satisfaction problems,

" CLP gives a well defined and understood logical
framework for the problem specification ;

" CLP is not only a logical framework, it is also a
family of languages specifically developed for solv-
ing classes of CSP problems . Thus we obtain a class
of powerful implementation languages for rapid pro-
totyping .

To present the CLP scheme and the implementation
aspects, we describe the QSIM algorithm by Kuipers
1994 . This example was chosen precisely because the
algorithm is well known in the QR community and it is
a non-trivial problem that took many years to imple-
ment . Thus, we hope to give a large and complex ex-
ample of an algorithm that allows us to describe many
details and to present different paths of realizations
and improvements .

All the ideas presented in this paper were imple-
mented in ECL'PS' (User Manual 1995 ; Extension
User Manual 1995), a CLP platform developed at
the European Computer-Industrie Research Center
(ECRC) . Certainly, in almost every case, a specialized
algorithm will give a better performance, but ECL'PS'
also give very good results . This gain in implementa-
tion time can be used to determine at an early stage
conceptual problems or limits of the specification .

This paper is structured as follows : in Section In-
troduction, we present the core of the QSIM algorithm
and the CLP scheme . In Section QSIM in CLP we
specify in every detail the constraints of QSIM in our

Teleki 245

logical framework . In Section Technical Aspects, the
implementation steps to be done by the user, the work
done by the CLP system and different methods to im-
prove the performance are described . We close with
conclusions and further works in Section Conclusions
and Further Works.

Introduction
In the next two subsections we present the two areas
that we want to connect : the QSIM algorithm and
the CLP framework . We concentrate only on the rel-
evant aspects necessary to understand the functioning
of QSIM and CLP.

QSIM

The QSIM algorithm developed by Benjamin Kuipers,
detailed in (Kuipers 1994), is a major tool used by
many researchers for describing physical models in
QR. The model specification is done by Qualitative
Differential Equations (QDEs), a symbolic correspon-
dent to ordinary differential equations . QDEs describe
the development of processes over time in the context
of incomplete knowledge about the process itself, the
boundary and initial value problems . The whole spec-
ification of the model is done on a symbolic level .

Within a qualitative simulation, a physical process
is represented by a succession of states starting from
an initial state . The states alternate between time-
points and time-intervals . A state is completely char-
acterized by its variable description, the parameters
of the mechanism . In each state, the variables are
assigned qualitative values (gval) . A qval is a pair
qval = (qmag, qdir) of qualitative magnitude (qmag)
and qualitative direction (qdir) . A qmag is either a
point value, called a landmark, or an open interval
between two landmarks . The qvals must be consis-
tent with the state's constraints corresponding values.
The qdirs may be increasing (inc), decreasing (dec),
steady (std) or unknown (unknown) .

Variables represent on a symbolic level time-
dependent functions of the physical process . Each vari-
able has a landmark list, a correspondent to the domain
of the function . Important elements in the landmark
list are minf, zero, inf the correspondents to -oo, 0
and oo.

State transitions are described by changes in the
values of the variables ; the number of possible valid
transitions is always restricted due to the mathemat-
ical background, e.g . continuity, mean value theorem
etc . (For example, a function cannot change from inc
to dec without passing through a point where the
derivative is zero) . The possible set of values for a
variable is always finite .

246 QR-96

The constraints are symbolic equivalents to the sim-
ple mathematical notions of addition, multiplication,
derivative, minus, constant functions, monotonic in-
creasing and monotonic decreasing functions . In QSIM
the notations are add, mult, d/dt, MINUS, constant,
M+ arid M- . The constraints connect from one to three
variables (for a detailed presentation see Section QShV1
in CLP) . As the values of the variables are symbolic,
we need so-called corresponding values lists ; these lists
interconnect the symbolic definition domains of the
variables .
A crucial task of QSIM is to filter in every time step

from the result of the variable transitions those value
combinations that fulfill the constraints defined in the
QDE . In QSIM a specialized constraint satisfaction al-
gorithm called c-filter is responsible for this part . For
this special task we propose the CLP framework .

Constraint Logic Programming with
Finite Domains

Constraint logic programming (CLP) is a generaliza-
tion of logic programming (LP) where unification, the
basic operation of LP languages, is replaced by con-
straint handling in a constraint system (van Henten-
ryck 1991) . In practice, this means the enhancement of
PROLOG like languages with constraint solving mech-
anisms . PROLOG like languages have performance
problems in solving Constraint Satisfaction Problems
due to their simple computational rule, the depth-first
search procedure, resulting in generate arid test proce-
dure . The new paradigm allows a new computational
rule that can be characterized as constrain and gener-
ate (Friihwirth et al . 1992) .
Three constraint systems are widely used and imple-

mented: Boolean Algebra, Linear Rational Arithmetic
and Finite Domains . We propose Finite Domains (FD)
for problems in Qualitative Reasoning .
The FD consistency technique rules out many incon-

sistencies at a very early stage and thus, cuts short the
search for consistent labeling . It works by propagating
information about the variables via the mutual con-
straints with the goal of reducing the domains . Con-
straints, that can not contribute to a given time but
may contribute later to a domain reduction are de-
layed (or suspended) and kept in a constraint store .
The scheduler will wake up those constraints from the
constraint store that are affected from a domain re-
duction after the propagation . Propagation continues
until no domain reductions can be extracted from the
constraints . The FD solver implements the well-known
node and arc consistency (Mackworth 1977) .
The FD system alone will rarely be used alone to

solve a problem since, in general, there remain corn-

binations of values in the resulting domains which are
inconsistent . To find a solution to a problem, the sys-
tem performs some search by labeling a variable with
an element of its domain . This choice allows further
propagation that will end in a set of solutions . This
set of values can be empty if a choice is erroneous . The
labeling can be done by a simple backtracking search,
a computational rule already included in LP (we also
describe some improvements in Section Technical As-
pects to speed up this task) .
The most general description of a finite domain prob-

lem is given by a set of variables X = {x1, X2
'X'}

with a finite domain Dx; for each xi and a finite set of
constraints C = {cl, c2, . . . , c� }, where each cj refers
to some subset of the set of variables X. The goal
is to find one (or all) of the solutions that satisfy the
set of constraints C . Constraints are first order formu-
las . For a detailed presentation of the CLP paradigm
consult (Jaffar & Maher 1994) .

Notation We use the following notations :
{x1, X2 } denotes a set, [x1, x2] a list, (XI, x2)
an interval, (xl, x2) a tuple or a pair and (xl, x2, x3)
a triple .

If we look at a list L as a domain of a function we can
generate the set of all intervals of this domain I(L) . For
example, if L = [a, b, c], I(L) = {(a, b), (b, c), (a, c)} .
Further on, we define the set of all possible values
V(L) generated from a list L by adding to 1(L) all
the elements of the list . In our example V(L) _
{(a, b), (b, c), (a, c), a, b, c} .

We present the formal description of the filtering of
the state transitions of the QSIM algorithm in CLP
framework. This filtering algorithm is used after every
state transition of a simulation . We do not argue why
the constraints have the presented forms; the proofs
are given in (Kuipers 1994) . Some of the constraints
are not exactly defined as in (Kuipers 1994) ; we ignore
some details to concentrate on the essential aspects .

Domains

QSIM in CLP

A QDE (Qualitative Differential Equation) is defined
as a finite set XQDE = I... , (xi, Lx:), . . . } of vari-
ables (xi, Lx:) with their landmark list and a set of
constraints CQDEfcj} . A landmark list Lx ; is a list
where the succession of the elements will determine an
order over the domain of the variable xi . In a process
specification the landmark list contains at least two el-
ements, the zero element and either the mint or inf .
An initial value problem is described by a set of vari-
ables xk (xk E XQDE) with initial qualitative values

qval = (qmag, qdir) . The requirement for the qval's
is that either the qmag or the qdir is defined . The
domain of the variable xi with the full set of possible
values is given by the following set for each xi

Da, ={ (v, dir) I

This means that we include in the domain E),, . of a
variable xi every element of the landmark list Lx , and
every possible interval derived from the landmark list
in the combination with the four possible directions
of change . So, for example, if the variable x has the
landmark list [zero, inf], the complete domain of the
variable is :

Dx = {(zero, dec), (inf, dec), ((zero, inf), dec),

(zero, inc), (inf, inc), ((zero, inf), inc),

(zero, std), (inf, std) ; ((zero, inf), std),

(zero, unknown), (inf, unknown),

((zero, inf), unknown))

Signs

v E V (Lx ;), dir E {std, inc, dec, unknown))

We will need two functions to reason over the order of
the landmarks :

be for(x,1 g , li, Lx) = true iff Lx = [. . .Ig , li
after(x, lg , l i , Lx) = true iff Lx = [. . .l i , . . . , l g]

The two functions determine the position of the ele-
ment I g relative to the element li in the landmark list
Lx of the variable x . befor(x, lg , l i , Lx) is true if l g is
before the element li in the list L ; after(x, 1g , l i , L,,) is
the contrary to befor .
To reason with the constraints and the values we

need the definition of signs . In mathematics the sign
function relative to 0 is defined as sign(x) : 118 -4 S'
with .S' = 1+,-, 0, ?} the set of extended signs . The
three first elements of S' divide the 118 into three in-
tervals (0, oo), (-oo, 0) and (0, 0) . The sign ? is
used as the ambiguous sign and denotes the interval
(-oo, oo) .

	

The general form of the sign function is
sign(x),, = sign(x - a) . If a = 0 we have the defini-
tion presented previously .
Now we have to determine the sign function in

the context of symbolical values .

	

Therefore we
define the sign(x,1g, L,)li

	

over the domain S'

	

_
{ pos, neg, zero, unknown} as follows :

sign(x, lg , L .,)t, =

pos

	

if

	

after(x, lg , li, Lx) =
true

zero

	

if

	

lg = li
neg

	

if

	

befor(x, lg , li, Lx) =
true

Teleki 247

with Lx the landmark list of the variable x and with
the assumption that lg , li E Lx . As we see, we need in
the function the landmark list as an argument, as the
order is given by the succession of the elements of Lx .
The sign function can be extended in a straight-

forward way to intervals . The symbol unknown will

be used as the ambiguous sign, e.g . sign(x, (a, c),
[a, b, c, d]) (b,d) = unknown for the variable x with the
landmark list [a, b, c, d] .

In the following we use sign(x, l, Lx) for
sign(x, l, LS)zero .

	

The sign function is valid for the
two symbols inf and minf.
We also define the sign function for the qualita-

tive directions : sign(inc) = pos, sign(std) = zero,

sign(dec) = neg and sign(unknown) = unknown . This
definitions follow directly from the definition of the
derivative .

The basic constraints of QSIM
We define the relations =+ and =_

x =+ y iff
(x, y) E
{(pos, pos), (neg, neg), (zero, zero),

(unknown, pos), (unknown, neg), (unknown, zero)}

x =_ y iff

(x, y) E

{(pos, neg), (neg, pos), (zero, zero),

(unknown, pos), (unknown, neg), (unknown, zero)}

In the following x, y, z will denote the variables from
the QDE .
We already mentioned that in QSIM there is a lim-

ited set of possibilities for the variables value transi-
tions in a state transition . This means that the domain
of a variable x will in general, after the state transition,
have a subset Dx of the full possible value set Dt . So
the variables x, y, z will have in general the domains
Dy C Dx, Dy C Dy , Dz C_ Dz of values . From the
CLPpoint of view there is no difference if we use Dx
or Ds as the domain of the variable x ; it is the seman-
tic of the QSIM algorithm that defines these restricted
domains Dx .
A qualitative value of a variable qval is always a

tuple of the form qval = (gmag, qdir) . The follow-
ing two functions make the projections onto the two
members of the tuple :

gdir((gmag, gdir)) = qdir
qmag((qmag, qdir)) = qmag

We now focus on the exact definition of the constraints :

248 QR-96

M+ :

	

(M+(x, y), CV) . CV, the set of corresponding val-
ues is a set CV = { . . . (ly;,ly ;) . . .} of pairs (l, ly,)
with lx, E Ls and l y ; E Ly . The constraint represents
the assertion of a monotonic increasing function . The
constraint is satisfied for a given pair (x,, y,)' if the
conjunction of the following constraints is satisfied .

1 . sign(qdir(xg)) =+ sign(gdir(xg))

2 . d(l,T ;, ly,)

	

E

	

CV

	

sign(x, grnag(xg), L=)I =,	=+
sign(y, gmag(yg), Ly)l � ,

M- :

	

(M-(x, y), CV) . The set of corresponding values
CV is again a set of pairs (l .. , , ly ,) . The constraint rep-
resents the assertion of a monotonic decreasing func-
tion . The constraint is satisfied for a pair (xg, ys) if the
conjunction of the following constraints is satisfied .

1 . sign(qdir(x g)) =_ sign(gdir(xg))

2 . b'(I,,, ly ,)

	

E

	

CV,

	

sign(x, gmag(xg), Lx)1=,

	

_-
sign(y, grnag(yg), Ly)w,

MINUS :

	

(MINUS(x, y), CV) . The constraint is satisfied
similarly to M- with the addition that the constraint
has to be satisfied with the CV augmented with the
set : {(zero , zero), (inf, minf), (minf, inf)} . The
constraints represent the relation y(t) = -x(t) .

add :

	

(add(x, y, z), CV) .

	

In this constraint CV

	

=
{ . . . , (lst, ly� lz,), . . . }

	

is a set

	

of triples (lx, , l y� l z ,)
with I x , E Lx, l y ; E Ly and lz ; E Lz . The triple
(zero, zero, zero) is always an element of the corre-
sponding values set of the constraint . The constraint
represents the relation x(t) + y(t) = z(t) . The con-
straint is satisfied for a given triple (x,, y9, z g) if the
conjunction of the following constraints is satisfied .

l . (sign (gdir(x g)), sign(gdir(xg)), sign(gdir(xg)))

	

E

Radd
2. d(lx,, ly , , 1,,) E CV

(sign(x , gmag(xg), L,)I,:, sign(y, gmag(yg), Ly)l,, ,
sign(z, gnaag(zg), Lz)i,) E Radd

The addition table Radd is given by :

The addition is a relation and not a function to avoid
the propagation of the ambiguous sign unknown (see
the details in (Kuipers 1994) page 48-49) .

`By a given pair (xy, yv), we mean a given pair of values
where xy E D= and y9 E Dy .

Radd pos zero neg

pos pos pos neglzerolpos

zero pos zero neg

neg neglzerolpos neg neg

mult:

	

(mult(x, y, z), CV) . CV is again a list of triples
(1Z,,1y,,1Z ;) . The constraint represents the relation
x(t)y(t) = z(t) . The constraint is satisfied for a given
triple (xg , yg, z g) if the conjunction of the following
constraints is satisfied .

1 . sign(x, gmag(xg), L--)sign(y, gmag(ys), Ly) _
sign(z, zg , LZ) with the exceptions :
sign(x, zero, L_,)sign(y, inf, Ly) = unknown,
sign(x, zero, L,)sign(y, minf, Ly) = unknown,
sign(x, inf, L,,)sign(y,minf, Ly) = unknown .
The multiplication follows the rules given in Rmult .

2 . sign(y, gmag(yg), Ly)sign(qdir(xg)),
sign(x, qmag(xg), Lx)sign(gdir(zy)), sign(qdir(z g)))
E Radd-
This constraint follows directly from (x(t)y(t))' _
x'(t)y(t) + x(t)y'(t) . x'(t) denotes dx/dt, the time
derivative of x(t) .
(sign(y, gmag(yg), Ly)sign (gdir(x g)) and
sign(x, gmag(xg), L..)sign(gdir(xg)) can be deter-
mined directly from the Rmult table .

3 . The mult constraint has some other constraints
where the corresponding values are used . Due to lack
of space we do not present them here (see (Kuipers
1994) page 56) .

The multiplication table Rmult is given by :

d/dt :

	

d/dt(x, y) . The constraint has no correspond-
ing values . The constraint corresponds to y(t)
dx(t)/dt . d/dt is satisfied for a pair (xg , yg) if:

1 . sign(qdir(xg)) =+ sign(y, gmag(xg), Ly)

constant :

	

The constraint has the form constant(x)
or constant(x, a) . constant has no corresponding val-
ues . The constraint represents the assertion that the
variable x is constant . The constraint is satisfied for
a given xg if the conjunction of the following two con-
straints is satisfied .

1 . (sign(qdir(xg)) =+ zero)

2 . (sign(x, qmag(xg), Lz) a =+ zero) in the case where
constant(x, a) is given .

General Aspects

Technical Aspects
With the constraint specification in the FD scheme, the
implementation is straightforward ; this is one of the
major gains if we use this logical framework . The diffi-
cult work of the constraint solving mechanism, namely
the propagation of the domain reductions is done by
the system . The user only needs to specify the single
constraints and does not needs to solve the constraint
network .
We present the technical aspects in two steps . The

first is the presentation of the general idea of the solu-
tion of the constraint network in the FD system . In the
second we sketch ideas to improve the performance .

The general procedure is presented in three steps .
First, we present the implementation of the con-
straints . In a second subsection the propagation of
the FD system is described . We finish with the pre-
sentation of the labeling procedure .

Implementation of Constraints

	

The goal of the
implementation of a constraint is to determine those
elements of the variable domains that satisfy the
constraint', as defined in the previous Section . This
verification will lead to a domain reduction propagated
later on by the FD solver .
We illustrate the procedure by the following ex-

ample . The variable x has the landmark list Lx =
[zero, full, inf] and the variable y the landmark

The M+ constraint allows the following combinations of
variable values :

(x, y) E {((full, inc), ((zero, inf), inc)),
(((zero, full), inc), ((zero, inf), inc)))

The other combinations do not satisfy the constraint,
e.g .

(((zero, full), inc), ((zero, inf), std))

as sign (gdir(((zero, full), pos))) = pos,
sign (gdir(((zero,inf),zero))) = zero and

2Those who are familiar with the details of QSIM will
realize that there is no difference in the algorithm to deter-
mine the initial state or to generate new states . The spec-
ification of the initial value problem can also be regarded
as a constraint .

Teleki 249

Rmult pos zero neg list Ly = [zero, inf] . The constraint has the form
pos pos zero neg (M+(x, y), {(zero, zero), (inf, inf)}) . We suppose that
zero zero zero zero the domains are :
neg neg zero pos

Ds = [(full, inc), ((zero, full), inc)]
Dy = [((zero, inf), inc), ((zero, inf), std)]

(pos, zero)

	

~=+ (the first constraint of M+) .

	

This
means that after the verification of the combination
of variable values the domain Ds remains unchanged
and Dy is reduced to D'y = [((zero, inf), inc)] .

It is important to see that the algorithm which re-
duces the domain is not given . In QSIM we did not im-
plement a special algorithm to decide which elements
of the domains fulfill the constraints . Even in the case
of constraints with three variables a simple backtrack-
ing is fast enough . In other problems, with domains of
high cardinality or with computationally complex con-
straints, the decision about value combinations that
satify the constraints may be slow . In these cases, a
special algorithm can be implemented even for only
one of the constraints . But all these implementation
aspects will not at all influence the work done by the
system . This is the reason why new constraints can
always be added with minimal effort .

Propagation of domain reductions Now we are
able to describe the link between QSIM and CLP in a
straightforward manner . Reasoning is finding admis-
sible state sequences . It is realized by using the FD
solver of CLP. The FD solver propagates the domain
reductions (and only those) over the constraint net-
work and wakes up the constraints containing one or
more variables with reduced domains . The wake up of
the constraints is done until no domain change occurs
in the whole network .
We illustrate the propagation and rescheduling on a

network with two constraints .
(M+(x, y),CVl)
(add(x, y, z), CVZ)

Dy , Dy and DZ are the domains of the variables . M+
will reduce D,z to Dz and Dy to Dy . The FD solver will
take the new domains and wake up the add constraint .
Let's say this constraint will reduce D' to Ds and Dz
to D' ; Dy will remain unchanged . The FD solver will
realize that the domain of the variable x is changed
and will wake up M+ again, now with the new Dz and
the old Dy domain . If there is a change in Dx or D'
than FD solver will wake up again the add constraint .
This scheduling of the constraints is continued until
there is no change in the variable domains .

Labeling

	

In the regular case of labeling the domains
will not contain only one element . There will instead
sets of elements from which we need to create all the
states to continue with . To find solutions, the system
will search by labeling a variable with a value in its
domain . This choice (which may later prove as having
been erroneous) allows further propagation in the same
manner as presented in the previous Subsection . The
reduction of the domains will continue until there is no

250 QR-96

change in the domains . Then the other variables are
labeled recursively until a solution is found .

Improving the performance

The last subsection describes the general ideas of do-
main reduction, propagation and labeling . If the num-
ber of variables and the cardinality of the domains
is small there is no need for different improvements .
However, in real case problems we will need a speedup .
The speedup can be achieved in many ways . There

are so called problem specific improvements and gen-
eral improvements . Problem specific improvements are
defined by the specific constraints of QSIM . General
improvements are independent from our problem .
Problem specific improvements It is not diffi-
cult to see that we have different classes of constraints
w.r .t . the computational time . The most expensive
are add and mult then M+, M- and MINUS, followed by
d/dt and finished with constant . constant has only
one variable, so the domain reduction has to be done
only once ; there is no reason to wake it up again .
Due to these facts, we can give priorities to the dif-

ferent constraints . This means that the propagation
should be done in different stages . The propagation
should be kept as long in one class of constraints until
no changes occur in the domains . It should then turn
to the next lowest priority . If a domain reduction is
realized by constraints of lower priority, the scheduler
should, if possible, wake up again the constraints of
higher priority . Through this strategy we achieve that
the computationally expensive constraints are evalu-
ated only when computationally cheaper constraints
are not capable of reducing a domain .

In QSIM the generation of the initial state has a
special characteristic . The problem is that the verifi-
cation of the constraints with complete domains will
leave the domains in the majority of cases unchanged ;
it will find a corresponding element in the other do-
mains . This also means that the whole computation is
of no effect in the majority of cases . What we propose
is to wait with the domain reduction until the initial
value problem is included . In other words, the initial
value problem is regarded as a constraint with a prior-
ity higher than all of the other constraints . The initial
values will certainly reduce the domains dramatically,
if not to one element (if qmag and qdir are given) .
After these reductions, the propagation will wake up
the different constraints and the verification of the con-
straints will then effectively reduce the domains .
General improvements

	

The order of labeling can
also improve the effectiveness of the search procedure .
In general, it is more effective to use the variable with

the smallest remaining domain for labeling . This prin-
ciple is referred to as first fail principle,'as with fewer
choices possible we will find out earlier if those where
right or wrong. Another technique is to choose the
variable which occurs in most constraints .
When constraints have different priorities we can

select variables that occur in constraints with a low
computational cost . This act would achieve that when
the scheduler reaches the constraints with low priority,
the domains are already very small and only a small
amount of values must be analyzed .

Experimental Results
To obtain some realistic results for the efficiency of our
implementation of c-filter, two different QSIM models
have been taken : the Starling model with 17 variables
and 18 constraints and the bathtub model with 6 vari-
ables and 6 constraints - both models are defined in
(Kuipers 1994) . The runtimes for the c-filter were mea-
sured with the internal timer of a Sun Sparc 10 work-
station . To create similar conditions for the input of
the c-filter in Lisp and in ECL'PS' the input for the C
implementation of c-filter from Rinner (1995) is used .
We compare the runtimes of the compiled Lisp im-

plementation of c-filter in QSIM on one hand with the
untraceable version of c-filter in ECL'PS' on the other
hand .

We now compare he runtimes ofthe uncompiled Lisp
implementation of c-filter in QSIM on one hand with
the traceable version of c-filter in ECL' PS' on the
other hand .

Multiple measurements of the same model will give
deviations of only 1-2 milliseconds to the presented val-
ues .
As we can see there is no remarkable difference be-

tween the traceable and untraceable version of c-filter
in ECL'PS' . This is due to the fact that ECL'PSe is
already compiling the code even if it is traceable .
The ECL'PS' implementation is always faster if the

Lisp code is not compiled ; the Lisp implementation is
faster only in the compiled form . Models with a few
constraints and variables are considerably slower due
to the overhead of the FD constraint solver . But this

overhead pays off in large problems as we can see in
the Starling model .
A major gain of the use of ECL'PS' for implement-

ing c-filter is the implementation time : if the use of
ECL'PS' and the specification of c-filter are known,
the implementation will take about 2 - 4 weeks for one
person .

Conclusions and Further Works

We have proposed a new framework, the finite domain
solver of the constraint logic programming paradigm
to describe different kinds of Constraint Satisfaction
Problems used in the qualitative reasoning commu-
nity . To present the details of the logical framework
and the the flexibility of the implementation, we chose
the core filtering algorithm of the QSIM by Benjamin
Kuipers . We gave the exact specification of the fil-
tering algorithm in the logical framework in Section
QSIM in CLP and described technical details of the
implementation in Section Technical Aspects .

Further work concerns two aspects : (i) how flexible
the FD solver is and (ii) which other constraint solver
can serve to specify and implement QR problems .

(i) To determine the flexibility of the FD solver we
concentrate especially on the framework of Jezequel &
Zimmer (1995) . The authors explicitly expressed the
knowledge embedded in the different operators known
from QSIM by introducing new constraints like in-
equalities (<, <), equality and constancy propagation,
thus allowing transitive propagation between the pa-
rameters that leads to the elimination of spurious be-
havior . We are interested to see what changes needs to
be made to integrate these constraints in the presented
logical framework and the implementation .

(ii) Lastly, the CLP framework has not only the FD
solver (van Hentenryck 1991) . Friihwirth (1992) devel-
oped a flexible environment, the Constraint Handling
Rules (CHR), to implement user defined constraints by
introducing multi-head guarded rules allowing propa-
gation and simplification . In (Fr6hwirth 1994) he de-
scribes the implementation of temporal reasoning pre-
sented in (Meiri 1991) . We want to analyze how this
framework can be used in constraint systems like QSIM
with the aim of proposing other powerful tools to re-
duce the time of implementation development that will
allow an early detection ofconceptual problems or new
direction of research .

Acknowledgements I wish to thank Wolfgang
F6rstner for his advice and support .

Teleki 25 1

Starling bathtub
Lisp
ECL'PSe

2.40 s]
3.21 [s]

0 .02 [s]
0.31 [s]

Starling bathtub
Lisp
ECL' PSe

8 .83 [s]
3.74 [s]

0 .92 [s]
0 .40 [s]

References
1995. ECL'PS' 3.5 Extension User Manual .
http ://www .ecrc .de/eclipse/eclipse .html .

Friihwirth, T. ; Herold, A . ; Kiichenhoff, V. ; Provost,
T . L . ; Lim, P. ; Monfroy, E . ; and Wallace, M. 1992 .
Constraint Logic Programming - An Informal In-
troduction . In Comyn, G., ed ., Logic programming
in action : second International Logic Programming
Summer School, volume 636 of LNCS, 3-35 . Springer
Verlag .
Friihwirth, T . 1992 . Constraint simplification rules .
Technical Report ECRC-92-18, ECRC (European
Computer-Industry Research Centre) .

Fruhwirth, T. 1994. Temporal reasoning with con-
straint handling rules . Technical Report ECRC-94-05,
ECRC.
Hernandez, D. 1994 . Qualitative Representation of
Spatial Knowledge. LNAI 804 . Berlin : Springer .
Jaffar, J ., and Maher, M . J . 1994 . Constraint Logic
Programming: A Survey . Journal of Logic Program-
ming 20:503-581 .
Jezequel, P ., and Zimmer, L . 1995 . Better expression
of knowledge to reduce spurious behaviour in qualita-
tive simulation . In Working Papers of the Ninth In-
ternational Workshop on Qualitative Reasoning, Uni-
versity of Amsterdam, Amsterdam, 104-113 .
Kuipers, B. 1994 . Qualitative Simulation . The MIT
Press .

Mackworth, A. 1977 . Consistency in networks of
relations . Artificial Intelligence 8(1) :99-118 .
Meiri, I . 1991 . Combining Qualitative and Quanti-
tative Constraints in Temporal Reasoning . In AAAI
91,260-267.
Rinner, B . 1995 . Qsim kernel interface . Technical Re-
port 9502, Institute for Technical Informatics, Graz
University of Technology, Austria .
1995 . ECL'PSe 3 .5 User Manual . http ://www .-
ecrc .de/eclipse/eclipse .html .

van Beek, P . 1992 . Reasoning about Qualitative
Temporal Information . In Faltings, B ., and Struss,
P., eds ., Recent Advances in Qualitative Physics . The
MIT Press . chapter 14 .
van Hentenryck, P . 1991 . Constraint Logic Program-
ming . The Knowledge Engineering Review 6(3) :151-
194 .

