
Dynamic Chatter Abstraction : A scalable technique for avoiding
irrelevant distinctions during qualitative simulation

Abstract

One of the major factors hindering the use of quali-
tative simulation techniques to reason about the be-
havior of complex dynamical systems is intractable
branching due to a phenomenon called chatter. Chat-
ter occurs when a variable's direction of change is
constrained only by continuity within a region of the
state space . This results in intractable, potentially in-
finite branching within the behavioral description due
to irrelevant distinctions in the direction of change .
Dynamic chatter abstraction provides a general pur-
pose, scalable solution that abstracts chattering re-
gions of the state space into a single state within the
behavioral description . Chattering regions are iden-
tified via a dynamic analysis of the model and the
current qualitative state using knowledge of the in-
ference capability of the simulation algorithm .
The algorithm is described along with an empiri-
cal evaluation that compares dynamic chatter ab-
straction to previous solutions and demonstrates that
it eliminates all instances of chatter without over-
abstracting . This technique is used to simulate mod-
els that previously could not be simulated . Eliminat-
ing the problem of chatter significantly extends the
range of problems that can be addressed using qual-
itative simulation techniques .

Introduction
A variety of techniques have been developed that uti-
lize qualitative simulation to reason about the be-
havior of an imprecisely defined dynamical system
to perform tasks such as monitoring, diagnosis and
design (?) . Applying these techniques to complex,
real-world systems, however, is often hindered by the
complexity of the simulation and the behavioral rep-
resentation generated . Traditionally, qualitative sim-
ulation (De Kleer and Brown, 1984 ; Forbus, 1984 ;
Kuipers, 1994) is performed at a single level of detail
highlighting a fixed set of distinctions . At times, some
of these distinctions may be irrelevant to the current
task and thus needlessly increase the complexity of
the simulation . One of the major sources of irrelevant
distinctions is a phenomenon called chatter (Kuipers,
1994) . Chatter occurs when the derivative of a vari-
able is constrained only by continuity within a region
ofthe state space . Within the simulation, the variable
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is free to alternate between increasing, steady, and de-
creasing with individual behaviors generated for dif-
ferent orderings of these values . The distinctions be-
tween these behaviors provide no additional informa-
tion ; however, they result in intractable branching and
a potentially infinite simulation . The severity of the
problem depends upon the number of unrelated vari-
ables chattering within a particular region of the state
space . As the size of a model increases, the number of
chattering variables often grows as the model becomes
more loosely constrained . The elimination of chatter
from a qualitative simulation increases the range of
models that can be tractably simulated thus allow-
ing qualitative simulation to be applied to tasks such
as monitoring, diagnosis, design and tutoring (see fig-
ure 1) .
While a number of techniques have been proposed

to eliminate chatter, chatter box abstraction (Clancy
and Kuipers, 1993 ; Clancy and Kuipers, 1997a) is the
only one that provides a general solution that can
eliminate all instances of chatter . Chatter box ab-
straction explores the potentially chattering region of
the state space via a recursive call to the simulation
algorithm that is restricted to the chattering region
of the state space The complexity of this simulation,
however, is exponential in the number of chattering
variables . Dynamic chatter abstraction provides a
scalable solution that avoids the need to recursively
call the simulation algorithm by identifying the chat-
tering variables through a dynamic analysis of the
model and the current state . Dynamic chatter ab-
straction provides a more focused search of the poten-
tially chattering region of the state space by exploiting
knowledge about the type of inferences that the sim-
ulation algorithm can make . This paper presents the
dynamic chatter abstraction algorithm and provides
an empirical evaluation with respect to chatter box
abstraction .

Chatter and Qualitative Simulation
Dynamic chatter abstraction has been developed as
an extension to the the QSIM simulation algorithm
(Kuipers, 1994) . QSIM describes the behavior of a dy-
namical system via a tree of alternating time-interval
and time-point states called a behavior tree. Each
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Rickel and Porter (1994) use qualitative simulation to an-
swer prediction questions within the domain of plant phys-
iology. The TRIPEL algorithm automatically generates
a qualitative model from a large-scale botany knowledge
base (Porter et . al., 1988) in response to a user query.
Answers are generated based upon the results of the sim-
ulation . Many of their models, however, exhibit a great
deal of chatter . Thus, their system requires an efficient
technique to automatically eliminate chatter .

In this example, the following question is presented to
the system :
"What happens to the stomates when the leaves lose
water?"

Simulation of the simplest model generated by TRIPEL
results in a single behavior (a) in which the cross sec-
tional area of the stomates decreases as the leaves loose
water (b) .

Dynamic chatter abstraction identifies a total of 7 chat-
tering variables . States that exhibit chatter are repre-
sented by a box within the behavior tree and a double
arrow in the behavior plots . Note that following the sec-
ond time-point, the cross sectional area of the stomates
begins to chatter . This is because the model generated
is unable to represent relevant order of magnitude infor-
mation after this point . The information provided up to
this point, however, is sufficient to answer the question
in the scenario tested .

Without some form of automated chatter elimination,
this model results in an intractable simulation that gen-
erates hundreds of behaviors and the query cannot be
answered . While chatter box abstraction can be used to
simulate this model, dynamic chatter abstraction offers
a factor of 10 speed up in simulation time . For some of
the models generated by TRIPEL, chatter box abstrac-
tion is simply unable to complete the simulation due to
resource limitations .

Figure 1 : Using qualitative simulation to answer pre-
diction_ questions.

68

Qualitative value transitions consistent with continuity
within the closed interval (0 A*) are identified by arcs
within the figure .

The boxed area denotes the chattering region of the
state space (i .e . a chatter box) . Once the system enters
this region of the state space, the chattering variable
can continue to cycle within the box .

If landmarks are introduced, the simulation can remain
within the boxed region for an infinite number of states
since additional qualitative distinctions are introduced
whenever the variable becomes steady .

Figure 2 : Possible qualitative value transitions for a
QSIM variable .
state specifies a qualitative magnitude (qmag) and a
direction of change (qdir) for each variable within the
model . The direction of change corresponds to the
sign of the variable's derivative and can be increasing
(inc), decreasing (dec) or steady (std) . The quali-
tative magnitude is either a landmark value or an in-
terval between two landmarks defined upon a totally
ordered quantity space of landmark values . Land-
marks may be defined during the simulation to repre-
sent critical points identified within the simulation . A
branch occurs within the behavioral description when-
ever there is insufficient information within the model
to identify a unique successor to a given state . Two
types of branches can occur :
Definition 1 (Event branch) An
event occurs when a variable reaches a landmark or
becomes steady (i.e . its derivative becomes zero) . An
event branch occurs when there are multiple events
following a time-interval state whose ordering is un-
constrained by the model.

Definition 2 (Chatter branch) A chatter branch
occurs following time-point t ; if there exists a variable
v that is currently steady whose direction of change
is constrained only by continuity . A three way branch
occurs depending upon whether the variable is increas-
ing, decreasing or steady in the interval (ti, ti+t) (see
figure 2) .

All branches within a qualitative simulation can be
classified in one of these two categories . Event
branches often represent relevant qualitative distinc-
tions . Chatter branching, however, provides no addi-
tional information to the behavioral description and
thus can be eliminated . The model decomposition and

(0 inc) ((0 A*) inc) (A* inc)
t

(0 std) ((0 A*) std) y (A* std)

(0 dec) ((0 A*) dec) ~(A* dec)



simulation (DecSIM) algorithm (Clancy and Kuipers,
1997b) reduces irrelevant event branching by parti-
tioning the model into loosely coupled components
and simulating the components independently to elim-
inate distinctions between unrelated variables .

Chatter branching is problematic due to the repet-
itive nature of the phenomenon. Since the variable's
direction of change is unconstrained, the variable is
free to become steady again after the chatter branch
and the process repeats itself (see figure 2) . While
some behaviors exit the unconstrained region of the
state space, others will continue cycling between dif-
ferent values for the direction of change for an ar-
bitrary number of qualitative states resulting in an
infinite simulation . While one variable chatters, rel-
evant distinctions may occur in the qualitative value
of other variables within the model. The irrelevant
distinctions resulting from chatter branching must be
eliminated while retaining the distinctions in other
non-chattering variables . Figure 3 demonstrates the
affects of chatter when simulating a model of three
connected tanks .

Chatter branching is particularly difficult to elim-
inate due to the propagation of chatter through the
model . Once one variable, v 1 , begins to chatter and its
derivative changes sign, it is possible that the deriva-
tive of another variable, v2, that is related to vl will
also become unconstrained, so v2 begins to chatter .
This process can repeat itself resulting in a large num-
ber of chattering variables within one region of the
state space called a chatter box.

Definition 3 (Chatter box) For a model with a set
of variables V, a region of the state space is defined
as a chatter box with respect to a set of variables Vc
if the derivatives of variables in V, are unconstrained
with respect to variables in V - V, .

A state exits a chatter box when a non-chattering
variable changes value or when a chattering variable
changes qualitative magnitude and enters into a con-
strained region of the state space . It is possible for two
chatter boxes to be adjacent if a non-chattering vari-
able changes value while another variable continues to
chatter .
The phenomenon of chatter becomes more compli-

cated if a landmark exists within the unconstrained
region of the state space and the magnitude of the
variable is unconstrained around this landmark . This
phenomenon is called landmark chatter and it results
in changes in both the magnitude and the direction of
change for the chattering variable . A special case of
landmark chatter, called chatter around zero, occurs
when a variable and its derivative are represented ex-
plicitly within a model and both ofthem exhibit chat-
ter . In this case, the derivative variable will chatter
around zero as its integral chatters .
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While chattering behaviors may describe a real be-
havior of the system (Kuipers et . al ., 1991), a disjunc-
tive enumeration of all possible combinations of values
provides no information . Furthermore, this enumera-
tion obscures other distinctions within the description
and can result in an infinite simulation . Eliminat-
ing this source of distinctions is essential if qualitative
simulation is to be used to reason about complex dy-
namical systems .

Previous Solutions
Three previous methods have been developed for elim-
inating chatter within a QSIM behavior tree simula-
tion . The higher order derivative (HOD) (Kuipers et .
al ., 1991) technique uses the second and third order
derivatives of the chattering variables to determine
a unique direction of change for unconstrained vari-
ables and eliminate spurious behaviors . When possi-
ble, higher-order derivatives expressions are derived
via algebraic manipulation of the constraints ; oth-
erwise, the operator must specify these expressions
within the model. This technique, however, is not
effective when an ambiguous evaluation of the HOD
expression results or when an expression cannot be
derived . In addition, the automatic derivation of an
HOD expression places additional assumptions on the
monotonic functions described by M+ and M - con-
straints .

Ignore qdirs (Fouche and Kuipers, , 1991) elimi-
nates chatter by ignoring distinctions in a variable's
direction of change throughout the simulation . This
technique requires the modeler to identify the chat-
tering variables prior to the simulation . For many
models, a variable's direction of change is ambiguous
only within certain regions of the state space . In other
regions of the state space, direction of change infor-
mation may be relevant in constraining the behavior
of the system . Thus, ignore qdirs may result in over-
abstraction and introduce spurious behaviors . In ad-
dition, ignore qdirs may prevent the application HOD
constraints in other variables .

Chatter box abstraction (Clancy and Kuipers, 1993;
Clancy and Kuipers, 1997a) was the first general solu-
tion to completely solve the problem of chatter . Chat-
ter box abstraction explores the potentially chattering
region of the state space via a recursive call to the
simulation algorithm called a focused envisionment .
The results of the envisionment are analyzed to iden-
tify chattering variables and the chattering region of
the state space is abstracted into a single qualitative
state within the main behavioral description . Succes-
sors to this abstract state are identified through an
analysis of the focused envisionment graph . By recur-
sively calling the simulation algorithm, chatter box
abstraction exploits the inference capabilities already
contained within the algorithm . This facilitates the
integration of chatter box abstraction with other ex-
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(d) Behavior tree using dynamic
chatter abstraction
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(b) Behavior tree exhibiting chatter .

	

(c) Behavior plots exhibiting chatter .
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(e) Dynamic chatter abstraction behavior plot .
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In a qualitative model of three tanks arranged in sequence connected by tubes (a), NetflowB(t) = InflowB(t) - Out-
fiowB(t) . The derivative of NetflovB is constrained only by continuity within the time-interval following the initial
state .

The simulation branches on all possible trajectories of NetflowB(t) while all other variables are completely uniform .
The simulation is infinite in nature due to chatter and must be halted at an arbitrary state limit . A single behavior
(c) from the behavior tree (b) is displayed demonstrating the unconstrained movement of NetfiowB(t) . Higher order
derivative information is used to eliminate chatter in a number of variables, however, it is unable to eliminate chatter
in Netf lowB.Ignore qdirs over-abstracts and generates an unconstrained behavior tree .

Dynamic chatter abstraction generates a single behavior by abstracting the chattering region of the state space into a
single qualitative state (d k e) . If higher order derivative information is not used, a total of 7 variables exhibit chatter .
With higher order derivative information only Netf1ovB chatters .

Figure 3 : Intractable branching due to chatter in the simulation of a W tube.



tensions to the simulation algorithm and lends itself
to a straight-forward proof of the ability of chatter
box abstraction to eliminate all instances of chatter
without over-abstracting . The algorithm, however,
explores the entire chattering region of the state space
via simulation . The number of states within this re-
gion is exponential in the number of chattering vari-
ables . Thus, the solution does not scale up as the size
of a model grows and the number of unconstrained
variables increases .
DeCoste (DeCoste, 1994) addresses chatter when

simulating Qualitative Process Theory models (For-
bus, 1984) simply by ignoring distinctions in the direc-
tion of change when a unique value cannot be inferred
via constraint propagation . He does not address the
problem of landmark chatter nor does he provide an
evaluation of this approach . In addition he does not
discuss cases where constraint propagation is too weak
of an inference mechanism to infer a unique direction
of change .

Identifying the set of chattering variables
For each time-interval state S, to determine if a vari-
able v can chatter before a non-chattering distinction
occurs two questions must be answered :

Consistency - Is there a consistent state in which v
is free to chatter?

Reachability - Can this state be reached from S only
through changes occuring in other chattering vari-
ables? Such a state is called chatter-reachable.

The Dynamic Chatter Abstraction
Algorithm

Dynamic chatter abstraction uses an abstraction tech-
niques similar to chatter box abstraction; however, as
opposed to exploring the chattering region via sim-
ulation, it uses an understanding of the restrictions
that are asserted by each constraint within the model
along with the current qualitative state to determine
if the derivative of a variable is constrained. For ex-
ample, in the W-tube model the direction of change
for NetflowB is restricted only by the constraint
NetflowB + Flow-BC c Flow-AB . In the time-interval
following the initial state, all three variables are in-
creasing . Thus, in this state the qdir of NetflowB is
unconstrained and Netf10wB is free to chatter .
Dynamic chatter abstraction, however, must reason

not only about the'qualitattve values contained within
the current state, but also about how these values
change as variables begin to chatter. Once NetflowB
chatters, its derivative can change sign and the above
addition constraint no longer restricts the derivative of
Flow-AB, If Flow-AB is not prevented from chattering
by other constraints, it is free to chatter and must be

7 1

Constraints within the model are used to partition vari-
ables into chatter equivalency classes such that if one vari-
able within a class chatters, then all of the variables will
chatter.

The figure provides a graphical representation of the
W-tube model. Binary constraints are represented by
labeled arcs while multi-variate constraints are repre-
sented by nodes.
The dotted lines identify the chatter equivalence classes .
Two variables are included within the same chatter
equivalence class if they are the only two non-constant
variables within a constraint . Thus, variables related by
monotonic function constraints are contained within the
same class and Netf1owA and Crossflov-AB are also in-
cluded within the same class since Inflow-A is constant .

Figure 4: Chatter equivalency classes.
identified as such within the current chatter box.'
Once the chattering variables are identified, an ab-

stract, time-interval state describing the chattering
region of the state space is created and inserted into
the behavior tree . Successors of this abstract state are
computed through an extension of the QSIM successor
generation algorithm .
The conditions under which a variable can chatter

with respect to the current state are defined using a
chatter dependency graph . Two types of nodes ex-
ist within the chatter dependency graph : equivalency
nodes and dependency nodes. An equivalency node
is created for each set of chatter equivalent variables
within the model. The variables within the model
are partitioned into chatter equivalency classes using
an extension of an algorithm presented in (Kuipers
et . al ., 1991) (see figure 4) . Equivalency nodes are
connected through a directed, AND-OR subgraph of
intermediate dependency nodes . The AND-OR sub-
graph can be viewed as a predicate that specifies the
conditions under which the variables in an equivalency
node are free to chatter. The variables within a node
chatter within the current region of the state space if
and only if there exists a consistent, chatter-reachable

'Higher order derivative constraints can be applied to
restrict chatter in all of the variables except NetflovB .
While presenting the algorithm, this information is not
used .



state that satisfies the predicate specified by the and-
or subgraph .
Building the chatter dependency graph The
conditions specified within the and-or subgraph are
defined with respect to changes that must occur in
the current qualitative state . For example, in the
W-tube model Netf1owB -f- Flow-BC = Flow-AB and
all three variables are increasing following the initial
state . Thus, in the current state Flow-AB is restricted
from chattering ; however, if either the derivative of
Netf1owB changes sign while Flow-BC remains the
same or vice-a-versa, then Flow-AB is free to chat-
ter . Figure 5 describes the structure of the AND-OR
subgraph using the W-tube example .
To construct the AND-OR subgraph extending

from an equivalency node EQsource, each constraint
containing a variable within EQ,nurce is analyzed to
determine the conditions under which the constraint
fails to restrict the direction of change of the variables
within EQ,ource . These conditions are specified via
labeled arcs within the AND-OR subgraph . Table 1
describes the possible label types .
Evaluating the dependency graph The depen-
dency graph evaluation algorithm categorizes chatter
equivalency classes as chattering, non-chattering,
or chatter-unknown . The algorithm iterates through
the equivalency classes moving them from the
chatter-unknown category into one of the other two
categories . Certain chatter equivalency classes can
be identified as non-chattering throughout the sim-
ulation . For example, if one of the variables is con-
strained by a constant constraint, then none of the
variables in the equivalency class can chatter .
To determine if the variables within an equivalency

node EQ will chatter, the algorithm attempts to form
a state that satisfies all of the conditions within the
and-or subgraph extending from EQ. It begins by in-
stantiated a partial state description with the current
qualitative magnitude and direction of change for the
variables within the node and all variables currently
classified as non-chattering . This state is also in-
stantiated with qualitative magnitude information for
variables that cannot chatter around zero .'- Then a
backtracking algorithm is used in an attempt to iden-
tify a chatter-reachable state that satisfies the AND-
OR sub-graph extending from EQ . Information is
added to the partial state when another equivalency
node is encountered . The information added depends
upon the label of the link pointing to the node. If the
search encounters an equivalency node EQ' whose di-
rection of change is required to change (i .e . the arc

'It is assumed that only variables whose integral is rep-
resented within the model will chatter around zero . If
other variables chatter around zero, it is likely that the
model is highly unconstrained .

is labeled with opp), then EQ' must be classified as
chattering before the required information can be
added to the partial state description . This ensures
that the state is chatter-reachable . The evaluation
algorithm is called recursively if EQ' is still classified
as chatter-unknown . A cycle within the recursive
calling sequence is treated as a dead end condition
and the algorithm backtracks . A cycle between nodes
EQ and EQ' means that along the path traversed,
EQ depends upon EQ' to chatter first while EQ' de-
pends upon EQ to chatter first . Thus, neither one can
chatter' . This condition, however, does not necessar-
ily prevent these nodes from chattering since there
might be another set of qualitative value assignments
(r.e . another path in the dependency graph) that al-
lows one of these nodes to chatter . Once one chatters,
the other may be free to chatter as well .

If a partial state is created satisfying the AND-OR
subgraph, the QSIM constraint satisfaction algorithm
is used to ensure that the variable assignments are
consistent with all of the constraints within the model .
If they are, then the equivalency node is classified as
chattering. If a chatter-reachable, consistent state
cannot be identified, then the equivalency node is clas-
sified as non-chattering .

W-tube example

	

Figure 6 describes the evaluation
of a portion of the dependency graph for the W-tube
example . Without using HOD information, evalua-
tion of the entire dependency graph results in a total
of 7 chattering variables . This is consistent with the
results of a standard QSIM simulation without any
form of chatter elimination .
An extension to the dynamic chatter abstraction

algorithm has been developed to handle higher order
derivative constraints . These constraints must be han-
dled differently since they are structured slightly dif-
ferently than the standard QSIM constraints . When
this extension is applied, the only variable that chat-
ters is NetflowB .

Abstract state creation and successor
generation

Once the set of chattering variables is identified, the
algorithm creates an abstract state with an abstracted
qdir of (inc std dec) for each of the chattering vari-
ables providing a conjunctive list of values for the qdir
within the abstracted time-interval . The QSIM state
successor algorithm has been extended to handle such
abstract states .

If the qualitative value of a variable over a time-
interval is ((h lj+i) (inc std dec)), then at the ensuing
time-point state the following values are consistent
with continuity :

'Remember that the opp label requires variables in the
destination node to change sign before the source node can
chatter .
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For each time-interval state, a chatter dependency graph
is created. In the figure, the qdir for each variable in the
state being analyzed is displayed within the node . The
AND-OR subgraph extending from an equivalency node
EQ,ource has the following structure:

0 The root of the sub-graph is an AND node that has a
link pointing to an OR node for each constraint relating
a variable within EQ,ourae to other variables within the
model that can potentially restrict a variable from chat-
tering . In the W-tube, there are two such constraints
for EQ1 .

Each OR node corresponds to a constraint C . A child
is created for each set of qualitative value assignments
for the variables within C that allows the variables in
EQsource to chatter.

The children of these final conjunctive nodes are the
equivalency nodes for the other variables within C . The
arcs are labeled with information about how the qualita-
tive values ofthese variables must change if the variables
in EQ,o� ree are to chatter .

For example, Cl restricts the variables in EQ, from
chattering if and only if the qdirs in EQ2 and EQa
either both remain the same or both change . Note that
the labels are dependent on the placement of a variable
within a constraint .

ure 5 : Chatter dependencv graph for the W-tube
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Thus, a time-point state can also have an abstracted
qdir . In addition, an algorithm has been developed
to test each time-point state to determine when a
variable stops chattering . This occurs when a related
variable changes and begins to constrain the chatter-
ing variable . When this occurs, a single direction of
change is identified from the lists provided above .

Landmark chatter

Dynamic chatter abstraction is able to handle chat-
ter around zero without any additional processing .
The algorithm described above does not assume that
the derivative constraint prevents the integral variable
from chattering . Instead, information about the con-
straining power of the derivative constraint is repre-
sented via labels within the chatter dependency graph.
For example, if a variable's derivative is explicitly rep-
resented within the model, then both the qmag and the
qdir of the derivative variable must be unconstrained
and the qdir of the derivative variable must begin
to head toward zero . These restrictions are speci-
fied within the chatter dependency graph . If both
a variable and its derivative are identified as chatter-
ing, then the derivative variable will exhibit chatter
around zero and its qualitative magnitude is also ab-
stracted .

Complexity

The size of the chatter dependency graph is polyno-
mial in the number of chatter equivalency classes .
Since the evaluation algorithm is performing con-
straint satisfaction, we expect that the worst case
complexity of the algorithm may be exponential, how-
ever, the average case complexity is much better . In
fact, we have not encountered an exponential time
factor in any of the models tested (see table 2) . This
is because the algorithm performs a directed search

Edge Label Description
(same) The qdirs of the variables within node must remain the same .
(opposite) The qdirs of the variables within node must change to the oppo-

site sign . For the qdirs to change, node must be classified as a
chattering node .

(chatter) The variables within node must. be free to chatter . This link does
not place specific constraints on the values of the node variable's
gdirs . This label is used when processing the D/DT constraint .

(qmag <var> <Imark>) The qualitative magnitudes of the variables within node must be
unconstrained around lmark.

(qdir <var> <gdir>) The gdir of var must have the value qdir . Qdir must be different
from the current value and thus var must be free to chatter . This
link is required when a variable is steady at the time-interval state
being evaluated or has an abstracted qdir .

Table 1 : Dependency graph edge labels
EQ-1 ((1j1j +1 )(inc std dec))

'NetflowA (dec)
Flow-AB (inc)

(1j (std dec))
Delta-AB (inc) j (1j+l (inc std))
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Equivalency node EQt is evaluated as follows for the time-interval state St following the initial state . The dependency
and-or subgraph for EQt displayed in figure 5 is redisplayed here To simplify the structure of the display, nodes EQ4
and EQt are displayed in two places in the above graph . (The order of the traversal of the and-or subgraphs has been
slightly modified for the sake of this presentation .)
Evaluating EQt

Step-1

	

Instantiate a partial state description Sp with the qualitative values of the variables in EQt and Inf1owA
since it is constant . Push EQt on a stack maintaining a list of visited nodes called V.N .

Step-2

	

To satisfy constraint Ct traverse link (a) . This link requires the variables in EQ2 and EQ3 to remain
the same . Add this information to Sp .

Step-3 To satisfy constraint C2, traverse link (b) . This link requires the variables in EQ4 to move in the
opposite direction . Therefore, the variables in EQ4 must be free to chatter. Since this node is classified
as chat ter-unknovn, call the algorithm recursively to determine the status of EQ4 .

Evaluating EQ4
Step-4

	

Traverse link (c) in the above graph . To satisfy this link, both nodes must be free to chatter . A cycle,
however, occurs in the calling sequence since EQt E VN. Therefore, the algorithm backtracks .

Step-5

	

Traverse link (d) . Since this link is satisfied by the current state, classify EQ4 as chattering and
return (i .e . Netf1ovB will chatter .)

Step-6

	

EQ4 is therefore free to chatter . Augment Sy with the qualitative value information to satisfy link (b) .
Step-7

	

The QSIM state completion algorithm is called to ensure that there exists a consistent completion of Se .
Variables that have not been identified as chattering must retain their current qualitative values within
this completion . A state is identified and EQt is classified as chattering .

Figure 6 : Dependency graph evaluation for the W-tube .
of the potentially chattering region simply to iden-
tify variables as chattering or non-chattering as op-
posed to enumerating all possible solutions within this
search space . Conflicts are often encountered well
before an entire path is traversed within the search
space . A detailed complexity analysis of the dynamic
chatter abstraction algorithm still must be performed .

Evaluation and Discussion
Dynamic chatter abstraction has been empirically
evaluated using a corpus of over 20 models obtained
from various researchers within the field of qualita-
tive reasoning . The results were validated against
a standard QSIM simulation to show that the algo-
rithm identifies a variable as chattering if and only
if it exhibits chatter within the same region of the
state space in the standard simulation . Table 2 com-
pares dynamic chatter abstraction with chatter box
abstraction on a few of these models with respect to
the time required to perform the abstraction .' In all
of the models tested, dynamic chatter abstraction per-
formed better than chatter box abstraction, and in
fact, as the number of chattering variables increased,

'Some of the examples used result in an infinite simula-
tion and thus were terminated at an arbitrary state limit .
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the speed up provided by dynamic chatter abstrac-
tion increased significantly . In addition, a number of
improvements are are being implemented to increase
the efficiency of the dynamic chatter abstraction . In
particular, a propagation phase will be added prior to
the dependency graph evaluation to reduce the com-
plexity of this step .
Dynamic chatter abstraction provides a scalable so-

lution that is able to efficiently solve the problem of
chatter . However, since the algorithm incorporates
information about how the simulation algorithm pro-
cesses the constraints within the model, extensions to
the simulation algorithm may require modifications
to the dynamic chatter abstraction algorithm . On
the other hand, chatter box abstraction uses the basic
simulation algorithm as its main inference engine . As
a result, extensions to the simulation algorithm can
be seamlessly integrated . Thus, both algorithms offer
advantages .

Conclusions
Recent discussions within the field of qualitative rea-
soning have questioned the usefulness of qualitative
simulation when reasoning about the behavior of com-
plex dynamical systems . In general, these discussions



A - Exhibits chatter around zero .
B - Oscillatory behavior results in infinite behavior tree . Simulation terminated once the structure within the tree could be determined .
C - Could not be simulated to completion due to resource limitations .
Each model was tested both with and without chatter abstraction . When chatter abstraction was not used, both
an envisionment and a behavior tree simulation without landmark introduction were used . The number of behaviors
generated are listed above using a state limit of 5000 . Note that while an envisionment often results in a smaller number
of behaviors, the total number of qualitatively distinct behaviors represented is the same as there are an infinite number
of paths within the envisionment graph .
Both types of abstraction generated the same number of behaviors ; however, dynamic chatter abstraction performed
significantly better than chatter box abstraction with respect to simulation time .
HOD constraints were used whenever applicable . Ignore qdirs does not work on models exhibiting chatter around zero .
On other models ignore qdirs can be used, however, it requires a significant amount of work by the modeler to identify
which variables are chattering .

Table 2 : Evaluation of Dvnamic Chatter and Chatter Box Abstraction

have focused on the complexity of the simulation and

	

D . J. Clancy and B. Kuipers Model Decomposition and
Simulation : A component based qualitative simulation
algorithm . Submitted for publication .

the difficulty ofscaling up to larger, more complex sys-
tems due to irrelevant distinctions . Chatter is a major
source of these distinctions. The technique presented
in this paper solves this problem . This technique in
combination with the DecSIM component simulation
algorithm (Clancy and Kuipers, 1997b) significantly
extends the range of models that can be tractably sim-
ulated using qualitative simulation and thus supports
the application of qualitative simulation to tasks such
as monitoring, diagnosis and design for complex, real-
world systems .
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Number of Behaviors Simulation time (sec)
o chatter abstraction Chatter

abstraction
Model Vars Chat

Vars
nvtsionment e avior

tree (no lms)
Behavior
tree (w/ lms)

Dynamic
Chatter

Chatter
Box

W Tube 16 1 3 > 1845 1 0.9 3 .4 I ~I
Glucose-insulin Interaction 11 2 155 > 2807 41 14 52
Van der Pol Equation 10 4 43 > 1788 12 2.3 15
Controlled Hot/Cold tank 14 5 24 >601 14 5.0 48.2
Turgor Stomates 19 7 509 > 2598 1 2.4 20.5
Cooling Plant 15 10 659 > 4095 1 7.7
Heart Model 42 28 11 689 > 2784 200 100


