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Abstract

Operation of a chemical process requires the con-
trol of certain system variables . Prospective reg-
ulated variables should be tested to avoid in-
verse responses to a potential control adjustment .
Design of such a process would therefore be facil-
itated if large ranges of system parameters could
be simulated simultaneously, especially when the
system description involves imprecise parameter
and variable values . This paper presents an ap-
plication of (fuzzy) qualitative simulation to this
type of problem . It is shown why the use of
pseudo-variables in the strict constraint-centred
approach is impractical for simulating such sys-
tems . An alternative method for representing the
system model, which enables the required simu-
lations, is given . Despite the fact that qualit-
ative ambiguity may cause spurious inverse re-
sponses to be generated, it is illustrated that if no
qualitative inverse responses are produced then
the physical system itself will not produce them
either .

Introduction
In order to regulate complex industrial processes, the
standard procedure is to select some measured Vari-
able or variables which correspond to the desired
products, or are the desired products themselves . The
control system can then use the current values of these
measured variables to adjust the system variables so
that the optimum amount of the desired product is
produced . Ideally these variables would have a mono-
tonic relation with respect to the quantity of desired
product being generated over time, although this is
not always possible . During the design of such a con-
trol system it is, therefore, important to know what
types of behaviour a measured variable is capable of
in order to ascertain what system parameters are ap-
propriate for control .

Inverse responses are a class of behaviour often ap-
pearing in the control of chemical processes . The re-

sponse of a regulated variable to a control adjustment
is regarded as an inverse response if the sign of the dif-
ference between its original value (before the adjust-
ment) and its final steady state (after the adjustment)
differs from that between the original value and its
initial response which immediately follows the adjust-
ment . Figure 1 shows the typical behaviour of such a
response. Variables which display an inverse response
are difficult to control . Indeed, the usual procedure
when automating control of a chemical process is to
choose a measured variable which does not show in-
verse responses (Ponton 94) .
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Figure 1 : A typical inverse response
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The problem then is to investigate if a selected vari-
able shows inverse responses, and if it does, for what
values of the process parameters. If a system is simple
and well specified it may be possible to solve the prob-
lem by resolving the system model analytically. Un-
fortunately, this is often not the case and, in order to
reveal the potential existence of such a behaviour, the
physical process has to be simulated . The system may
be simulated numerically given a differential equation
model of the process, but this is only possible when the
system parameters are precisely known. Furthermore,
the simulation would only produce real number values
for the initial state and parameters, whereas what is
really required is that a range of values is simulated .
Of course, an interval could be discretised so that reg-
ular points in the interval are simulated numerically,



but a) this would be time-consuming, b) there would
be no guarantee that all the possible types of beha-
viour had been simulated when the process possesses
non-linear characteristics, and c) the behaviour in the
boundaries between neighbouring intervals may not
be precisely known.

This problem is further exacerbated by the lack of
information available in the early stages of design.
Typically, the system model may not be completely
known: the relationships between variables may be
approximately understood, but others may be miss-
ing. In addition, the control will probably have to
occur over a large range of parameter values . For in-
stance, in the reaction example given in section 2 of
this paper, the parameter kl could have a large num-
ber of possible values . In designing a control system
for this reaction the behaviour of the measured vari-
able depends on this value. It is important, therefore,
to know the behaviour of the measured variable for
all the possible values of kl . Indeed, at this stage the
use of a precise value would be a hindrance (Dalle &
Edgar 90) .

Qualitative simulation algorithms are developed to
simulate system behaviours non-numerically. The val-
ues taken by each variable are symbolic in some sense,
and typically, system descriptions do not have to be
complete . In particular, the fuzzy qualitative simula-
tion algorithm, Fusim (Shen & Leitch 93), represents
the variable values and parameters using fuzzy num-
bers . Such an algorithm could in fact simulate the
physical system behaviour such that each simulation
stands for an imprecise range of values . Therefore,
prima facie, there is avery strong case for using Flisim
to aid the design of chemical processes.

This paper is arranged as follows. The next sec-
tion first gives an example of a real chemical process
which shows inverse responses for some of its beha-
viours and then presents the general qualitative struc-
ture of inverse responses. Section 3 briefly describes
Fusim and proposes a solution to the problems found
when applying it to the real world application. These
problems appear to be common to all qualitative sim-
ulation algorithms that follow the strict constraint-
centred approach where the system model consists
of constraints involving at most three arguments (so
that the use of pseudo-variables may be necessary) .
Section 4 provides experimental results in comparison
with those obtained by numerical simulations, thereby
demonstrating both the advantages and the limita-
tions of using fuzzy qualaative simulation to detect
inverse responses. Finally, section 5 concludes the pa-
per and points out important future work .

A Test Case
A good example of a real chemical process that may
show inverse responses is the reaction scheme of Krav-
aris and Daoutides (see (Kravaris & Daoutides 90) and

(Ponton 94) for details) . Such a process may be nu-
merically modelled by the following set of differential
equations:
ii = -kixi - ksxi + (CA - xi)u
zs = klxl - ksxs - XZU

	

_

Where: xl	= concentration of A
(the initial reagent, mol/1)

xz

	

= concentration of B
(the desired product, mol/1)

CA = inlet concentration of A
(mol/1)

u

	

= flow-rate divided by reactor volume
(mol/s)

To illustrate typical behaviours of such a process, as
an example, given (in appropriate units) : kz = 100,
k3 = 10, C;; = 10 and u = 34.28, and initial values
of xl = 3, and xz = 1.117 the numerical behaviour
over time of xz for different values of kl is shown in
figure 2. Only the middle plot, where kl = 50 shows
an inverse response .
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Figure 2: Behaviour of xz over time for kl = 25, 50,
100

This example demonstrates two important points
about inverse responses. Firstly, inverse behaviours



may only account for a small portion of all the pos-
sible behaviours . For this set of parameter values and
initial values for the variables inverse responses were
found for 49.998 < kl < 50.002 . Secondly, the scale
of the inverse response may be tiny. When kl = 50,
there is clearly an inverse response but both the initial
height and the final depth are less than 0.001 mol/l.

Clearly, a system which could simulate the beha-
viours of the chemical process for ranges of the para-
meters would be extremely useful for detecting in-
verse responses. The system should be guaranteed to
simulate all the possible behaviours of the chemical
process, and then, using these simulations, to detect
whether any of them does in fact constitute an inverse
response .

Inverse responses are easily represented qualitat-
ively, as shown in figure 3. The first two types ini-
tially increase (or decrease) by a qualitatively dis-
tinct amount, say AQini:, then return to the ini-
tial value, and finally decrease by another amount
AQfinal . The third and fourth types start with a
derivative di but the magnitude stays at the same
qualitative value until the derivative changes to the
opposite sign to di . The last two types represent an
inverse response whose underlying real-valued initial
height (or depth) remains within the initial qualitat-
ive magnitude. From this it is clear that a qualitative
behaviour can a) represent a large range of numer-
ical behaviours and b) be readily tested for an inverse
response .
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Figure 3:. qualitative representations of inverse re-
sponse

Qualitative simulation algorithms are guaranteed to
generate all the possible behaviours of the physical
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system being simulated (Kuipers 86). Unfortunately,
in general, all of them also generate spurious beha-
viours (Struss 88) which, loosely speaking, do not vi-
olate the qualitative system model but have no under-
lying real-valued counterpart. ConsequeLtly, a qualit-
ative simulation algorithm may generate a behaviour
which shows inverse response that the system being
modelled may not actually have . Given this, it is im-
portant to note that a qualitative simulation cannot
guarantee that if it detects an inverse response, then
this behaviour will exist in the physical system . How-
ever it is guaranteed that if the qualitative simulation
does not detect an inverse response, then no inverse
response exists (for the parameter values and initial
states given) .

Detecting Inverse Responses
with Fusim

In Fusim, system variables take values from a fuzzy
quantity space consisting of fuzzy numbers. This
quantity space is generated by a subjective but finite
discretisation of the underlying numeric range of the
variables. For computational efficiency, such qualitat-
ive values are characterised by the 4tuple parametric
representation (see later for example) of their mem-
bership functions within the implementation of the
algorithm.

Fusim adopts a constraint-centred ontology in
system-modelling : a model is represented by a set
of fuzzy qualitative constraints . Possible values that
variables can take are restricted by algebraic, deriv-
ative and/or functional constraints amongst them,
with each constraint involving at most three variables.
More specifically, the algebraic operations performed
within a fuzzy quantity space are arithmetic opera-
tions among fuzzy numbers. A derivative constraint
simply reflects that the qualitative value of a variable's
magnitude must be the same as that of another vari-
able's rate of change . Functional constraints are rep-
resented by fuzzy relations, thereby allowing impre-
cise and partial numerical information on functional
dependencies between variables to be utilised .
When applied, Fusim takes as input a set of system

variables, a set of constraints relating the variables
(as the system model), and a set of initial qualitative
states of the variables, and produces a tree of states
with each path representing a possible behaviour of
the system as output . In fact, Fusim first generates
a set of possible transitions from one qualitative state
description to its immediate successor states by ex-
ploiting the continuity of the variables. Further re-
strictions over these possible successor states are then
imposed by a) checking for consistency with the defin-
ition of the constraints and the consistency between
constraints which share an argument, b) checking for
temporal consistency between variables' states via ex-



ploiting information on the rates of change of the vari-
ables, and c) checking for global consistency of the be-
haviour generated so far using additional knowledge
about the svstem such as energy conservation . A de-
tailed description of this simulation algorithm is, how-
ever, beyond the scope of this paper and can be found
in (Shen & Leitch 93).

Whilst Fusim has been used successfully to simulate
"toy" systems, it had not been tested against a real
world application . Applying it to systems like the one
given above prompted a main criticism which would
also appear to apply to any strict constraint based
qualitative simulation algorithm.
Theproblemwas caused by pseudo-variables . These

variables are introduced to simulate the system us-
ing a composition of primitive (fuzzy) qualitative con-
straints that involve at most three arguments, which
may be parameters or variables. This approach has
been adopted because it is believed that any sys-
tem can be represented by composing individual basic
model-building blocks given its structural description .
Being a constraint-centred approach, Fusim utilises a
limited set of such basic blocks as indicated above.
Describing the behaviour of a complex system will,
therefore, often require additional variables that help
to interrelate the primitive constraints. For example,
to represent a system that may be modelled using the
following ordinary differential equation (ODE):
i = -klx - k3x2 + (CA - x)u

F usim has to employ seven pseudo-variables pvl to
pv7so that the system can be described with the prim-
itive fuzzy qualitative constraints below:

(pvl = k1 * x)

	

(pv2 =x * x)
(pv3 = pv2 *k3)

	

(pv4 = CA - x)
(pv5 = pv4 * u)

	

(pv6 = pv5 - pvl)
(pv7 = pv6 -pv3)

	

(i =pv7)

However, in practice it was found that these pseudo-
variables caused tworelated problems . The first prob-
lem was that the system model is constituted by many
more variables than those used in its numerical coun-
terpart. In the example above, apart from the para-
meters k1, k2, k3, u and C;; the only variable in the
ODE is x, whereas in the qualitative version there are
eight variables. Given that the number of possible
successor states from any given state is a maximum
of 6" in Fusim, with n being the number of variables
used it the model (Shen& Leitch 92), the more vari-
able; there are the more possible future states will be
generated. Thus, the strict constraint-based approach
ificreases the time take for a complete simulation of
`Vih-system by increasing the value of n. There is how-
ei+lrt, afurther problem which makes this approach im-
practical for a large-scale system . This is that for the
majority of states their successors will only differ from
the current state in the values of the magnitude or
derivative of the pseudo-variables . In practice it was

found that a "real" variable might well only change
value once in five simulation steps. Since a minimum
of three steps, each of which shows a change in the
measured-variable, must be generated in order to de-
tect an inverse response, then the simulation must be
run to at least 15 steps ahead. Assuming that the
average number of successors generated is 10 for each
step, the simulation must then generate at least 1015
steps. This is. obviously an extremely high figure and
in practice it was not possible to run Fusim for long
enough to detect an inverse response.

This problem will be most acute when there are
a large number of parameters in the system model,
since each parameter will require the introduction of
a new pseudo-variable. Those systems which have no
parameters, such as the mass on the spring under fric-
tionless conditions, are immune to this criticism.
The solution proposed herein is that strict (fuzzy)

qualitative constraints are replaced by compound con-
straints. Such constraints take the form of

left hand aide fl right hand side
where fl signifies a fuzzy intersection . Given an ODE
model, translating it to a qualitative one is therefore
straightforward, without the need for the introduction
of anypseudo variables whichdo not appear in the ori-
ginal ODES . Following this proposal, for example, the
counterpart qualitative constraint of the above ODE
is represented by :
i f1 -klx - k3x2 + (CA - x)u
This renders pseudo-variables unnecessary and

hence considerably limits the number of simulations
that would otherwise have to be performed. On the
other hand, Fusim still generates and filters states
in the manner standard to all constraint-centred ap-
proaches and the system model still consists of a list of
constraints . Moreover, when no exact numerical rela-
tionships are available, fuzzy relations can still be used
to represent functional dependencies between system
variables. This retains the ability to specify a physical
system loosely and so the majority of the advantages
of fuzzy qualitative simulation are still present.
This solution also gives a further advantage. In

the original version of Fusim parameters are repres-
ented as variables whose derivative is always zero .
Consequently they can only take their values from a
pre-defined fuzzy quantity space. This has the disad-
vantage that to investigate differing intervals for these
parameters the user may only alter the quantity or
scalar assigned to the variable . This is a particularly
awkward procedure if the user wishes to investigate in-
tervals of widely varying sizes. However, in the revised
version of Fusim parameters can be represented as a
fuzzy-number whose values are particularly specified
and independent of the quantity-space from which the
system variables take their values . Consequently the
relations between the behaviours of the variables and
the parameters can be explored much more flexibly.



Experimental Results
Fusim was used to simulate several chemical processes
(Case 96) . This section concentrates on discussing the
results obtained from simulating the process given in
section 2. This is qualitatively modelled as follows:

ii fl -kixi - k3xi + (CA - xl)u
i2 n klxl - k2x2 - x2u

The behaviours generated were tested for inverse
responses during simulation. If an inverse response
was detected the simulation was stopped. The fuzzy
initial values of the variables are characterised by the
4tuple parameterc representation as given in table 1 .
Within this table, for instance, the membership dis-
tribution [2.0,3.0,0.5,0.5] indicates that, with respect
to the underlying numerical range of the variable xl,
real numbers falling within the interval [2.0,3 .0) are
regarded as a full member of the qualitative value (or
the fuzzy set) termed medium and those within either
(1.5, 2.0) or (3 .0, 3 .5) are assigned a partial member-
ship, with any other real numbers having a null mem-
bership of medium (Shen & Leitch 93) . The values
for the parameters other than kl were set to the fol-
lowing real numbers: k2 = 100, k3 = 10, u = 34.28,
CA = 10 . The parameter kl itself was given varying
interval values in order to investigate its impact on
the system's behaviour.

Table 1: Initial values

To verify the results Matlab was used to simulate
the ODEs given in section 2 as a "gold-standard" .
When running the numerical simulations with Mat-
lab an interval value was discretised so that regular
points in the interval, including the two boundaries,
were simulated . For the present application, since
all possible inverse responses should be detected, a
fuzzy interval was treated as a crisp one defined by its
two extremities. Using Matlab inverse responses were
found for 50.3 < kl < 89 . It is important to note
that this is different from the limits found in section 2
because the initial states of the variables are intervals
not real numbers. The presence of an inverse response
depends on the initial values of the variables as well
as the parameters .

Fhsim's results are summarised in table 2. Initially
Flisim finds inverse responses for 40 < kl < 80. By
narrowing the sizes of the intervals it can be seen that
lhsim finds inverses for 49 < kl <_ 75 . At the lower
end of the range of k1 Fusim detects inverse responses
where they exist, but then also for 49 < kl < 50
where numerically they cannot be found . This is due
to spurious behaviours being generated. At the up-
per bound Fusim fails to detect inverse responses for
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k l > 75. This was due to the fact that the deriv-
atives in the initial state only reflected some of the
possible initial states for this set of initial magnitudes
of parameters . Consequently certain behaviours were
not being simulated. Subsequent tests demonstrated
that when the process was simulated from all the ad-
missible initial states inverse responses could be found
for k, < 90.

In summary then Fusim found inverse responses for
49 < kl _< 90, which demonstrates that for this ex-
ample it is able co find inverse responses when they
exist, and only generates spurious inverse responses
for values of kl close to the numerically discovered
boundaries of the existence of inverse responses. This
is natural due to the fact that only imprecise inform-
ation is available on these boundaries .
Sample qualitative behaviour graphs showing the

behaviour of x2 for varying values of k1 are given in
figure 4. Each integer x-value on a graph corresponds
to a step of the simulation, whilst the y-values show
the fuzzy qualitative magnitude of x2 at that step .
Additionally, the labels on the graph show the fuzzy
qualitative value of the derivative of x2 at that step .
It can be seen that for the interval 40 <_ kl < 60 the
qualitative graph is a qualitative inverse of type 3 as
shown in figure 3. The other two behaviours do not
represent any type of inverse response . Comparing
these qualitative graphs with the numerical graphs
shown in figure 2 it is clear that these behaviours
have been simulated by Fusim .

Table 2 : Results for various interval sizes of kl

These results, together with others obtained so far

Interval Time Inverse Found No. of Behaviours
0-40 4157s No 21,223
40-60 2 .86s Yes n/a
60-70 82s Yes n/a
70-80 83s Yes n/a
80-90 208s No 663
40-50 130s Yes n/a
50-60 82s Yes n/a
40-46 257s No 911
45-47 255s No 911
45-48 257s No 911
45-49 257s No 911
49-50 130s Yes n/a
50-50 3s Yes n/a
70-75 83s Yes n/a
72-75 83s Yes n/a
71-75 83s Yes n/a
73-75 83s Yes n/a
7475 83s Yes n/a
75-76 229s No 945
75-80 230s No 945

Variable Initial Value Membership Distribution
xl
x2

medium
large

[2.0,3.0,0.5,0 .5]
[1.125,1 .35,0.225,0.0751
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Figure 4 : Sample qualitative behaviours of xZ over
time (for 0 <_ ic l < 40, 40 <_ kl < 60 and 60 < kl <_
100)

using different system models (Case 96), demonstrate
that if Fusirn does not find an inverse response then
there is no inverse response . Furthermore, it appears
that spurious inverse responses are in general only
generated near to the limits of the numerical presence
of inverse responses (e.g . in the case of 49 < kl < 50) .

donclusion and Future Work
T'his paper phrports to show that the fuzzy qualitative
simulation algorithm, Fusim, can be used to simulate

real-world systems, in particular to aid the design task
of chemical processes that have the potential to ex-
hibit inverse response behaviours . In order to achieve
this, however, it is necessary to alter the method of de-
scribing the system such that the constraints are no
longer strict (fuzzy) qualitative constraints, as used
in conventional constraint-centred qualitative simula-
tions . Such a method is proposed in the paper.

This revised algorithm can be used to show that for
a given set of parameters a system model will not dis-
play any inverse responses . It is also possible to alter
the parameter values independently of the quantity-
space so that the limits where inverse responses occur
can be more closely approximated .
The results so far have been very promising . How-

ever, the alterations to the standard version of Fusim
have not yet been investigated in depth and the work
has been applied to only a limited number of ex-
amples . A planned next step is to establish a formal
description of the revised algorithm and to examine
if it possesses properties such as soundness and com-
pleteness. Further work will include applying this al-
gorithm to more complex models.
From the point of view of detecting inverse re-

sponses, the present version of Fusim blindly simu-
lates the whole behaviour tree for the specified num-
ber of steps, effectively making a depth-first search .
However, it can be shown that after a certain point
some of the simulated branches will not show any in-
verse responses . It would be more efficient if Fusim
made a more intelligent search of the behaviour tree
such that obviously fruitless branches were ignored
at the earliest possible opportunity. This would en-
able simulations to be run to more steps . It is also
worth indicating that, for the simulations carried out
so far, only some of the possible initial (fuzzy qualitat-
ive) states for a process had been investigated . Work
should be done on the automatic generation of all the
possible initial states with respect to a given process,
so that a complete picture of it can be revealed to
detect whether or not an inverse response would be
present within its entire operating range .
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