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Abstract

This paper explores how qualitative informa-
tion can be used to improve the performance of
global optimization procedures . Specifically, we
have constructed a nonlinear parameter estima-
tion reasoner (NPER) for finding parameter val-
ues that match an ordinary differential equation
(ODE) model to observed data. Qualitative rea-
soning (QR) is used within the NPER, for instance,
to intelligently choose starting values for the un-
known parameters and to empirically determine
when the system appears to be chaotic . This en-
ables odrpack, the nonlinear least-squares solver
that lies at the heart of this NPER, to avoid ter-
minating at local extrema in the regression land-
scape . odrpack is uniquely suited to this task be-
cause of its efficiency and stability. The NPER's
robustness is demonstrated via a Monte Carlo
analysis of simulated examples drawn from across
the domain of dynamics, including systems that
are nonlinear, chaotic, and noisy . It is shown to
locate solutions for noisy, incomplete real-world
sensor data from radio-controlled cars used in the
University of British Columbia's soccer-playing
robot project . The parameter estimation scheme
described in this paper is a component of pret,
an implemented computer program that uses a
variety of artificial intelligence techniques to au-
tomate system identification - the process of in-
ferring an internal ODE model from external ob-
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servations of a system - a routine and difficult
problem faced by engineers from various disci-
plines.

Introduction
System identification (SID), the process of inferring an
internal ordinary differential equation (ODE) model
from external observations of a system, is a routine
but difficult problem faced by engineers ; consider, for
example, building a controller for a radio-controlled
(R/C) car with unknown dynamics . In general, SID
proceeds in two interleaved phases : first, structural
identification, in which the form of the equation is
determined, and then parameter estimation, in which
values for the coefficients are obtained . If structural
identification produces an incorrect model, no coef-
ficient values can make its solutions match the sen-
sor data. In this event, the structural identification
process must be repeated - often using information
about why the previous attempt failed - until the
process converges to a solution, as shown diagram-
matically in Figure 1 .
In linear physical systems, parameter estimation

is well-understood . One textbook approach (Juang,
1994) is to choose a generic ODE system i = AS, fast-
Fourier-transform (FFT) the sensor data, and use the
characteristics of the resulting impulse responsel to
determine the coefficients of A . If a solution exists,
this process is relatively straightforward . The diffi-
culties- and the subtleties employed by practitioners
- arise where noisy or incomplete data are involved,
or where efficiency is an issue. See (Juang, 1994;
Ljung, 1987) for some examples .

'The natural frequencies, which appear as spikes on
the impulse response, yield its eigenvalues ; the offdiagonal
elements can be determined via a residual analysis of the
mode shapes between those spikes .



Figure 1: The System Identification Process. Structural
identification yields the general form of the model; in pa-
rameter estimation, values for the unknown coefficients in
that model are determined . The program pret automates
this process; the topic of this paper is the parameter esti-
mation box.

In nonlinear systems, SID is vastly more difficult.
Because linear signal processing methods like FFTS
do not apply, we must fall back on regression, and
nonlinear regression landscapes typically exhibit local
extrema that can trap numerical methods. Finding
the optimal solution in such landscapes is the difficult
problem addressed by global optimization research
(Horst et al., 1995 ; Torn and Zilinskas, 1989). This
paper contributes to this body of work by presenting
a new, highly effective global optimization method -
constructed using a combination of qualitative reason-
ing (QR) and local optimization techniques - for the
nonlinear problems encountered in SID .

The context within which we apply these ideas is
the computer program pret (Bradley, 1994 ; Bradley
and Stolle, 1996), which automates the SID process
diagrammed in Figure 1 by building an artificial in-
telligence (AI) layer on top of a set of traditional SID
techniques. This AI layer automates the high-level
stages of the identification process that are normally
performed by a human expert . In particular, several
forms of QR are combined in a custom logic system
(Stolle and Bradley, 1996) to perform structural iden-
tification, assembling a combination of user-specified
and automatically generated model fragments into
nonlinear ODE models that fit both the domain physics
and the observations .

pret's nonlinear parameter estimation reasoner
(NPER), the specific topic of this paper, uses QR tech-
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niques to automate the selection of coefficient values
for these ODE models - the functions represented by
the lower box in Figure 1. The method that lies at
the core of the NPER is odrpack (Boggs et al., 1991 ;
Boggs et al ., 1987), a robust nonlinear least-squares
solver . Around this core is built a layer of QR tech-
niques that allow pret to automatically interact with
and exploit odrpack's unique and powerful features .
This layer can, for instance, intelligently choose start-
ing values for the unknown coefficients, helping odr-
pack avoid local extrema. QR can be used to determine
cutoff frequencies for filtering algorithms, so noise can
be removed without disturbing the data's structure.
Given qualitative observations, amainstay of pret, we
can also use QR to interpret ODRPACK's results on an
abstract level -quickly and yet correctly. QR-guided
parameter estimation techniques like these, a collec-
tion of which are the topic of the remainder of this
paper, are elements of the type of analysis that an ex-
pert human user would perform during an interaction
with odrpack.
The next section introduces pret by way of the real-

world example previously mentioned: the R/C cars
used in the university of British Columbia's soccer-
playing robot project. These devices cannot be con-
trolled without an accurate ODE model of their dy-
namics - something that is not part of the manufac-
turer's specifications sheet. Following this example -
which shows both SID phases - we focus on the pa-
rameter estimation phase and describe the inner work-
ings of the NPER. To demonstrate its capabilities, we
present a suite of examples, drawn from across the do-
main of dynamics, including simulated systems that
are nonlinear, chaotic, and noisy, as well as the real-
world R/C car example mentioned above .

An Example
pret constructs ODE models of target systems, linear
or nonlinear, in one variable or many . It is written
in scheme (Rees and Clinger, 1986) and maple (Char
et al., 1991); its implementation is a hybridization of
traditional numerical analysis methods, such as non-
linear regression, with QR and logic programming.

Figure 2 shows how a user instructs pret to build
a model of the dynamics of an R/C car. The details
of the syntax are covered elsewhere (Bradley, 1994 ;
Bradley and Stolle, 1996) ; briefly, the bulk of the
user's input consists of three types of information
about the target system : hypotheses, observations,
and specifications . The first are ODE fragments
from which pret constructs the model and the third
prescribe resolutions to which that model must ad-
here . Observations, which play a more-important
role in this paper, range from the purely quantitative
to the purely qualitative. The source of the numeric
observation in the find-model call of Figure 2, for
example, is a camera above the car, while the qualita-



(find-model
(domain mechanics)
(stata-variables <r> <that&>)

(point-coordinat as <r> <theta>)
(coordinate-transformations ((<r> ( " <r> (cos <theaa>)))

(<y> ( " <r> (sin <thsta>)))

(<v> (ezpt (+ (expt <x> 2) (erpt <y> 2)) .5))))

(hypotheses
(<force> (~ a <y>))
(<force> ( " b (dariv (dariv <y>))))

(<force> ( " c <time>))

(<force> ( " d (dariv <theta>))
(<force> ( " a <v>))
(<force> f))

(observations
(constant <thsta>)
(autonomous <r>)

(damped <:>)
(numeric (<time> <r> <y> <theta> <v>)

(0 .017 10 .4 63 .1 2 .4 2) (0 .033 10 .4 63 .3 . . .) . . .)
(specifications

(resolution <y> absolute 0.1)))

Figure 2: Instructing pret to find an ODE model of an
R/C car. Angle brackets identify special keywords, such as
state variables or domain properties ; a . . . f are unknown
constants. The coordinate-transformation information
is necessary because the hypotheses and observations are
expressed in different coordinate systems.

tive observations were extracted from e-mail messages
from the project analysts and engineers.
To construct an ODE model from this information,

pret employs a special logic engine (Stolle and Bradley,
1996) to combine powerful mathematical formalisms,
such as the link between the divergence of an ODE

(C - f) and the friction of the system that it describes,
with domain-specific notions, such as force balances
in mechanical systems, in order to :

1 . build ODE models from the user's hypotheses ;

2. check those models against the observations ;

3. manipulate actuators and interpret the resulting
sensor data to verify or augment observations of
the system structure (Bradley and Easley, 1997);

4 . and, if the user's input is inadequate (Bradley et
al., in process), to

. synthesize hypotheses from power-series expan-
sions, and

e infer unobserved internal state variables using
time-series embedding theory.

Effective QR-guided parameter estimation, the focus
of this paper and the goal of the methods described
in the next section, is one element in step 2 . In order
to show how pret produces the type of! qualitative in-
formation used therein, the next few paragraphs give
a narrative description of both steps 1 and 2, the top
and bottom boxes in Figure 1, respectively .
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pret takes a generate-and-test approach . In the
mechanics domain, it uses force balances to assem-
ble hypotheses into models ; in all domains, it exam-
ines hypothesis combinations in order of increasing
complexity . In Figure 2, the first candidate model is
ay = 0. A scheme function called on this ODE estab-
lishes the fact (order <y> 0) which expresses that
the order of the highest derivative of y in this model
is zero . This fact conflicts with facts inferred from
simple geometric reasoning on the numeric observa-
tion - specifically, that the <y>-value of the time se-
ries in the numeric observation is not constant at the
specified resolution-so this model is ruled out. This
demonstrates pret's abstract-reasoning-first approach ;
only a few steps of inexpensive qualitative reasoning
suffice to quickly discard the model.

pret's structural identification module then con-
tinues through a series of hypothesis combinations,
checking each against the observations and discard-
ing most in a similar fashion : for instance, all models
involving the time-dependent term in the third hy-
pothesis conflict with the autonomous observation; all
whose divergences are non-negative are ruled out by
conflict with the damped observation.

Eventually, pret produces the model:

i
y
8
v

v cos 0
v sin 0
pv
a+-yv .

Guiding Nonlinear Parameter
Estimation with QR

None of the implemented rules disqualifies this model
by purely qualitative means, so pret invokes the N PER .
The resulting parameter estimates enable the ODE so-
lutions to match the data to within the prescribed
resolution, so this candidate model is returned as the
answer . The details of this computation are the topic
of the next section of this paper.
Space requirements force us to omit most of the

known hypotheses and observations and much of the
interesting reasoning that proceeds in this example.
The point of this presentation is to provide context
for the parameter estimation sections that follow . The
actual R/C car find-model call contains many more
hypotheses and qualitative observations, and most of
the models that pret constructs from the former are
discarded quickly and easily using QR on the latter .

The next two subsections describe our NPER, which
takes as input a model with unknown parameters
and some qualitative information derived by the outer
layers of pret, and returns parameter values for the
model.



Adapting the NLS Solver with QR
The method of nonlinear least squares (NLS) is com-
monly applied to the problem of estimating unknown
parameters, say ~, of a nonlinear function constructed
to model observed values . These methods find param-
eter values ~ that minimize the sum of the squared
differences between the fitted function values and the
observed data . In our analysis, we fit the observed
data to a series generated by a numerical ODE inte-
gration procedure that takes the definition of an ODE
and produces a time-series approximation to its solu-
tion . We use the NLS procedure provided by odrpack
(Boggs et al., 1991 ; Boggs et al ., 1987), an efficient and
stable trust region Levenberg-Marquardt code, to es-
timate the coefficients ,3 and initial conditions Yo that
complete the definition of the ODE. The ODE integra-
tion routine we use, ddebdf from the package depac
(Shampine and Watts, 1979), is robust and suitable
for the ODES we encounter.
Most NLS procedures, including odrpack, solve a se-

quence of Taylor-series approximations to a nonlinear
model . Starting values ~° for the unknowns of the
model - in this case, ~° _ [,3°, Yo° J - are needed to
form the initial NLS search direction. If ~° are too far
from the global solution C', the initial search direction
is likely to be poor, and the estimation procedure will
be unable to find a good solution . Because pret is de-
signed for both linear and nonlinear ODE models, we
cannot set C° by employing the techniques in (Capelo
et al., 1996) . However, we have been able to use QR to
construct a robust strategy for obtaining the best pos-
sible solution for a given data set and a specific ODE
model. Our strategy exploits the qualitative informa-
tion derived by the outer layers of pret as well as the
sophisticated features of odrpack . It also makes use
of the facts that each variable is a relatively smooth
function of time and that the data are homoscedas-
tic, that is, observed with a constant-variance noise
component. We use the first property in finding the
solution, and the second in determining its adequacy.
Our strategy mimics human reasoning: it attempts

to discriminate between the true structure in the data
and the overlaid noise. The procedure is based on the
following:

" If data are observed without errors (i .e ., without
noise), then the solution ~ = [Q, Yo j E RP can be
obtained by fitting the first p observations . This
small system is less sensitive to e and thus easier
to solve.

" When the data are noisy, the solution ~ obtained
using only the first p observations may not provide
good results for the whole series .

An engineer would therefore begin the optimization
process by fitting a segment whose length nl is just
long enough to reflect the data's structure. Once a
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solution ~�1 is found for this smaller problem, the an-
alyst can set ~°�, E-- fn, and solve for ~n z , the solution
given the data segment of length nz . In this way, the
engineer steps through the data until finally 4� _ is
found using the full data set.
Our NPER automates the reasoning described in the

preceding paragraph. The algorithm consists of five
basic steps.

1 . Extract smoothed variables -
The data's structure is ascertained by estimating
the total number of oscillations, using either a sim-
ple moving average or an FFT . This estimate is used
to find the appropriate cut-off frequency for a low-
pass filter that is applied to the observed data to
remove the higher frequency noise. The smoothed
data that result from this filtering operation are ef-
fectively noise-free .

2. Estimate error variances -
If the magnitudes of the noise in the different state
variables are not the same, the solution will be in-
fluenced more by the variables with larger errors
than by the variables with smaller errors, even if
their relative accuracy is the same . This distor-
tion can be corrected by weighting the residuals for
each variable by the reciprocal of the variance of
the errors in this variable. Although these variances
are not known a priori, they can be approximated
by Pi, the average of the squared differences be-
tween the values of the smoothed and raw data for
the ith variable . In addition, the values of Pi can
be used to construct a threshold value for testing
when the estimated parameters ~ adequately cap-
ture the characteristics of the data. The test statis-
tic is v _ v2/& 2 and v-threshold = 2, where v2
denotes the residual variance of the least squares
solution and v2 denotes the variance computed us-
ing the weighted differences between the observed
and smoothed data : the solution is considered ade-
quate if &2 is less than twice v2 .

3. Fit smoothed variables -
If the data have no error component, it is relatively
easy to estimate ~ using the first p points, even when
good starting values ~° are not available. Simi-
larly, it is relatively easy to find a good solution
for a small segment of length nl of the smoothed
data, and these results will be approximately the
same as those obtained using all of the raw data.
Having solved for e.,, the solution based on the
first nl observations of the smoothed state vari-
ables, we compare v to v-threshold to determine
whether the solution is acceptable. If it is, then we
set and fit the data segment of length
n2 . As long as v <_ v-threshold we double the length
of the next data segment. If v > v-threshold, we
reset ~° F- e + 8, where 8 is a small perturbation,



and then re-fit a slightly shorter data sequence to
try to obtain a better solution . In this case, we use
smaller increments in the data segment length to
step through the remainder of the series.

4. Fit raw (un-smoothed) data -
Given good starting values, ~°

	

where ~'
denotes the solution obtained using the smoothed
data as described in step 3, we proceed to fit the
raw data. However, even with good starting values
we have found it advantageous to step through the
data as described above. A serendipitous benefit of
this step-through procedure is that it enables us to
recognize chaotic models and modify the parameter
adjustment procedure accordingly.

5. Evaluate the final solution -
If v <_ v-threshold, the solution is deemed to be sat-
isfactory; otherwise the model is deemed to be in-
compatible with the data. In either case, the value
of v, along with ~ and various other statistics, are
returned to pret.

In the algorithm above, the number of low-
frequency oscillations is the qualitative information
about the data's structure that allows us to form the
low-pass filter . The result of the filtering operation
(step 1) enables the accurate construction of o2 ;and
provides effectively noise-free data, thereby reducing
the difficulties caused by the lack of good starting val-
ues (step 3) . Knowledge that the data is homoscedas-
tic permits us to use o2; to form weights that equalize
the effect of the different variables in the formation
of the least-squares solution . It is also used to form
v, which is then used to determine when, and by how
much, the length of the data segment can be increased
(steps 3 and4), and to indicate when there is evidence
of chaotic behavior so that the procedure can be ad-
justed accordingly. In addition, v is used to assess the
quality of the final solution (step 5) . Our algorithm
combines these QR features with those embedded in
the design of odrpack and depac producing a robust
and versatile NPER . For example, the ODE routines in
depac can detect if a system is stiff, thereby allowing
appropriate adaptation .

Automating the NLS Solver Call with QR
The QR-adapted NLS procedure described in the pre-
vious subsection has a variety of facilities and inputs
that an expert can use to ,tailor and focus the solu-
tion process, and pet's knowledge bases and reason-
ing systems concern exactly the type of higher-level
information that is needed to exploit these hooks.
As shown in the R/c car example, pret performs a

variety Of QR tasks during its structural identification
phase, involving both the observations and the can-
didate model. The knowledge derived in this process
can be used to intelligently (a) set up the call to the

QR-adapted NLS solver and (b) interpret the results
that it returns. The inputs used in step (a) are the
starting values 0° and Yo°, and bounds on the co-
efficients and state variables; in step (b), the NPER
reasons about the output statistic v.
A parameter estimation call necessarily involves nu-

merical data for system state variables, so at least
some of the Yo are always observed . If all of the state
variables have been observed, the starting value prob-
lem is easy ; pret simply sets Yoo to the first tuple in
the data file . Any noise in those numbers is dealt with
by the smoothing facilities described in the previous
subsection .
A fully observable system, however, is extremely

rare in engineering practice ; as a rule, many - of-
ten, most - of the state variables either are physi-
cally inaccessible or cannot be measured with avail-
able sensors. This is control theory's observer prob-
lem: inferring the internal state of a system from ob-
servations of its outputs. In linear systems, this is
difficult ; in nonlinear systems, it is an open problem.
pret does not attempt a general solution ; it simply
automates some of the simpler methods in the con-
trols literature . Expanding pret's repertoire of quali-
tative observer theory techniques is aprimary thrust in
our current research efforts (Bradley andEasley, 1997;
Bradley et al., in process) .
Two forms of reasoning help the NPER solve parts

of the observer problem, allowing it to compute val-
ues for the QR-adapted NLS solver's Yo arguments: di-
vided differencing and symbolic algebra. As a first
step in the odrpack call setup, divided differences are
used recursively to fill in unknown starting values Yoo

for variables that are related by derivative chains to
variables with known Yo . For instance, if velocity were
unobserved in the R/c car example, the starting value
could be filled in using first-order forward differences
on the (known) positions. A less-simplistic differenc-
ing method would generate better estimates, but be-
cause of the power of the methods described in the
previous subsection, we have not found this to be nec-
essary. Once the difference loop has filled in all possi-
ble Yo , pret uses symbolic algebra, together with quali-
tative information inferred during the structural iden-
tification phase, to solve every equation in the model
for each variable whose Yo remains unknown. This
solve-and-substitute process is iterated over the set of
equations until no further Yo values can be inferred .
The coefficient andstate variable bounds arguments

passed to the QR-adapted NLSsolver can also be lever-
aged to guide odrpack's solution process. For exam-
ple, consider a trial model, a second-order linear ODE,
being matched against a system whose sensor obser-
vations contain an oscillation . The outer layers of pret
recognize this oscillation using geometric reasoning
(Bradley and Easley, 1997); the logic system (Stone
and Bradley, 1996) then infers that the two roots of



the model's characteristic polynomial must be com-
plex . Symbolic algebra on the model coefficients pro-
duces the corresponding algebraic constraints, which,
together with constraint propagation and whatever
numerical information can be inferred from the other
observations, are used to set up the parameter esti-
mator's coefficient bounds . State variable bounds are
also constructed in the obvious ways implied by the
discretization ofqualitative knowledge-for instance,
if we know that a system's state is between two land-
marks.
An expert user of odrpack can reason heuristically

on the output statistics described in the previous sec-
tion in order to decide whether a fit is good or bad.
pret automates this process simplistically, using land-
mark thresholds whose values are determined by ob-
serving human experts. Currently, a model is deemed
adequate if v < 2.
There are many other ways to use available quali-

tative information to improve the function of the NLS
solver . For instance, filtering destroys various impor-
tant features of chaotic data; if a system is observed
to be chaotic, pret instructs the parameter estima-
tor to use higher cutoff frequencies on its filtering
schemes' . Simple geometric frequency-domain rea-
soning can identify potentially stiff system'3 andguide
the choice of numerical ODE integrator. These and re-
lated ideas are ongoing research topics in our group.

Monte Carlo Study
The task of the NPER described above is not simply
to find the coefficients Q and initial conditions Y0 that
best fit the given data, but also to distinguish between
good models and bad models. To be useful, the pro-
cedure must be able to

1. report "success" when the solution represents the
data well, and

2. report "failure" otherwise.

It must do this reliably and as quickly as possible in
the presence of noise, since sensor measurements are
invariably noisy. In this section we present the results
of a series of Monte Carlo experiments that verify that
our NPER accomplishes these tasks.
The problems described in this section differ from

the R/C car problem in that the target of the mod-
eling task is not a sensor-equipped physical system,
but rather a simulated time series from a known ODE.
These 10 problems, shown in Figure 3, include systems

2As discussed in the previous section, the QR-adapted
NLS solver has ways of recognizing chaos and reacting ac-
cordingly; if this knowledge exists in the outer layers of
pret, however, it is much more efficient to pass it along
explicitly and avoid duplication of effort .

3Oneneed only identify the characteristic widely spread
peaks on the spectrum .
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that are linear (e .g ., SpringskMasses), nonlinear
(e.g ., SpringUendulum), and chaotic (e.g., Lorenz).
Each of these models is numerically integrated using
the "true" parameter values - t'=[8e,Yo-], listed in
Figure 3 -to produce the "true" values of the data,
Y* . "Observed" sets of data Y,, r = 1,2, . . ., are
then constructed using Y,. = Y' + t:r, where of is the
rth array of Gaussian noise generated using a model-
specific, diagonal covariance matrix .

CircnlarPendnlaa
V1 = Y2
Ys

	

=

	

-01(02Y2 +01 sin[v11) - 03 sin [y1 - t/041
0'

	

= [0 .9091, 0.1, 0.5, 5.4978]T
Yo'

	

= [-0.09317, 0.28971 7,
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,6 .
Yo'

Figure 3: ODE Models for Monte Carlo Study

= [0 .1, 2.0, 9.817,
= [0 .1, 0.1, 0.1, 0.117,

Figures 4, 5 and 6 show one such realization of ob-
served data for SpringskMasses, SpringkPendulum,
and Lorenz, respectively. Observed data are shown

V1 = ,62Y1(1 - Y1 - Y2/(Y1 + Q1)) - 04y1(sin[Ost1 + 1)
V2 = Y2 (Y1 (03 + 1)1(Y1 +01) - 1)
0' = [0 .5, 5.0, 3.8, 2.08234, 1 .517,
Yo * = [0 .2 1.117,
Chna
v1 = 01 (Y2 - (O5 Y1 + 1604 _05)(11 + Y1 I - I Y1 - 11)))
02 = Y1 - Y2 + Y3
03 = -(02Y2 +003)
0' = [9 .0, 14 .286, 0.0, -0.142857, 0.285714]T
Yo' = (-0.676, 0.369, 0.792]T
Lorenz
01 = 01(Y2 - Y1)
02 = 02Y1 - Y2 - Y1 Y3
V3 = YIY2 - 03Y3
p' = [16.0, 45 .0, 4 .DIT
Yo~ = [-0.279, 1.353, 33 .16417,

V1 = Y2
02 = -01 Y1 - 02(y1 - Y3)
03 = Y4
04 = 02(Y1 - Y3) - 03Y3
0' = [0 .1, 0.2, 0.31-
yo' = (0 .1, 0 .1, 0 .1, 0.11 7,

01
= sin[01 Y21 - Y3 c05102Y11

V2 = Y3 sin[O.y11 - C06[04 Y21
Us = Or, sin[y11
0' = [2 .4, 0.43, -0 .65, -2.43, 0.151 7,
Yo' = [0 .0, 0.0, 0.0]T
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Figure 4 : Springs&Masses

Figure 5 : Spring&Pendulum

as gray dots ; true values are shown as a black dot-
ted line ; and the solution is shown as a black solid
line . The fitted results match the data so well that,
at this level of resolution, the dotted and solid lines
are indistinguishable .
We test our NPER by applying it to each set of ob-

served data (each of which is similar to the observed
data in Figures 4, 5 and 6) using every model in Fig-
ure 3 of appropriate order . Starting values ,0° are set
to a vector of ones, and Yo° set to the first "-tuple" of
the smoothed data . We analyze 100 realizations of the
data when supplying the NPER the "correct" model,
that is, the model used to generate the data. Ten re-
alizations are examined when the model supplied to
the NPER is not the one used to generate the data .
There are a total of 1280 individual problems .

Figure 7 presents the results from our study when
the model used to generate the data is the model sup-
plied to the NPER . This figure shows that, when the
NPER is given the correct model it can fit the data pre-
cisely 99% of the time . Furthermore, the NPER was

Figure 6 : Lorenz

Figure 7: Monte Carlo Results . Table entries show what
percentage of the time the NPER recognized the correct
model.

able to correctly distinguish between adequate and in-
adequate models every time when given a model other
than the one used to generate the data . In summary,
the NPER correctly distinguishes between good and
bad models 1270 times out of 1280 - a better than
99% success rate .

Our parameter estimation procedure as well as the
highly successful results we describe in this section de-
pend critically upon the QR we apply . The significance
of being able to solve such complex nonlinear systems
without user-supplied good starting values cannot be
overemphasized .

Parameter Estimation for the R/C Car

Figure 8 shows a noisy, real-world data set from
sensors on an R/C car used in the University of
British Columbia's soccer-playing robot project . As
described earlier, pret uses QR and logic programming
to derive the fourth-order model given by eq . (1) and
set up the NPER call . The estimated parameters and

second-order models : Pendulum 100%
DrivenPendulum 100%
CircularPendulum 97%
Glycolytic 100%
PredatorPrey 100%

third-order models: Lorenz 100%
Chua 99%
Pentagonal 95%

fourth-order models: SpringskMasses 100%
Spring&Pendulum 99%
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Figure 8 : R/o car data and pret's fitted model. Observed
sensor data are denoted by gray dots; estimated NPER SO-
lution is solid line .

standard deviations° are

and

this solution is also shown graphically in Figure 8.
This model, although relatively easy compared to

some of those in our Monte Carlo study, benefited
significantly from the reasoning we employ to balance
noise effects between variables. The report returned
to pret is shown in Figure 9; since v = 1 .323 is less
than the heuristic threshold of 2, these numbers rep-
resent a successful fit .

This solution surprised the University of British
Columbia analysts . They knew that the car had
started from rest, and thus that the initial condition
v0 should be zero, not -8.1 as estimated. Further re-
flection upon this discrepancy, however, led them to
realize that the system dynamics might include a de-
lay, which was confirmed with asenior engineer on the
project.' Thus, the NPER not only solved the system,
but actually enabled the experts to identify what was
wrong with the model fragments they had suggested.
These results underscore an important point: pret

is an engineer's tool, not a scientific discovery sys-

4The standard errors are derived under the assump-
tion of a diagonal noise covariance . The validity of this
assumption is questionable given the apparent correlation
structure in the residuals for variable B.

'The correspondence was impressive : the -8.1 value
that the NPER estimates for vo is within one standard
deviation of the hypothesized seven-cycle delay between
command and response .

38

Figure 9: NPER output file. var-flt test denotes
v-- 02/02 , the ratio of the residual variance at the least
squares solution to the residual variance estimated from
the smoothed data.

tem. Its goal is to construct the simplest ODE that
accounts for the observations and specifications that
appear explicitly in the f ind-model call, not to infer
physics that the user left implicit . In this example,
an incorrect model is supplied to the NPER because
the find-model call omits two pieces of knowledge
- the car starts from rest and the system has a de-
lay. The ODE formed by pret thus meets the explicit
requirements, but does not match the expert's intu-
ition . By abusing the (implicit) boundary conditions,
however, the NPER is able to fit the observed data
within the required tolerances -and therefore it re-
ports success. Similarly, pret does not attempt to ex-
ceed the resolution prescribed by its user ; the lack
of a specification for <v> in the last line of Fig-
ure 2, for instance, implies that an exact fit of that
state variable is not important to the user . Because
of this, pret does not add terms to the ODE in order
to model the "bump" in the velocity data in Figure 8.
This is not an unwelcome side effect of the finite res-
olution; it is an intentional and useful by-product of
the abstraction level of the modeling process.

Related Work
This paper discusses work in three broad areas: mod-
eling, parameter estimation, and global optimization .

Modeling research spans many fields, from the cog-
nitive science-related branch of AI (Langley et al.,
1987) through design engineering (Smith, 1994), non-
linear dynamics (Abarbanel, 1995), andcontrol theory
(Astrom and Eykhoff, 1971) to the qualitative rea-
soning community (Bobrow, 1985) . The spectrum
ranges from models and tools that use a language
that is very close to the physics of the system (e.g .,
QPT/QPE (Forbus, 1984 ; Forbus, 1990)) to models
that use a language that is well suited to describe the
system mathematically (e.g ., ODES) . Like many other
projects, for example (Farquhar and Brajnik, 1994 ;
Williams, 1991), pret aims to integrate quantitative

P 0.0661±0.0021
A = a 91.6±2.3

y -0.649±0.037

x0 10.82±0.24
y0 63.214±0.036

ra = 80 2.84±0 .11
v0 -8.1±1 .1

(( 6 .61164948-02 2 .08123368-03 3 .1767"78+01 1 .98099248+00)
( 9 .16347486+01 2 .276"909+00 4 .0263194E+01 1 .98099248+00
( -6 .49352808-01 3 .7373714E-02 1 .73745609+01 1 .98099248+00)
( 1 .08191148+01 2 .3610013E-01 4 .68230989+01 1 .98099248+00)
( 6 .32140418+01 3 .61779598-02 1 .74732266+03 1 .98099249+00)
( 2 .63649139+00 1 .0845794E-01 2 .61713579+01 1 .98699249+00)
( -8 .0rr666s8+00 1 .07389739+00 7 .52182309+00 1 .96699249+00)))

(dataNt 'ra_aara_00')
(a 121)
(do" 4)
(initial-sue-of-agaara 0 .000006+00)
(final-as wf-agoarea 8 .613968+02)
(final-ariaaee 7 .568108+00
(var-flt teat 1 .323)
(emditim-amber 2 .065038-08)
(Safe I)
(de".-of-fredow 114)
(p~tere



and qualitative information; unlike other QR model-
ing tools, it takes a practical engineering approach :
it works with noisy, incomplete sensor data from par-
tially observable real-world systems, and its aim is
not to "discover" the underlying physics, but rather
to find the simplest ODE that can account for the ob-
served behavior .
The parameter estimation phase of the model-

ing process has also received attention in a variety
of fields . This includes control theory's work on
Kalman filtering (Kalman, 1960), an interesting AI
tool (Hung, 1995) that uses dynamics to improve the
estimation process, and lately, research by the QR
community (Capelo et al., 1996).

pret's NPER is most closely related to the work of
the QR community. The differences, however, are sig-
nificant .

. pret and its NPER are designed for nonlinear (as well
as linear) systems.

. pret uses only general mathematics in its analysis,
and does not rely on knowledge specific to the do-
main in question .

. pret has a very general structural identification pro-
cedure that is not restricted to any specific form of
equation .

Finally, nonlinear optimization is addressed in a va-
riety of books, including (Dennis and Schnabel, 1983),
(Fletcher, 1987), and (Gill et al ., 1981) . Quality soft-
ware for solving the unconstrained NLS problem is
available from packages such as odrpack (Boggs et al.,
1991 ; Boggs et al., 1987), minpack (More et al., 1984)
and nl2sol (Dennis et al., 1981). The harder prob-
lem of fording global solutions to nonlinear optimiza-
tion problems is being addressed by a number of re-
searchers, including (Boggs et al., 1996) . Two books
on this topic are (Torn and Zilinskas, 1989) and (Horst
et al., 1995), the first of which is primarily about gen-
eral continuous nonlinear problems, and the second of
which addresses special cases such as ; concave prob-
lems and network problems .

Conclusion
This paper describes the construction of an NPER
(nonlinear parameter estimation reasoner) that solves
a global optimization problem by augmenting a local
nonlinear least-squares solver with qualitative infor-
mation and qualitative reasoning. This reasoner is
part of pret, an implemented computer program that
uses a variety of artificial intelligence techniques to
automate system identification - the process of in-
ferring an internal ODE model from external observa-
tions of a system - a routine and difficult problem
faced by engineers.
The combination of qualitative reasoning and nu-

merical methods is very powerful ; it allows the NPER

to find the optimal parameter choices to match an or-
dinary differential equation (ODE) model to a set of
observed data . In particular,

. QR can effectively compensate for a lack of good
starting values, thereby enabling the nonlinear
least-squares solver to avoid local extrema in re-
gression landscapes ;

. QR enables the NPER to automatically determine
and adapt to the structure of the data; and finally

QR allows pret to quickly and correctly assess when
a model is good and when it is bad.

We demonstrate the robustness of our NPER
through a simulation study that uses problems drawn
from across the domain of dynamics -including sys-
tems that are nonlinear, chaotic, and noisy; in these,
our NPER is correct more than 99% of the time . More-
over, in a real-world application that involves model-
ing a commercial radio-controlled car, we show how
pret and the NPER construct amodel that not only ad-
equately matches the experimental data, but actually
enables the project analysts to identify what is wrong
with their initial ideas about the system . Specifically,
pret and the NPER built a model that matched the ob-
servations but not their intuition, and these disparities
led them to understand the system dynamics better .
We use this anecdote to emphasize that pret is an

engineer's tool, not a scientific discovery system . Its
goal is not to infer physics that the user left implicit,
but rather to construct the simplest model that ac-
counts for the observed behavior of a high-dimensional
black-box system . The power of the qualitative-
reasoning based NPER described in this paper is a sig-
nificant step in this direction .
Acknowledgments: The authors thank Reinhard
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