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Abstract
The objective of this paper is to propose a novel
approach to automatically reason formulae of
laws and their solutions . Our approach takes an
intermediate position between the deductive ap-
proaches such as dimension-based and symmetry-
based reasoning and the empirical approaches
such as BACON . It does not require a priori in-
sights into the objective system but data through
measurement, and hence it can be applied to var-
ious domains like BACON and is not limited to
physics . In spite of its data-driven feature, the
solutions of the formulae obtained by our ap-
proach are ensured to be sound similarly to the
dimension-based approach . The basic idea is the
combined use of deductive "scale-based reason-
ing" and data-driven reasoning . Especially, the
scale-based reasoning is the main part in this
study . The features of our approach are demon-
strated by deriving the basic formulae of the ideal
gas law and Black's specific heat law . The scale-
based reasoning may provide a basis to develop
qualitative models of ambiguous domains such as
biology, psychology, economics and social science .
This will also contribute to the research area of
knowledge discovery .

Introduction
Over the many years, methods to automatically derive
formulae of physical laws and their solutions have been
explored on the basis of physical dimensions of quanti-
ties . One of the early work is a method called dimen-
sional analysis based on the product theorem(Bridg-
man 1922 ; Bhaskar & Nigam 1990) .
Product Theorem Assuming absolute significance of
relative magnitudes of physical quantities, the func-
tion f relating a secondary quantity to the appropri-
ate primary quantities, x, y, . . . . has the form : f =
CX"ybz. . . . . . where C, a, b, c, . . . are constants.

A simple example of the dimensional analysis is
to derive the basic formula of oscillation period t[T]
from mass m[M] and spring constant K[MT-2 ] in
case of horizontal oscillation of a mass by a frictionless
spring . The product theorem applies and it says that

t = Clm."Kb . The exponent b must be -1/2 to equalize
the dimension of [T] on the both sides . Also, a must be
-b to cancel out the dimension of [M] on r.h.s ., hence
a = 1/2 . Consequently, we obtain t = Ci(nz/K)1/2 .

There is another important theorem that is called as
Buckingham II-theorem(Buckingham 1914 ; Bhaskar &
Nigam 1990) .

Buckingham 11-theorem If O(x, y, . . . .) = 0 is a com-
plete equation, then the solution can be written in the
form F(II1,112, . . ., II�_,.) = 0, where n is the number
of arguments of 0, and r is the basic number of di-
mensions in x, y, z . . . . . For all i, 11i is a dimensionless
number.

Basic dimensions are such dimensions as length [L],
mass [M] and time [T], scaling quantities indepen-
dently of other dimensions in the given 0. This the-
orem can be used together with the product theo-
rem to obtain the oscillation period t[T] of a simple
pendulum depicted in Fig . 1 from its stick length
I[L], gravity acceleration g[LT-2 ] and deviation an-
gle 0 [no dimension] . We can find two dimension-
less quantities 111 = t(g/1)1I2 and II 2 = 0, and de-
rive the basic formula of the solution as F(II1,112) =
F(t(g/l)1/2, 0) = 0 based on the theorem . Using
these dimensional analysis techniques, Bhaskar and
Nigam introduced a concept "regime" which is a for-
mula pi (Hi, x, y, . . .) = 0 defining a dimensionless quan-
tity 11i(Bhaskas & Nigam 1990) . In the above exam-
ple, t(g/1) 112 and 0 are the regimes . Also, they de-
fined an "ensemble" which is a set of regimes contained
in a complete equation F(111, II 2 , . . . ., II� _,.) = 0 .

	

In
the example,F(t(g/1) 1 / 2 , 0) = 0 is an ensemble .

	

The
regime refers to a decomposable subprocess . Every
quantity in a regime interacts with any quantities out-
side of the regime via a dimensionless quantity. An
ensemble stands for a complete physical process in the
system . Based on these definitions, a qualitative rea-
soning method was proposed, where irrelevant argu-
ment descriptors are eliminated when a physical for-
mula is derived(Bhaskar & Nigam 1990) . An advan-
tage of the dimension-based methods is that a sound
set of solutions is obtained for the physical formula
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of each regime without much knowledge of the system
configuration . However, this method utilizes the phys-
ical insights into the objective system that is described
bv the unit dimension of each quantity . For instance,
the unit [ML/T'] of force f and the unit [LIT2] of
acceleration a implicitly state the well-known relation
f = ma, where m is a mass having the unit [M] .
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Figure 1 : A simple pendulum

Another method to automatically derive physical
formulae is symmetry-based approach . Ishida ap-
plied the principle of symmetry to physical domains,
and proposed the symmetry-based reasoning (Ishida
1995) . The system he developed searches for the in-
variant physical formula O under a given set of iso-
morphic mappings {Ti li = 1, . . ., n) . Each Ti holds
the symmetric relation of O, i.e ., O = Ti(O) . The
types of mapping Ti supported by the system are
translation and dilation of quantity scales and per-
mutation of the positions of quantities in the for-
mula . In the example of the simple pendulum, we
can apply further constrains of symmetry on the form
F(t(g/ 1 )112 , B) .

	

One is phase translatory symmetry
on t, and this gives F(t(gl1) 112 ,8) = F((t(gll) 112 +
2m7r, 0), where m is an integer . Another is mirror sym-
metry of the time and angle 8 giving F(t(g/1) 1 1 2 , 0) =
F( -t(gl 1 )112 ,-8) . A formula satisfying these con-
straints is 0 = sin(t(g/1) 1 /2 ) . This method also utilizes
the explicit knowledge of physical characteristics of the
object in terms of symmetry. A disadvantage may be
the lack of the soundness and completeness of the so-
lution, because the way the search is made is based on
heuristics .

In contrast with these physical knowledge based
methods, a challenge to discover the formulae of the
first principles involved in the objective system has
been made by BACON (Langley & Zytkow 1989) in
the data-driven framework . BACON derives formulae
by using heuristic search algorithm . The objects in
various domains can be modeled, since it does not use

any a priori knowledge of the objects . However, the
heuristics in the search algorithm does not have the-
oretical firm bases, and is limited to enumerate poly-
nomial and meromorphic formulae only . Accordingly,
the set of the solutions obtained is not ensured to be
sound and complete .
The above past work employs the following assump-

tions .
Assumption 1 The relation among quantities under
consideration is represented by a complete equation .
Though Bhaskar and Nigam demonstrated the ap-

plicability of their dimension-based method to the sys-
tems consisting of multiple complete equations, the
specification of a set of quantities is required for each
complete equation in the framework, and thus this as-
sumption must be maintained . Their dimension-based
approach also requires the following assumptions .
Assumption 2 The type of scales of physical quanti-
ties is limited to ratio scale .
Assumption 3 Given a regime pi(Hi, x, y, . . .)
= 0, either one of the following conditions holds .

1) 11 is a unique regime of a complete equation .
2) For each quantity x in pi , any other regimes do not
contain x, or any other regimes are related in such a
way that x does not change Hi from outside of pi .

The assumption 2 is the restatement of the as-
sumption in the product theorem, i . e ., the absolute
significance of relative magnitudes of physical quan-
tities . Though the quantities of the ratio scale are
quite common in vaxious domains, another scale type
of quantities called as "interval scale" is also widely
encountered as explained later . The assumption 3
was recently pointed out by Kalagnanaxn and Hen-
rion(Kalagna.nam, Henrion, & Subrahmanian 1994) .
The data-driven approach of BACON assumes the fol-
lowing environment of data measurement .
Assumption 4 The measurements on the relation in
any subset of quantities in a complete equation can be
made while holding the other variables constant under
an experimental environment, and the measured data
can be sequentially used to reason the formula relating
the variables .

The objective of this paper is to propose a novel ap-
proach to automatically reason formulae of laws and
their solutions . Our approach takes an intermediate
position between the deductive approaches such as
dimension-based and symmetry-based reasoning and
the empirical approaches such as BACON. The fol-
lowing theoretical aspects removing the limitations of
assumptions 2 and 3 are newly introduced .
1) The sound relations among quantities of ratio and

interval scales within a regime axe characterized .
2) The product theorem is extended to involve interval

scale quantities .
3) An algorithm to identify regimes partitioning the

set of quantities in an ensemble is proposed .



Based on these aspects, our approach can derive a
sound set of solutions of the formulae for each regime
similarly to the dimension-based approach while main-
taining the advantage of the data-driven approach such
as BACON, i. e ., it does not require a priori insights
into the objective system but data obtained through
the measurements, and it can be applied to various
domains and is not limited to physics . The basic
idea of our approach is the combined use of deductive
scale-based reasoning and data-driven reasoning . Es-
pecially, the scale-based reasoning is the main part in
our present study . The other two assumptions remain
the same in our approach at present .

Basic Principle of Scale-Based
Reasoning

At the end of the 19th century, Helmholtz originated
a research field of "measurement theory' (Helmholtz
1887) . Since after he tried to obtain a systematic
model of measurement processes, many literatures
have been published on that topic in the 20th cen-
tury. Among those literatures, Stevens defined the
measurement process as "the assignment of numerals
to object or events according to rules" (Stevens 1946) .
He claimed that different kinds of scales and different
kinds of measurement are leaded, if numerals can be
assigned under different rules . And he categorized the
quantity scales for the measurement based on (a) the
operation rule of the assignment and (b) the mathe-
matical properties (group structure) of the quantities .
The scale categories he defined are reproduced in Ta-
ble 1 . The scales having analytical group structures
are the interval scale and the ratio scale, and these
are the majorities of quantities in physical domains,
some psychological, economical and sociological do-
mains . The examples of the interval scale quantities
are temperature in Celsius and Fahrenheit, time (not
time interval), and sound tone (proportional to the or-
der of white keys of a piano) . The zero point level of
their scales are not absolute, and are changeable by hu-
man's definitions . The example of the ratio scale quan-
tities are physical mass, absolute temperature, interval
length, acceleration, time interval, frequency, popula-
tion (large enough to view as continuous) and currency
value . Each has an absolute zero point, and the ratio
of different two values x1/x2 is invariant against their
unit change, i.e ., (kxl)/(kx2) = x1/x2. We should
note that the scale is different from the dimension . On
the other hand, the scale just represents the definition
of the measurement rule . We do not know what the
force (ratio scale) divided by acceleration (ratio scale)
means within the knowledge of scales . Another point
we should clarify is that dimensionless quantities are
the quantities of absolute scale having the group struc-
ture of x' = x, because any change of units is not de-
finLuce

claimed that the basic formula of the functional
relation between two quantities can be determined by

Table 1 : Scale types

the scale features of these two quantities, if the quan-
tities are not coupled through any dimensionless quan-
tities(Luce 1959) . Two examples will make his theory
comprehensive . Suppose x and y are both ratio scale
quantities, and y is defined by x through a continuous
functional relation y = u(x) . First, we assume that
the form of u(x) is logarithmic, i . e ., y = log x . We
can multiply a positive constant k to x, i .e ., a change
of unit, without violating the group structure of the
ratio scale quantity x shown in Table 1 . However, this
leads u(kx) = log k + log x, and this fact causes the
shift of the origin of y by log k, and violates the group
structure of y which is the ratio scale quantity . Hence,
the functional relation from x to y must not be loga-
rithmic . Next, we assume that y = u(x) - x3 . In this
case, the change of unit leads u(kx) = k3x3 , and this
causes the change of unit of y by the factor of0. Since
this is admissible for the group structure of y, y = x3
is one of the possible relations between x and y .
Now, our interest moves to derive the most generic

formula of the continuous functional relations between
two ratio scale quantities x and y . As the admissible
transformations of x and y in their group structures
are x' = kx and y' = Ky respectively, the relation of
y = u(x) becomes as y' = u(x') H Ky = u(kx) . The
factor K of the changed unit of y may depend on k, but
it shall not depend upon x, so we denote it by K(k) .
Consequently, we obtain the following constraints on
the continuous function u(x) .

u(kx) = K(k)u(x),
where k > 0 and K(k) > 0 as these are the factors
of the changed units . The constraints for the different
combinations of the scale types are summarized in Ta-
ble 2 (Lute 1959) . Lute derived each solution of u(x)
under the condition of x >_ 0 and u(x) >_ 0 . We ex-
tended his theorems to cover the negative values of x
and u(x) . Our new theorems are represented bellow .
Lemma 1 The function u(x) satisfying Constraint 1
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Scale Basic Empirical
Operations

Mathematical
Group Structure

Nominal Determination of Permutation group
equality x' = f(x), where

f(x) means any one-
to-one substitution .

Ordinal Determination of Isotonic group
greater or less x' = f(x), where

f(x) means any
monotonic increasing
function .

Interval Determination of Generic linear group
equality of inter- x' = kx -+- c
vals or differences

Ratio Determination of Similarity group
equality of ratios x' = kx



Table 2 : Constraints on functional relations due to the scale characteristics

*c and C can be any real numbers .

in Table 2 has the following property .
x=0-+y=u(0)=0 and y=u(x)=0--+x=0
Proof. If x = 0, then Constraint 1 becomes u(0) _
K(k)u(0) .

	

Thus, if u(0) 54 0 then K(k) = 1, i .e .,
u(kx) = u(x) . However, u having this group struc-
ture must be an absolute scale, i.e ., dimensionless, and
this is contradictory to the definition of u.

	

Therefore,
y = u(0) = 0 .

	

If y = u(x) = 0, then Constraint 1
becomes u(kx) = K(k)u(x) = 0 . This relation holds
independent of k . Therefore, x = 0 .

Lemma 2 The function u(x) satisfying Constraint 1
in Table 2 has the following property. For x >
0, u(x)/u(1) is always positive . For x < 0, u(x)/u(-1)
is always positive .
Proof. From the Lemma 1, y = u(x) does not change
its sign except at the origin (x, y) = (0, 0) . Thus, the
sign of u(x) is identical with that of u(1) when x > 0.
Therefore, u(x)/u(1) > 0 .

	

Also, the sign of u(x) is
identical to that of u(-1) when x < 0.

	

Therefore,
u(x)/u(-1) > 0 .

Theorem 1 If the independent and dependent con-
tinua are both ratio scales, then u(x) = a.I xIO, where
a* = a+ for x >_ 0, a* = a_ for x < 0 and where # is
independent of the units of both quantities .
Proof.
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Constraints

1) In case of x > 0, set x = 1 in Constraint 1, then
u(k) = K(k)u(1), so K(k) = u(k)/u(1) . Thus, Con-
straint I becomes u(kx) = u(k)u(x)/u(1) . Based on
Lemma 2, let v(x) = log[u(x)/u(1)], then v(kx) _
log[u(kx)/u(1)] = log[{u(k)/u(1)}{u(x)/u(1)}] _
log[u(k)/u(1)] + log[u(x)/u(1)] = v(k) + v(x) .
Since u is continuous, so is v, and it is well known
that the only continuous solutions to the last func-
tional equation are of the form v(x) = /31og x =
logxp . Thus, u(x) = u(l)x,3 = a+xQ .

2) In case of x < 0, set x = -1 in Constraint 1, then
u(-k) = K(k)u(-1), so K(k) = u(-k)/u(-1) .
Thus, Constraint 1 becomes u(kx) = u(-k)u(x)/
u(-1) . Based on Lemma 2, let v(x) = log[u(x)/
u(-1)], then v(kx) = log[u(kx)/u(-1)] _
log[{u(-k)/u(-1)}{u(x)/u(-1)}] =
log[u(-k)/u(-1)]+log[u(x)/u(-I)] = v(-k)+v(x).
The only continuous solutions to the last functional

u(kx) =K(k)u(x)
u(kx) = K(k)u(x) + C(k)
u(kx + c) = K(k, c)u(x)
u(kx + c) = K(k, c)u(x) + C(k, c)

Comments*

k > 0, K(k) > 0
k > 0, K(k) > 0
k > 0, K(k, c) > 0
k > 0, K(k, c) > 0

equation are of the form v(x) _ 31og(-x) _
log(-x)" as well. Thus, u(x) = u(-1)(-x)Q =
a_(-x)p .

From 1), 2) and Lemma 1, u(x) = a* IxIO, where
a* = a+ for x >_ 0 and a* = a- for x < 0. We
observe that since u(kx) = a* kplxlp = a'* IxIp,,3 is in-
dependent of the unit of x, and clearly independent of
the unit of u.

Theorem 2 If the independent continuum is a ratio
scale and the dependent continuum an interval scale,
then either u(x) = cr log jxj + ,Q* , where a is inde-
pendent of the unit of the independent quantity and
where Q* = Q+ for x >_ 0 and ). = 3- for x < 0,
or u(x) = a*Ixl,Q + 6, where a* = a+ for x >_ 0 and
a* = a_ for x < 0,13 is independent of the units of the
both quantities, and b is independent of the unit of the
independent quantity .
Proof. In solving Constraint 2, there are two possibili-
ties to consider.
1) If K(k) = 1 for any k, then define v(x) = e"(x) .
Constraint 2 becomes v(kx) = D(k)v(x), where
D(k) = eC(k) > 0 and v is continuous, positive and
non constant because u is continuous and non con-
stant. By Theorem 1, v(x) = y* jxjO', where a is
independent of the unit of x and y* = y+ > 0 for
x >_ D and y. = y- > 0 for x < 0 because, by defini-
tion, v > 0 . Taking logarithms, u(x) = alog Ix 1+Q*,
where ,t3 * = logy* for x > 0 and ,Q* = Q-
for x < 0 .

2) If K(k) -4

	

1 for some k, then let u and u*

	

be
two different solutions to the problem, and define
w = u* - u . It follows immediately from Con-
straint 2 that w must satisfy the functional con-
straint w(kx) = K(k)w(x) . Since both a and u*
are continuous, so is w; however, it may be a con-
stant. Since K(k) F/ 1, it is clear that the only
constant solution is w = 0, and this is impossible
since u and u* were chosen to be different . Thus,
by Theorem 1,

	

w(x)

	

=

	

a* lxlp .

	

Substituting this
into the functional constraint for w, it follows that
K(k) = V . Then setting x = 0 in Constraint 2, we
obtain C(k) = u(0)(1 - V) . We now observe that
u(x) = a* JxJa + b, where a* = a+ for x >_ 0 and
a * = a_ for x < 0 and where b = u(0), is a solution

Scale Types
C� Independent Dependent
No. variable (Defined)

variable
1 ratio ratio
2 ratio interval
3 interval ratio
4 interval interval



to Constrain 2:
u(kx) = a * k (xjQ + b = a* k0 jxj0 + u(0)kp + u(0) -
u(0)k,' = k, u(x)+u(0)(1-kQ) = K(k)u(x) +C(k) .
Any other solutions is of the same form because
u* (x) = u(x) + w(x) = a* JxJO + S + a;, jxjQ =
(a* + a;)jxj0 + b. It is easy to see that b is inde-
pendent of the unit of x and 0 is independent of the
both units.

Theorem 3 If the independent continuum is an inter-
val scale, then it is impossible for the dependent con-
tinuum to be a ratio scale.
Proof. Let c = 0 in Constraint 3, then by Theorem 1 we
know that the unique admissible function for u(x) un-
der this condition is that u(x) = a* JxJO . Now set k = 1
and c :A 0 in Constraint 3: a* Ix+c10 = K(1,c)a*JxJQ,
so Ix + cl = K(l,c)11Qjxj, which implies x has two
constant values, contradictory to our assumption that
both continua have more than two points . Accordingly,
the function u(x) admissible under any combination of
values of k and c does not exist.

Theorem 4 If the independent and dependent con-
tinua are both interval scales, then u(x) = a* jxj + Q,
where a* = a+ for x >_ 0 and a* = a_ for x < 0 and
where 13 is independent of the unit of the independent
quantity .
Proof. If we let c = 0, then Constraint h reduces to
Constraint 2 and so Theorem 2 applies. If u(x) =
alog jxj +,8*, then choosing k = 1 and c 0 0 in Con-
straint 4 yields a log Ix + cl + Q. = K(1, c)a log jxj +
K(1, c),Q* + C(1, c) .

	

By taking the derivative with re-
spect to x except at x = 0 and x = -c, it is easy
to see that x must be a constant, which is impossi-
ble.

	

Thus, we must conclude that u(x) = a* 1X II + Q.
Again,

	

set k

	

=

	

1

	

and c

	

:A

	

0,

	

cr*lx + cl7 + /3

	

=
K(1, c)a* jx[7 + K(1, c),# + C(l, c) . If y 0 1, then dif-
ferentiate with respect to x except at x = 0 andx = -c:
a*ylx + cl7-1 = K(l,c)a* yjxj7-1 which implies x is
one of the two constants, so we must conclude y = 1 .
It is easy to see that u(x) = a* jxj + /j, where a* = a+
for x > 0 and a* = a_ for x < 0, satisfies Constraint

The results of these theorems are summarized in
Table 3. The impossibility of the definition of a ra-
tio scale from an interval scale is because the ratio
scale involves the information of an absolute origin,
but the interval scale does not. Every elementary laws
in physics follows this table . Luce enumerated such ex-
amples as follows(Luce 1959) . The quantities entering
into Coulomb's law, Ohm's law and Newton's gravita-
tion law are all ratio scales, and the formula of each
law is a power function which follows the formula of
Eq.l in the table . Additional examples of Eq.l can
be seen in geometry . The volume of a sphere upon its
radius and the area of a square on its side are such
samples, since length, area and volume are all ratio
scales . Other representative physical quantities such
as energy and entropy are interval scales, and we see

examples of Egs.2 .1 and 2 .2 for laws associated with
those. The total energy U of a body having a constant
mass m and moving at velocity v is U = mv2/2 + P,
where P is the potential energy . If the temperature
of a perfect gas is constant, then the entropy E of
the gas as a function of the pressure p is of the form
E = -R log p + E', where R and E' are Boltzmann's
constant and a reference value of entropy respectively.
As an example of Eq.4, there is the relation x = vt+xo
for a particle moving at its constant velocity v, where
x is the position at the present time t and xo is the
initial position x, xo and t are all interval scales here .
The examples of this table are not limited to the phys-
ical and geometrical domains . In psychophysics, Fech-
ner's law states that the sound tone s of human sensing
(proportional to the order of white keys of a piano) is
proportional to the logarithm of the sound frequency
f, i . e ., s = alog f+0, where s is an interval scale, and
f is a ratio scale .

Finally, the following important consequence should
be indicated .
Theorem 5 A absolute scale quantity can have func-
tional relations of any continuous formulae with other
absolute scale quantities .
Proof. When an independent quantity x and the de-
pendent quantity u(x) are absolute scale quantities,
both of them have the group structure of x' = x and
u(x') = u(x) . Any continuous formulae of u(x) satisfy
the constraints.
For example, the behavior solution of the simple pen-
dulum of Fig. 1 is 0 = sin(t(g/1) 1/2) . The triangular
function sin which does not belong to Table 3 can hold,
because 0 and t(g/l) 112 are dimensionless, i.e ., abso-
lute scale .

Theory and Method to Derive Possible
Law Equations

As explained in the first section, a complete process
in a system forms an ensemble, and is represented
as a complete equation O(x1, x2, . . ., x�) = 0(Bhaskar
& Nigam 1990) . Within an ensemble, some regimes
exist . Each regime represents a decomposable sub-
process which corresponds to a dimensionless quantity
Hi (i = 1, . . ., k) where k = n - r . IIi and other quanti-
ties x1 i , x2,, . . ., x�,, having their scales form a complete
equation pi (IIi, x1, , x2� . . ., x,"+,) = 0 where mi _< n .
Furthermore, IIi for all regimes in an ensemble forms
their complete equation F(II1, II2, . . ., IIk) = 0 on the
basis of Buckingham's II-theorem(Buckingham 1914) .
Therefore, the ensemble O(x1, x1, . . ., x� ) = 0 can be
decomposed into the following set of equations.

1Pi(IIi3 x1ox2;, . . ., x�,,) = 01i = 1, . . ., k},
F(II1,112 . . . . . . l1k) = 0.

The basic formula of each pi can be derived by the
principle in the previous section, if we know the types
of scales of x1, , x2, , . . ., x,, . However, the formula of F
can not be determined because of Theorem 5 .
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Table 3 : The possible relations satisfying the scale characteristics

Scale-Based Reasoning within a Regime
This subsection describes the theory and the method
of scale-based reasoning which uses a priori knowledge
of quantity scales (not the knowledge of physics) to de-
rive the formula of pi for a given regime is described .
The product theorem is extended to include interval
scale quantities . The principle of the extension is a
certain symmetry that the relations given in Table 3
must hold for each pair of quantities in a regime . First,
we settle the following lemma.

Lemma 3 Given a set of quantities forming a regime
where some quantities are interval scales and the others
ratio scales, the relations of y = alog Ixi I + Q. and
y = a,Ixj Ip +b(i 0 j) from any two independent ratio
scales xi and xj to any one dependent interval scale y
are not allowed to coexist in the same regime .
Proof.
Assume that y = a log Ixi I + )3,

	

and y = a* I xj 10 + b
coexist in a regime. By casting a and ,Q . of the former
with (alxj Ip + c)

	

and (a' I xj 10 + c')

	

respectively,

	

we
obtain y = (alxj 10 -{- c) log lxil + (a'lxj I,' + c') .

	

This
formula satisfies the relation from xi to y when xj is
constant . It also satisfies the relation from xj to y by
letting a, = a log IxiI + a' and b = clog IxiI + e', while
holding xi constant . However, by solving this formula
with x i , xi = fe{(y-°~~x'I~-~~)1/{(alxil~+~)1 is derived.
This is different from the admissible relation between
the two ratio scales, xj =

a,'Ixi10'
in Table 3 for any

values of a, a', c and c', and so it is contradictory .

	

By
casting (a log IxiI + b) and (a' log IxiI + b') to a, and b
of the latter respectively, the same discussion leads to
the contradictions to Table 3 of the relations between
the two ratio scales .

Next, the extension of the product theorem is de-
rived .

Theorem 6
Given a set of quantities Q =

	

{x 1 , x2, . . ., x�,,) form-
ing a regime where some quantities are interval scales
and the others ratio scales, the relation f = 0 among
x1, X2, . . ., x, n , has either one of the two forms.
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Possible Relations

u(x) = a.Ixjs
U(X) = a log 1XI + 0.
U(X) = a. jxj s + b
impossible
u(x) = a, 1x1 +,3

1) The notations a,, fl . are a+, ,0+ for x >_ 0 and a_, (j_ for x < 0, respectively .
2) The notations a/x means "a is independent of the unit x" .

Comments*

i9/x,0/u
a/x
,0/x ; ,0/u ; b/x

AXI, x2, . . ., x,n ) = ( 11

	

Ixil a- )( E b*j lxj I + C.1)
x;ER -- .,Eli

+ E bklxkI + C2
xkEI2

f(XI, x2, . . ., xn,) =

	

E ai log Ixi I + E bj Ixj I + c, (ii)

x,ER

	

x,EI

Here, R is a set of quantities of ratio scale in Q, and
I is a set of all quantities of interval scale in Q . Also,
I1 and 12 are any partition of I where 11 + 12 = I .
Proof. The following two cases are considered based on
Lemma 3.

1) When the relation from every xi E R to every
xh E I is given as xh = a,h Ix j 1Qh, +bh;, by casting
a, h

	

and bh i of this formula with (a-h, Ixj IRhj +C,h;)
and (ahi IxjI

0h, + Chi ) respectively where xj E R and
i ~6 j, we obtain
xh = (a-h, Ixi1

0h, + C,h,)IxiIph- + (ah,IxiI p° ' + Chi)
Though this formula satisfies the both relations from
xi to xh and from xj to xh, the relation between
the two ratio scales, xj = a*Ixilp holds only when

C*h, = ah, = 0. Hence, xh = a*h, l xi lph' Ixj 113h' +Ch, -
This must hold for every xi E R, therefore

xh=A*h(rl
IX, Ian.)+Ch .

x;ER
The relation from every xj E I to xh is given as
xh = a*h;lxjl + Oh; . By casting A*h and Ch with
(a. h, IxiI +b,h,) and (ah,IxjI + bhp ) respectively,

xh = (a*h,lxj l+ b.h,)(11
IX,

lah,)+(ah,lxjI+bh;)-
x,ER

is derived. Though this satisfies the admissible rela-
tions from every xi E R to xh and from xj to xh,
the admissible relation from every xi E R to xj holds
only when a, h = 0 or ah, = 0. Thus, one of the
followings holds.

xh = b* h ;( J1 Ixilah , ) + (ah;lxjl + bh;)-

	

(a),
x,ER

Scale Types
Eq . Independent Dependent
No . variable (Defined)

variable
1 ratio ratio
2.1 ratio interval
2.2
3 interval ratio
4 interval interval



xh = (a.h, l xj I + b" h,)( rl

	

lxi lah`
) + bhj

	

(b) .
x,ER

For the former formula (a), by casting %h., ahj
and bh p	with(a*hk lxk l + b*hk ),

	

(ahk l xk l + bh,)

	

and

(ahk lxk l + b~, k ) respectively where xk E I and j

	

k,
the following relation is obtained .

xh = (a-h, lxkI + b*hk)( 11 lxilah')
x,ER

+{(ahklxkI+bhk)lxjI +(ahk lxkI+bhk ))-
Though this formula satisfies the admissible relations
from every xi E R, xj and xk to xh, the relation be
tween xj and xk, xk = a.lxj 1-}-0, is maintained only
when ah k = 0. Thus,

xh = (a " h,lxkl+b*hk)( 11 lxil ah `)
a,ER

+(bhklxjl +ahklxkI+ bhk)'
The relation from every xi E R to xk holds only when
a*hk = 0 or ahk = 0 similarly to the above discus-
sion, and hence
xh = b* hk (11x,ER lxi lah` ) +(bhk lxj l + ahk lxk l + bh k ),
xh = (a " h,,Ixkl+b.hk)( rj lxilah`)+(bhklxjI+bh k )'

x .ER
The same discussion is made for the formula (b),
and the followings are derived.

xh = (b " hk lxj l + b.h k )( 11

	

IX, lah; )
x,ER

+(ahk lxkl + bhk), or
xh = (b "h,lxjI +a.h,lxkI +b.h k )(11 Ixilah`)+bh, .

x,ER
This must hold for every xj E I (j 0 h), therefore

xh = (

	

lxil ah ')(

	

E

	

b*h i lxjl+c" h,)
xiER xjE(h-{xh})

+

	

E

	

bh k ixkI + eh2
xkE(12-{xh})

By moving xh to r.h .s ., the formula (i) is obtained .

2) When the relation from every xi E R to every
xh E I is given as xh = ah, loglxi l +/3. h , by casting
ahi and /j.h of this formula with (ah, log lxj l + Ch,)
and (a, h, log l xj l + c*h,) respectively where xi E R
and i~ j, we obtain
xh = t uh; log lxj l +ch;) log l xi l + a*h; log ixj l + c. h,-
Though this formula satisfies the both relations from
xi E R and xj to xh, the relation between two ra-
tio scales, xj = cY� lx i lp holds only when ah, = 0 .
Hence, xh = chj loglxil + a*hj log lxj l + c*h4 .

	

This
must hold for every xi E R, therefore

xh = Y, a*h ; IOg lxil + C" h .
x ;ER

The relation from every xj E I to xh is given as
xh = a*hj lxj l +A4 . By casting a . h and C*h with
(a-h, lxj l + b, h;) and (a.'~ lxj l + b.h,) respectively,

xh =

	

(a-h, lxj ( + b, h;) IOg Ixi l+(a*ih; lxj l+b.hj ) .
x,ER

is derived . Though this satisfies the admissible rela-
tion from every xi E R to xh and xj to xh, the rela-
tion between every xi E R and xj, xj = alog lxil+O.
is maintained only when every a*h; = 0. Hence,

xh =

	

%h, log lxil+a.' IxjI+b.h; .
x,ER

Again, by casting b.h>., a*h, and b.h with,
(a.h k lxkl+b+h k ), (a*hklxkl+%lak) and (a.h k lxkl +
b.h k ) respectively where xk E R and j $ I , the fol-
lowing relation is obtained .

x h = 1: (a " hklxkI+b.hk)loglxil
x,ER

+( a.hklxkI+b.h k )IxjI +(a.",,lxkl+b.hk) .
Though this formula satisfies the admissible relations
from every xi E R, xj and xk to xh, the relations be
tween every xi E R and xk, xk = alog lxi l + # and
between xj and xk, xk = a,Ixj l + /3, are maintained
only when a*hk = a.h k = 0. Thus,
xh=

	

b.hk loglxiI+b.h k lxj I+a.h k lxkI+b.h k .
x,ER

This must hold for every xj (=- I, therefore

xh = E a* h i loglxil+

	

1:

	

b.h;lxjI+c*h .
x,ER

	

x;E(I-{xh})
By moving xh to r.h.s ., the formula (ii) is obtained .

Theorem 7 If R = 0, i. e., I = Q, in Theorem 6 then
the relation f = 0 among xl, . . ., x,n has the following
form .

Axl, x2, . . ., x,n ) = E b.i log lxi l + e*
--,ER

Proof. The first term associated with R in each for-
mula of (i) and (ii) of Theorem 6 is neglected because
of R = 0, and both formulae become as the above for-
mula .

Now, we consider to derive the candidates of formula
f = 0 of a given regime p, where the set of quantities
except dimensionless II in p is Q = {xi _ ., x,n } . The
following algorithm based on the product theorem and
the above theorems 6 and 7 derives the candidates .

Algorithm 1
(Step 1) Q = {xl, . . ., x,n}, S = ~ .

	

Let R be a set of
all quantities of ratio scale in Q . Let I be
a set of all quantities of interval scale in Q.

(Step 2) If I = 0 {
Based on the product theorem,
push the following to S.

f(xi, x2, - . ., xnt ) =

	

11 Ixil a ' + c, = 0 .}
xiER

else if R = 0 {
Push the relation of theorem 7 to S.)

else {
Enumerate candidate relations of (i)
in theorem 6 for all binary partitions
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{Ii, 72} of I, and push those
candidates to S .
Push the relation of (ii)
in theorem 6 to S.1

The candidates is rested in the list S . The result of S
is sound, since the soundness is ensured by the prod-
uct theorem, the theorems 6 and 7 . The complexity
of this algorithm is low except the enumeration of all
binary partitions {71,12} of I, where the complexity
is 0(2 1,1) . The exchange of Ii and 12 essentially gives
an equivalent relation with the original relation (i) of
the theorem 6, as it is easily understood by the form
of the relation . Therefore, the complexity reduces to
O(2 1I1-1 ) . In any case, it is not very problematic, be-
cause the size of a regime is generally quite limited .
We implemented this algorithm by using a commer-

cial formula-processing package Maple V(Char 1991) .
This algorithm have been tested by various physical
laws . The following is the example of the ideal gas
equation which forms a unique regime . A regime in-
volving four quantities of pressure p, volume v, mass
m and temperature t is given, thus R = {p, v, m, t} .
The quantities p, v and m are ratio scales, while only
t is an interval scale unless it is absolute temperature .
We assumed the positive sign of p, v and m in advance,
hence the solutions for their negative values were omit-
ted . The algorithm figured out the two candidate re-
lations .

0 = Cipa, V12 M13 + bit -}- c2 .
Consequently, the following candidate was obtained .

paiva2 =m_a3(- bit+ C2
)

Cl
Next, another candidate was found .

0=ailogp+a21ogv+aslogm+bi *t+c.
pa'va2 = m-a' exp(-bit - c) .

The former solution reflects the right formula of the
ideal gas equation, when the temperature is not abso-
lute one . Once the candidate formulae of a regime are
determined, the correct formula and the values of its
coefficients must be specified in data-driven manner .

Data-Driven Reasoning on Ensemble
Scale-based reasoning can derive the basic formula rep-
resenting a regime without using any knowledge about
its structure . However, more insights on the objec-
tive system are definitely needed to determine the for-
mula of the entire ensemble due to Theorem 5 . To
do so, the introduction of a priori knowledge such as
symmetry of the system is a choice . But, this direc-
tion will limit the applicability of the method to more
ambiguous domain like psychophysics and sociology .
Accordingly, we chose a data-driven approach of the
formula identification for an ensemble . In this frame
work, the knowledge of dimensions of quantities and
the number of basic dimensions, r, are not given but
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only the knowledge of scales . Accordingly, the regimes
and their number, k (=n-r), must be interpreted by us-
ing the given measurement data based on the following
alternative definition of regimes .

Definition 1
A regime is a subsystem, where the relation among
quantities follows either of the product theorem, theo-
rem 6 and 7, of a given complete equation .
This definition of a regime yields an significant ad-

vantage to relax the limitation of the assumption 3
mentioned in the first section . Consider the exam-
ple of convection heat transfer coefficient given by
Kalagnanam et al.(Kalagnanam, Henrion, & Subrah-
manian 1994) The heat transfer from a fluid to a pipe
wall takes place through convection when a fluid forced
through a pipe . A complete equation for this phe-
nomenon under the turbulent flow is known as follows .

il l = 0 .0231120 8 11 3 0.4

where II I = hD,H2 = ° andII3 = k .
h is the convection heat transfer coefficient dependent
to the other quantities . D and V are diameter of pipe
and velocity of stream. m, r, c and k are the material
quantities of the fluid, i .e ., viscosity, density, specific
heat and thermal conductivity respectively. The num-
ber of quantities and that of the basic dimensions are
n = 7 and r = 4 respectively . Hence, three (k = 3)
regimes exist in this ensemble, and III, H2 and 113 are
called as Nusselt's, Reynold's and Prandtl's numbers
in the thermal hydraulics domain . This example vi-
olates the assumption 3, because D and m appear in
multiple regimes . However, this equation is regarded
as a unique regime in terms of the definition 1, because
it can be rewritten to follow the product theorem as :

ko.6VO .ap0,80 .4 1
- =0 .

hDO 21, 0.4

	

0.023
This case assumes the number of basic dimensions, r,
to be 6 without the knowledge of dimensions . Though
this number is different from the actual one, it is suf-
ficient to identify the formula of the relation among
quantities based on the knowledge of scales and given
measurement data . Furthermore, the combined use of
the definition 1 and the assumption 4 described in the
first section completely removes the limitation of the
assumption 3 . For example, consider to evaluate the
average of the convection heat transfer coefficients, ha ,
for the adjacently connected two pipes having different
diameter D I and D2 . While the velocities of steam in
the two pipes, Vi and V2 become also different, the val-
ues of the extra material quantities are identical . Thus,
the relation among quantities is given as follows .

k0 .s p0 .s COAV1 o . a k0.6p0 .8C0.4V2O . s 2 _
ha110AD1 0 .2

	

+

	

haPOAD20 .2

	

0.023 -
0 .

This seems to involve two regimes containing k, p, C,
ha and p in common . However, when the relation be-
tween D l and Vi is measured while fixing the values



of k, p, c, ha , p, D2 and V2 under the assumption 4,
the part of Dl, Vl is identified as a regime by the defi-
nition 1 . The regime of D2, V2 is also identified in the
same manner . Moreover, the relation among k, p, c,
ha and p is regarded as a regime by the measurement
under fixing the values of Dl , Vi , D2 and V2 . Thus,
we obtain the following interpretation .

113111+113112-0 .023 0y o .a

	

y o a

	

k o .a o.8 CO.4
where 111 = D

	

, IIZ = D-' and 113 =

	

h a u0 ,

	

.

Consequently, the following proposition can be stated .

Proposition 1
Given an ensemble 0(xl,x2, . . .x� ) = 0, its fol-
lowing decomposition into regimes always exists .
F(111,112, . . ., IIk) = 0 and 1Pi (IIi, x1 � x2;, " . .x�� ) =
01i = 1,...,k), where {Qi IQi = fx1i, x2,, . . .x,nz }, i =
1,...,k} is a partition of entire quantity set E =
{xl, x2, . . .xn} .
Once each regime is identified, an absolute scale

quantity must be defined in each regime, and their
mutual relation F(II1,112, . . ., Ilk) = 0 is searched by a
certain procedure . Based on these considerations, the
following algorithm to identify the formula of a given
complete equation has been constructed .

Algorithm 2
(Step 1) E = {x1, x2 , . . .x� }, LE _

	

and k = 1 .
(Step 2) Repeat until k becomes equal to n .

Repeat for every partition ri of E
where 117i I = k . {

Repeat for every Qi; E ri

	

k).
Apply the algorithm 1 to Qi; .
Test each solution in S through the
least square fitting to the measured
data under some sets of values of
quantities in (E - Qi; ) .
If some solutions are accepted,
substitute them to a list LQi .}

If every LQi ; 54 0, let a list
Lri = {LQi, I Qi ; E ri, j = 1, . . ., k} .
Push Lri to LE.}

If LE 0 ¢, go to (Step 3), else k = k + 1 .}
(Step 3) Repeat for every Lri in LE. {

Repeat for every LQi; in Lri(j = 1, . . ., k) . {
Repeat for every solution of a regime,
sib, in LQi, .

Determine an absolute scale quantitiy
Il(si,) based on the coefficients of si p
evaluated through the least square
fitting to the measured data.}}}

(Step 4) Repeat for every Lri in LE .
Take Cartesian products LPi = LQi, x
LQi, x - - - x LQik in Lri .
Repeat for every {si, , si� . . ., si, } E LPi . {

Determine the formula F(II(si,),
Il(si2), . . ., 11 (si, )) = 0 .}}

More concrete contents of this algorithm are demon-
strated through an example of Black's specific heat
law . This relates the initial temperatures of two sub-
stances Tl and T2 with their temperature Tf after they
have been combined . This law has the formula of
Tf = (w1M11(w1M1 + w2M2))Ti + (w2M2/(w1Mi +
w2M2))T2 where Ml and M2 are the masses of the two
substances, and wl and w2 are their specific heat coef-
ficients . The conditions of Ml = 0.5M2 and wl = w2
are applied in our example . In (Step 1), the set of
measured quantities E is set as {Tf,T1,T2, Ml, M2} .
(Step 2) is the process to enumerate all partitions of
E where each subset of E is interpreted as a regime
in terms of the definition 1 . The data for each quan-
tity in E is measured with almost 2% relative noise in
our demonstration . The goodness of the least square
fitting of each candidate solution derived by the algo-
rithm 1 is checked through the F-test which is a sta-
tistical hypothesis test to judge if the measured data
follows the solution . If a parameter is close enough to
an integer value, then the parameter is forced to be
the integer, because the parameter having an integer
value is quite common in various domains . Every par-
tition Gammai, where all of its subsets are judged to
be regimes, is searched in an ascending order of the car-
dinal number k of the partition . Once such partitions
are found at the level of the certain cardinal number,
(Step 2) is finished at that level to obtain the solutions
of the ensembles involving the least number of regimes .
This criterion decreases the ambiguity of the formula
of the ensemble by reducing the number of the abso-
lute scale quantities in it . In the current example, only
the partition of {{Tf,T1,T2}, {M1, M2}} is accepted
at the least cardinal number, k = 2 . All quantities in
the former regime are of interval scale, and those in the
latter are of ratio scale, and thus the formula of these
regimes are enumerated as :

Tf=b1T1+b2T2+c1, Mi'M22 +c1=0 .
Their more specific formulae are identified through the
data fitting as follows .

Tf = b1T1 + ba7z,

	

MJM~-1 + c l = 0 .
(Step 3) defines an absolute scale quantity II for each

regime . The definition can be made in various ways . In
our approach, a parameter in a regime, which is vari-
able by the influence from the other regimes, is chosen
to be a fl, and the other variable parameters in the
regime are evaluated in terms of the 11 . In the cur-
rent example, both of bl and b2 in the former regime
are observed to be variable depending on the values of
Ml and M2 . Accordingly, many data of {bl, b2} are
evaluated through fitting to the measured data of Tf,
Tl and T2 under various values of Ml and M2 . Then,
b l is chosen to be the II I of the regime, and various
formulae of f(II I ) are tested for b 2 through the F-test
of the least square fitting to the data of {bl, b2} . The
class of f(II1) is limited to polynomial and meromor-
phic formulae in our current study. The following is
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the most simple formula accepted in the test .
bl = H1,

	

b2 = 1 - H1 .
For the latter regime, cl is uniquely chosen to be the
H2

(Step 4) searches the relation of each ensemble
found in the preceding steps . In the example un-
der consideration, first, many data of {H1, H2} are
obtained by applying various combinations of values
of {Tj,T1,T2, Ml , M2} . Then various formulae of
F(H1, 112) = 0 are tested for the ensemble while lim-
iting the class of F to polynomial and meromorphic
formulae . The most simple formula accepted is as fol-
lows .

	

H1H2_HI_H2=0 .
By combining above formulae, the familiar equation
of the Black's specific heat law under the condition of
wl = w2 is obtained .

The basic principle of the scale-based reasoning we pro-
posed is the isomophic symmetry of the equation for-
mula under the admissible scale conversions of the ratio
and interval types . This constraint strongly restricts
the possible shapes of the equations . In this sense,
the fundamental principle of our approach is analogous
to the symmetry-based reasoning proposed by Ishida
[Ishida 1995] . However, the source of the symmetry in
our case is independent from the features of the ob-
jective system, while his approach uses the symmetries
intrinsic to the system .
One of the basic principle of the dimension analysis

is the product theorem . Because this theorem holds
only for ratio scales, the applicability of the dimension
analysis is limited to certain domains . It requires the
knowledge of the unit structure which carries the in-
formation of the physical relation among quantities as
we explained for the case of f = ma, and this feature
also limit its applicability . Obviously, the scale-based
reasoning can be applied to diverse domains such as
Fechner's law in psychophysics, because it utilizes only
the features of quantity scales for the part of the iden-
tification of regimes .
The data-driven approaches taken in BACON(Lang-

ley & Zytkow 1989) and some other works(Li & Biswas
1995) have the wide applicability . However, their solu-
tions are not ensured in terms of soundness . Although
our approach is also data-driven in some extent, the
solutions for the regimes are guaranteed to be sound,
because the product theorem, the theorems 6 and 7
cover all possibility of relations in the regimes . These
theorems are expected to contribute to many fields of
qualitative reasoning and knowledge discovery. While
the complexity of the algorithm 1 becomes quite high
for a more large scale system, it would be still less than
that of BACON, because this can reduce the search
space of the relations of the ensemble by the identifi-
cation of regimes in advance .
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_ M1	M2
TTJ

	

Ml +M2TI+ MI+M2 2
.

Discussions and Related Work

Conclusion
The major characteristics of our approach are summa-
rized as follows .
1) The sound solutions of basic formulae of law equa-

tions within a regime are provided by using only the
knowledge of quantity scales .

2) An ensemble and its regimes in the objective system
are identified from the empirical data.

3) The applicability is not limited to well-defined do-
mains, since the method does not require a priori
knowledge except the knowledge of quantity scales .

The scale-based reasoning may provide a basis to de-
velop qualitative models of ambiguous domains such
as biology, psychology, economics and social science .
This will also contribute the research area of knowl-
edge discovery .
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