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Abstract

One of the factors hindering the wide-spread ap-
plication of qualitative simulation techniques is the
difficulty encountered when developing a qualitative
model . Analyzing the resulting behavioral descrip-
tion and revising the model in response to this anal-
ysis requires a significant amount of expertise and is
often left up to the modeler. As a result, developing
a qualitative model is difficult for users who are not
familiar with the field . Furthermore, this process is
often not addressed within the literature making it
difficult for such a user to obtain the necessary ex-
pertise except through trial and error . This paper
addresses the process of model revision and presents
a set of tools and methods to assist in the perfor-
mance of this task . It also demonstrates how qual-
itative simulation can be used to obtain a more de-
tailed understanding of the dynamical properties of
the modeled system . The tools presented help the
modeler extract information from a complex behav-
ioral description by providing alternative views of the
description, allowing the modeler to perform a fo-
cused search of the potential state space and provid-
ing explanation facilities for the branches occuring
within the description . These tools and the methods
are discussed with respect to the development of a
semi-quantitative model of a controller for a tank .

Introduction
Qualitative simulation (Forbus, 1984 ; Kuipers, 1994 ;
de Kleer and Brown, 1984) is used to derive a behav-
ioral description from a model of an imprecisely de-
fined dynamical system to perform tasks such as mon-
itoring, diagnosis, and design . It generates a symbolic
description of all potential behaviors of the modeled
system highlighting qualitative distinctions identified
within the model . These qualitative distinctions may
provide information that is not made explicit by a nu-
merical simulation (e.g. quiescent states or classifica-
tion of oscillatory behaviors as increasing, decreasing
or harmonic) . As with other simulation techniques,
the benefits obtained are highly dependent upon the
quality of the model provided as input . This is par-

ticularly true of qualitative models since an ambigu-
ous model often results in an ambiguous behavioral
description that includes a wide variety of potential
behaviors .

The difficulty encountered developing a model is a
major factor hindering the wide-spread application of
qualitative simulation techniques . In general, model
building research has focused on automated modeling
techniques (Nayak, 1994; Rickel and Porter, 1997) and
higher level modeling languages (Falkenhainer and
Forbus, 1991 ; Franke and Dvorak, 1989) . Frequently,
however, models are developed by hand using an iter-
ative process in which the modeler repeatedly revises
the model in response to the results generated by the
simulation . The process of analyzing the results of
a simulation and revising the model is complex and
requires a fair amount of expertise . As a result, it is
difficult for users not familiar with the field of quali-
tative reasoning to quickly come up to speed and de-
velop a model . Furthermore, this process is often not
addressed within the literature (Weld and de Kleer,
1990) making it difficult for such a user to obtain the
necessary expertise except through trial and error .

In this paper we address both the process of revising
a model and present a set of tools to assist a modeler
in this process . The process focuses on the steps taken
when revising a model and techniques for eliminating
ambiguity. This process can also be helpful to relate
features of the model with specific distinctions in the
behavioral description . Model revision is a complex
task that does not lend itself to a single, algorithmic
method . The techniques presented here provide a road
map to assist a modeler perform this task . The tools
presented are used to filter the information provided
by the simulation, selectively explore regions of the
state space, and explain why certain phenomena did
or did not occur .

The ideas presented here have been explored using
the QSIM qualitative simulation algorithm (Kuipers,
1994) although many of them can be generalized to
other qualitative simulation algorithms . All tools have
been implemented and will be available in the upcom-
ing revision of QSIM soon to be released .



The QSIM algorithm uses an abstraction of a ordi-
nary differential equation (ODE) called a qualitative
differential equation (QDE) to specify structural con-
straints between related variables within the modeled
system . A tree of alternating time-point and time-
interval states is generated describing all potential be-
haviors ofthe system consistent with the model follow-
ing from a partially specified initial state . Each path
within the tree corresponds to a qualitatively distinct
behavior . Each state provides a qualitative magni-
tude (qmag) and direction of change (qdir) for each
variable . The qdir is either increasing (inc), steady
(std) or decreasing (dec) while the magnitude is de-
fined on a totally ordered set of landmark values . An
event occurs whenever a variable reaches a landmark
or becomes steady. Landmark values are introduced
to represent critical points identified during the sim-
ulation . Quantitative information can be added to
the model in the form of numeric bounds and static
functional envelopes (Berleant and Kuipers, 1988 ;
Kay and Kuipers, 1993) .

Branches occur within the behavioral description
whenever the model provides insufficient information
to disambiguate between alternative successor states .
In general, an ambiguous, loosely constrained model
results in a complex behavioral description with a
large number of behaviors . Often, additional infor-
mation not included within the model is available and
the model must be revised to incorporate this infor-
mation .

Model Revision

Model revision is the process of analyzing the results
of a simulation, comparing these results against the
modeler's expectations and revising the model as re-
quired . When a mismatch occurs between the mod-
eler's expectations and the results of the simulation,
the modeler must determine whether it is the model
or his expectations that
is too detailed, incorrect
revised and re-simulated
itself .
The following questions are addressed at various

points throughout this process :

Qualitative simulation and model
revision

are incorrect . If the model
or incomplete, the model is
and then the process repeats

What is described by the behavioral descrip-
tion? To evaluate the accuracy of a model, the
modeler must have an understanding of the classes
of behaviors described by the resulting behavioral
description .

Why do certain phenomenon occur within
the description? Often specific events or
branches within the behavioral description must be
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understood with respect to the structure of the dy-
namical system for the modeler to appropriately
evaluate the results of the simulation .

" How can the model be revised if required? Fi-
nally, the modeler must compare the results against
his expectations and determine if the model needs
to be revised . If revision is required, the modeler
must determine how to revise the model to account
for the observed mismatch .

Addressing these questions is a fairly straight-
forward task if a simulation yields a small number of
behaviors . For complex behavioral descriptions, how-
ever,-it is often quite difficult to address these ques-
tions due to the variety of interactions that occur be-
tween different variables within the model. Further-
more, the initial version of a model is almost invari-
ably under-constrained due to omitted information .
Thus, even for tightly constrained systems that will
eventually result in a small number of behaviors, the
modeler must still deal with a complex behavioral de-
scription during the model revision process .

In the next section, we present a set of tools de-
signed to assist a modeler answer these questions .
This is followed by a discussion of the process of
model revision in which each of these questions is ad-
dressed and a collection of model revision techniques
presented that make use of these tools . A sequence
of figures are used to provide a case study demon-
strating the application of both the techniques and
the tools in the development of a non-trivial example
of a controlled tank . The steps described correspond
to actual steps that were taken during the develop-
ment of this model in collaboration with Bjarne Foss,
a control theorist at the Norwegian University of Sci-
ence and Technology in Trondheim . The model was
developed to explore how qualitative simulation could
be used to perform robustness analysis for a class of
controllers .

Behavior Analysis Tools
This section describes a set of tools to analyze and un-
derstand the results of a qualitative simulation . How
each of these tools can be used during the model revi-
sion process along with examples demonstrating the
application of these tools is provided in section .

Temporal logic trajectory constraints
TeQSIM (Brajnik and Clancy, 1996) is an extension
of the QSIM algorithm that incorporates temporal
logic model checking into the qualitative simulation
process . Propositional formulae specifying qualitative
and quantitative state information are combined us-
ing temporal operators such as until and next to
form path formulw that specify trajectory informa-
tion . The simulation is restricted to behaviors that



can potentially model these temporal logic expres-
sions . TeQSIM can be used to restrict the region ofthe
state space that is explored during a simulation thus
simplifying the complexity of the behavioral descrip-
tion . TeQSIM can be also used to control the behavior
of the exogenous variables that drive the system, it al-
lows the modeler to specify discontinuous changes in
exogenous variables and to inject temporally bounded
external events into the simulations .

Trajectory constraints can also be applied follow-
ing completion of a simulation to filter the resulting
behavioral description . This allows the modeler to in-
teractively explore different regions of the state space
contained within the behavioral description .

Finally, temporal logic expressions can also be used
to query the results of a simulation to determine if
the resulting behavioral description models the tem-
poral logic expressions (Kuipers and Shults, 1994a ;
Kuipers and Shults, 1994b) . This allows the modeler
to evaluate whether certain desirable or undesirable
properties are exhibited by the modeled system when
evaluating the results .

Selective Continuation
Selective continuation allows the modeler to gradu-
ally extend individual, incomplete behaviors without
extending the entire tree . This is useful when a model
results in very large or infinite behavioral description
to manually control the region of the state space that
is explored . The agenda that is used to control the
states that are simulated is modified to contain only
un-simulated states within the behaviors identified by
the modeler . The modeler also specifies the extent to
which these behaviors are extended .

Variable Focus
Variable focus generates a more abstract representa-
tion of the behavioral description called a view tree
that is a projection of the description onto a subset of
the variables within the model . A branch only occurs
within a view tree when a distinction occurs in one
of the viewed variables . These are the only variables
that are described by the states within a view tree . A
mapping is maintained between states within a view
tree and the main behavioral description . View trees
are incrementally generated during the simulation . l
Figure 1 describes the algorithm used to generate the
view tree .
A view tree satisfies all of the properties of a stan-

dard behavior tree . Landmarks are created when ap-
propriate and quiescent, cycle, and transition states
are all represented . A mapping is maintained between
the landmarks in the view tree and the landmarks in
the main behavior tree . In addition, the user is able to

'For clarity, several details concerning transition states
and handling of successor relationship have been omitted .
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interact with the view tree using the same user inter-
face developed for exploring normal behavior trees . In
particular, temporal logic expressions can be used to
query or filter the view tree and selective continuation
can be used to extend the simulation for incomplete
behaviors by mapping these behaviors to their corre-
sponding behaviors within the main tree (see figure 3) .

Variable focus has been available as part of the
QSIM distribution for a couple of years although it has
recentlv been extended to include some of the func-
tionality described above . It is similar in concept to
a technique recently developed by Mallory (Mallory,
Porter, and Kuipers, 1996) to abstract envisionment
graphs . Variable focus, however, is designed to work
with a behavior tree and thus must handle the intro-
duction of landmarks .

Event Analysis
Event analysis assists a modeler in determining why
a branch occurs within the behavioral description by
identifying the relationships between the events that
cause the branch to occur . Identifying the events that
occur following a given state and understanding how
they are related can be quite complicated especially
when there are a large number of potential succes-
sor states . An event occurs when a variable crosses
a landmark or becomes steady . Branch points within
the behavioral description result whenever there are
multiple events that can follow a given state and the
model fails to completely constrain the ordering of
these events . Many events, however, often occur in
unison following a specified state due the relation-
ships between variables within the model . A com-
pound event is a set of events, such that if one event
within the set occurs following a given state, then all
of the events occur . For example, if two variables are
related by a monotonic function constraint and one of
the variables becomes steady, then the other variable
must also become steady .

Event analysis analyzes a branch point as follows :

1 . All compound events are identified .

2 . A causal analysis is used to analyze the relation-
ships between the variables within a compound
event and identify a primary event or a set of pri-
mary events .

3 . A logical representation is used to describe the re-
lationships between separate compound events .

Compound events are identified through an analy-
sis of the successors states for a given state S . All
of the events that occur in at least one successor of
S are identified . These events are then partitioned
such that two events are contained within the same
partition if and only if they always occur together in
the successors of S. A compound event is created for



As each new state SM is created within the main tree, the rules in the preceding table are used to determine whether
the new state should be mapped to an existing state within the view tree Tv or if a new view state should be created.

The relation = � evaluates to true when two states are equivalent with respect to the set of viewed variables v and their
statuses are compatible (e.g. a final state cannot be equivalent to a non-final state) . The symbol := is an assignment
operator .

* The mapping function II(S) maps state S to the corresponding state within the view tree .

Figure 1 : Variable focus state processing algorithm
Compound events are labeled using

	

ber of simplification rules are then applied to com-
bine similar expressions so that the information is
presented to the modeler in a concise and meaning-
ful manner .

For example, suppose there are a total of four com-
pound events, A through D, that result in three states
that are labeled as follows: SAB, SAC, SABCD- Fol-
lowing conversion, this results in the following set of
clauses and interpretations :

each partition .
alphabetic characters that are used when identifying
dependencies between compound events .
A heuristic that is based upon a causal analysis

(Iwasaki, 1988 ; Nayak, 1994) ofthe model is then used
to identify a primary event or set of events that is
highlighted when the compound event is displayed to
the user (see figure 6) .

Identifying the relationships between compound
events is the most useful feature of event analysis .
Each successor state is labeled using the compound
events that occur within the state . For example, if
there are two compound events A and B and their or-
dering is unrelated, then there will be a total of three
successor states, SA, SB and SAB, where the subscript
represents the state's label . The set of labels for the
successor states can be viewed as a propositional logic
expression . For the example above, the expression
would be :

((A A ~B) V (~A A B) V (A A B))

This expression is in disjunctive normal form and can
be translated into a slight variation of implicative nor-
mal form through a straight-forward transformation
algorithm that results in the following expression

((A V B))

meaning that the occurrence of compound event A
and compound event B are unrelated .

Implicative normal form is similar to conjunctive
normal form except negated literals within each clause
are eliminated by translating the clause into the form

(IF (al V a2 V . . .a�,) THEN (cl V c2 V . . .C� ))

where al . . . a�, correspond to the negated literals and
(c l . . . c� ) correspond to the positive literals . A num-
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Clause Meaning
(A)

	

A always occurs
(B V C)

	

B and C are independent
((B AC) IFF (D))

	

B and C occur together if
and only if D occurs .

In addition to the dependencies between compound
events, each successor state is displayed with its la-
bel so that the user can evaluate how they combine
independent of the analysis provided above .
By representing the dependencies in this form, it is

easy to determine the correlations between the com-
pound events within the successor states . These cor-
relations can be related back to the constraints within
the model to gain an understanding of why the branch
occurred .

Successor Explanation
Successor explanation answers the question :

Why can't event E occur following state S?

where E provides a partial state description called
a template. For example, the modeler might want
to know why a variable that is increasing does not
becomes steady.

Successor explanation attempts to generate a suc-
cessor state for S that matches the template by infer-
ring qualitative value information for each variable .

Conditions Actions
SM is an initial state a Create a new view state .
SM = � predecessor(SM )

0 if SM is a time-interval state then II(predecessor(SM)
II(SM) := II(predecessor(SM))must also be a time-interval state .

SM � predecessor(Sm) II(SM) := S'
3S' : : S'ETvA

S' E successors(II(predecessor(SM))) n
S ' =v SM

none of the preceding conditions are true Create a new view state S such that S = � SM
S', Add to successors(II(SM )) .



Inferences are made by propagating the qualitative
values in the template, applying continuity constraints
to S, and identifying variables that are constrained
from changing by the model . Support for each in-
ference is recorded in a directed dependency graph .
When an inconsistency is detected, the dependency
graph is used to generate a proof tree explaining why a
successor state matching the template does not occur .
The explanation presented to the user is categorized
into one of five different explanation types . Table 1
describes these categories while table 2 describes the
algorithm that is used to construct an explanation .
Figure 6 provides an example demonstrating how. suc-
cessor explanation can be used while figure 7 presents
the proof tree for this example .

Revising a Model
Model revision is a complex, unstructured process
that currently requires a significant amount of exper-
tise and experience developing qualitative models . In
addition, it requires at least a partial understanding of
the dynamics of the modeled system so that the mod-
eler can evaluate the results of the simulation . This
process has been broken down into three phases that
are characterized by the what, why and how questions
presented earlier . This section presents techniques for
addressing each one of these questions . While we do
not suggest that this set of techniques is comprehen-
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Table 1 : Explanation types

Table 2 : Successor explanation algorithm
sive, they do provide a road map that helps to struc-
ture the inherently unstructured task of model revi-
sion . A great deal of overlap exists between these
phases and thus there is a significant amount of inter-
action between the steps taken within each phase .

Figure 2 describes an example model that is pre-
sented as a case study demonstrating many of the
techniques and tools presented here .

What happens?
For complex behavioral descriptions, it is often dif-
ficult to gain a global perspective of the classes of
behaviors described . This is even more difficult when
the system exhibits oscillatory behavior that results in
an infinite simulation . The following techniques have
all been used effectively for both model revision and
to answer the question of what happens within a be-
havioral description . Often, multiple techniques are
employed on the same model to understand different
phenomenon and different. regions of the trajectory
space .

1 . Focus on individual variables . Variable focus
allows the modeler to restrict the behavioral de-
scription to a subset of variables . Viewing variables
independently or in small subsets greatly simplifies
the task of understanding the region of the trajec-
tory space described by the behavioral description .
Often this region may match the modelers intuition,

xp-1 Successor A successor matching the template exists .
exists :

_xp-2 Inconsistent-- e template provided by the mode er is inconsistent with respect to the model .
template :

xp-3 Continuity A consistent state matching the template cannot be reached due to continuity.
violated :

sp-4 Consistent After the consistent successors of a state are computed, QSIM uses a set of
state filtered : auxiliary state filters to apply additional constraints . (e.g. the energy constraint,

higher-order derivative information, quantitative information, etc .) If a state
matching the template is consistent with the constraints in the model but is
filtered by a state filter, information about the filter is provided .

xp-5 onsTarnts Constraint satisfaction prevents a consistent state matching the template from
violated : being constructed .

Step 1 : f a successor state matching the template exists return exp-1 . (see table 1)
tep 2 : Propagate the values in the template through the constraint graph . Record information in the

dependency graph as each propagation is made . If propagation results in an inconsistent set of
values, return exp-2 .

Step 3 : Assert qualitative value information required by constraints in the model given the current state .
For example, if a variable is restricted by a constant constraint, then its qualitative value can be
asserted .

Step 4 : Use continuity to infer an abstract qualitative value for each variable . This value is the union of
the possible successor values for each variable generated by QSIM. The constraints are evaluated
to determine if this information is consistent with the current information within the partial state.
If an inconsistency occurs, return exp-3 .

tip 5: f an explanation as not been identified, the SIM successor generation function is called an
information is recorded as it identifies the valid successor states . This information is then pre-
sented to the user in the form of exp-4 or exp-5. In most instances, the inferences made in the
first four steps are adequate . A proof tree is not provided for these last two explanation types .



Problem :

Analytic Model:

Quantitative
Information:
Controlling the
inflow :

(a) Controlled tank

Develop a proportional controller to control the level in a single-input, single-output tank by
operating on the velocity of the valve (a) . Reason about the closed loop behavior of the system
under various perturbations to the input and characterize the potential trajectory space of the
system given a certain degree of uncertainty.

2 . Independently explore subregions of the tra-
jectory space . Potential interactions between a
large number of phenomenon often makes it difficult
to understand what occurs under what situations .
Trajectory constraints can be used to explore sub-
regions of the trajectory space independently (see
figure 5) .

3 . Gradually extend individual behaviors or
sets of behaviors . Selective continuation allows
the modeler to select individual behaviors to be ex-
tended . Often, a large number of behaviors exhibit
similar behavior . For complex behavioral descrip-
tions, it is often best to iteratively select individ-
ual behaviors or groups of behaviors for simulation .
An analysis of these behaviors resulting in an un-
derstanding of the distinctions that occur can often
be generalized to the rest of the behavior tree (see
figure 3) .

Figure 2 : Control
but it is hard to make this evaluation without fo-
cusing on individual variables (see figure 3) .

350 11
300 t

if "
220 m
200

Inflow

5 6

	

100

(b) Inflow wave perturbation
t

where v, l are volume and level of liquid in the container, o E [0, 1] is the opening of the valve,
f(-, -) gives the outflow, u is the control signal, 1, is the set point, and k is the controller's gain .
It is assumed that k and 1, are constant, f E M++, g E lvfo and h E Nfo and saturates at 0
and at 1 . (Mo denotes the class of monotonically increasing functions that pass through the
origin, while M+ + the class of two-valued functions that are monotonically increasing in both
variables .)
Quantitative bounds are provided for the landmarks and monotonic envelopes for the functions
accounting for the range of uncertainty .
Trajectory constraints are used to control the behavior of the inflow . For the scenario discussed
here a wave perturbation (b) is specified in which the inflow increases and then decreases . The
following trajectory constraints define two temporally bounded external events (step-up and
step-down), and specify discontinuous changes in the inflow corresponding to these events along
with a bound on the new value following the initial perturbation .

(event step-up :time (5 6))
(event step-down :time 100)
(disc-change (event step-up) ((inflow (0 inf)) :range (300 350)))
(disc-change (event step-down) ((inflow if*)))

example description
4 . Analyze individual branches . The global be-

havior of the system emerges due to local distinc-
tions that occur during the simulation . Under-
standing these local distinctions often leads to a
more general understanding of the classes of behav-
iors described . Event analysis can be used to ana-
lyze individual branches within the tree to gain an
understanding of the distinctions that are occuring .
Often these distinctions repeatedly occur through-
out the simulation and patterns can be observed
in the behavioral description . Observing these pat-
terns is particularly helpful when coupled with the
selective extension of the behavior tree . It is often
best to start with either the initial branches within
the tree or the most complex branches that occur
(see figure 5) .

Why does it happen?
Understanding why certain phenomenon do or do not
occur requires a mapping between certain properties
of the model and the behavioral distinctions that re-
sult from these features . This mapping is used to eval-

v = infloui(t) - f(l, o)
l = g(v)
o = h (u)
u = k(1 -1,)
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view tree

LEVEL

LEVEL

(a) Behavior 9 from initial simulation

(b) Selective continue Level

	

(c) Behavior 3 from (c)

The modeler expects to observe two equilibrium points
corresponding to the two distinct values for the input vari-
able inflow . These equilibrium points are each approached
by an oscillatory behavior due to the action of the con-
troller . To test the model, we attempt to determine if a
non-decreasing oscillation occurs . If one can be identified,
then the model is incorrect and it must be revised .

" Simulation of the initial model with a state limit of 100
generates a complex behavior tree with 56 behaviors
and takes a total of 1 minute and 48 seconds on a Sparc
10 to generate . Due to the complexity of the description
it is hard to understand what is happening . If we use
variable focus to describe the behavior of level, there
are a total of 8 behaviors but none of them are extended
sufficiently to determine if decreasing oscillations occur
(a) . .

" Alternately, we could simulate the model with a state
limit of 20, use variable focus to view the results, and
then use selective continuation to extend individual be-
haviors . After two extensions, a view tree for level re-
sults in 8 behaviors (b) . One of these behaviors demon-
strates that a non-decreasing oscillation can occur (c) .
This method only requires a total of 24 seconds simula-
tion time . (The dotted lines in the view tree (b) corre-
spond to states that map to states within the main tree
that still must be simulated .)

" By analyzing the model, it can be determined that
explicit energy terms must be represented within the
model to appropriately model the system .

FiLure 3 . Initial controlled tank simulation

5 9

uate the appropriateness of the model and to hypoth-
esize and evaluate potential revisions to the model .
For a complex behavioral description, it is often best
to obtain such an understanding by analyzing individ-
ual points within the description . For any given state
S within the behavioral description, two questions can
be asked with respect to the successors of S :

" Why does a branch occur following S?, and

" Whv doesn't a branch occur?

The event analysis tool is helpful in addressing the
first question by providing a detailed analysis of the
dependencies that exist between the events that lead
to a particular branch (see figures 5 and 6) . This
analysis can then be used by the modeler to map these
relationships back to the constraints within the model .
The second question is addressed using the succes-

sor explanation tool which describes the relationships
between the constraints and the current state that
prevent the partial state from occuring (see figures 6
and 7) .
These two tools provide a local understanding of

the events that occur within the description . Often,
a more global understanding is obtained by revising
the model and comparing the results of the two sim-
ulations to determine how the revision affected the
behavioral description . Model revision is discussed in
detail in the next subsection .

How can the model be revised?
Determining how a model can be revised is difficult
since so many different options can be considered . For
an over-constrained model, this process is not too dif-
ficult since the search for potential revisions is lim-
ited to the information contained within the model .
Furthermore, the successor explanation tool can be
used to isolate the source of the problem . Unfortu-
nately, it is more common for the model to be under-
constrained thus resulting in an overly general behav-
ioral description . Such a problem occurs if either the
model does not include information that is available
to the modeler or if the model is too detailed in its de-
scription of the dynamical system . It is also possible
that the generality of the description is a reflection of
the actual complexity of the dynamics entailed by the
model . Even in this situation, however, to assist in
the analysis of the results the modeler might identify
additional assumptions that can be incorporated into
the model to produce a more restricted set of behav-
iors .

Insufficient information It is quite common for
a modeler to omit information that is important in
restricting the behavior of the system during simula-
tion . These omissions occur because qualitative model
descriptions are weaker than numerical ones, and so
information implicit,in a precise numerical model may



After revising the model to incorporate an energy constraint, iterative simplification is used to simplify the model to
its basic structure . Not only does this assist in developing the model, but it also increases the modeler's understanding
of the relationships between the structural properties of the model and the corresponding behavioral features .
The initial equation following addition of the energy constraint contains a conservative and a non-conservative term
resulting in a complex model that requires the introduction of a number of new variables . (In this model, u = kX~, it
is assumed that f(1, o) = fi(1) - f2(o), £ = fi(1,) and hl (x) = fl(k + 1,) - £.)

(Rev-1)

Abstracting away constants results in the equation :

u = inflow - f2(h(u)) - h1(u)-f2(h(u))

f2 and hi results in the equation :

u = inflow- h(u) - u - h(u)

h which results in the basic model

u=inflow -u-u-u

While a direct mapping does not exist between the variables within this model and the physical component, for the

Removing the monotonic functions

Finally, we remove the saturation function

sake of understanding the simulation results it may be helpful to think of u as the level of the tank and u as the netflow .

A qualitative model is developed for Rev-4 . Once the model is understood, we add back the information needed to
regenerate Rev-3 and so on until we reach Rev-1 (see figure 6) .

Figure 4 : Applying iterative simplification to the controller model

not appear when this model is directly translated into
qualitative terms . The following classes of informa-
tion are often the most beneficial when attempting to
restrict an ambiguous description :

1 . Energy constraints - An energy constraint
explicitly describes the change of energy within
a system in terms of its conservative and non-
conservative components . Thus, behaviors in which
the sum of the conservative and non-conservative
components do not add up to the net energy change
can be refuted . Clearly, energy constraints should
be included in models that have this property or
a derivable Lyapunov function . While energy con-
straints will increase the number of variables in a
model, their constraining power is usually worth the
cost . See (Fouche and Kuipers, 1992) for a detailed
discussion .

2 . Corresponding values - Corresponding values
help to pin down the curve defined by a constraint
by introducing qualitative points through which it
must pass . For example, given the constraint that
A+B = C and knowledge that the (existing) land-
marks a, b, and c satisfy the equation, the corre-
sponding value (a, b, c) should be included in the
constraint definition . Thus, the simulator can re-
fute states which are inconsistent with this con-
straint . Note that corresponding values should only
be added between existing landmarks . Adding new

I A (infiow-£- f2 (h (UM] + [- 4hi(u)' f2(h(u))]

3 .

4 .

(Rev-2)

(Rev-3)

(Rev-4)

landmarks to the quantity spaces of variables pro-
vides no additional constraining power .

Redundant constraints - In some models, it is
possible to state a constraint in more than one way .
While this is clearly redundant analytically, it is
possible that ambiguity in one formulation may not
be present in the other . Kuipers (Kuipers, 1994)
provides an example of redundant constraints in
modeling a hot/cold mixing tank .

Quantitative information - In some cases, the
qualitative behavior of a model may be inherently
ambiguous . In cases where simplification is an
unacceptable alternative, quantitative information
may be available that can reduce ambiguity (Kay,
1996) .

Event analysis is often helpful in focusing the search
for what information has been omitted by analyzing
unexpected branches . A useful strategy is to restrict
the behavioral description to either the desired behav-
iors or the undesired behaviors and to analyze these
sets independently to try and observe relationships be-
tween variables that may not be specified within the
model (see figure 3) .
A modeler should be wary of attempting to restrict

an ambiguous behavioral description by adding vari-
ables to the model . While providing additional con-
straints and/or corresponding values does not increase
the complexity of the description, adding variables of-



Label Primary Events

	

Dependent Events
----- --------------

	

-------------------

Event analysis for first branch

(b) Before down step

	

(c) After down step

" Simulation of the simplified model (Rev-4) with a state
limit of 60 still results in an infinite, fairly complex be-
havioral description that is hard to understand . To
understand the structure of the tree we will begin by
analyzing individual branch points .

" The results of event analysis following the first branch
point identifies two unrelated . compound events : DU be-
comes steady or the step decrease in inflow occurs (a) .
Further analvsis of the middle branch shows a similar
branch occurs repeatedly, i.e . DU can oscillate an arbi-
trary number of times before the step-down occurs .

" Trajectory constraints can be used to divide the behav-
ioral description of the system into the region before
step-down occurs and the region after step-down oc-
curs .
1 . The

	

trajectory

	

constraint

	

(never (event
step-down) ) prevents step-down from occurring re-
sulting in a simulation that is equivalent to a single
step increase . Variable focus generates a view tree
with a single behavior (b) . dU exhibits a decreasing
oscillation .

2 . The

	

trajectory
constraint (before (event step-down) (qvalue du
( (0 inf) std)) ) requires step-down to occur before
DU reaches steady for the first time . Once again this
results in a simple behavioral description describing
a decreasing oscillation (c) .

" Once a better understanding of the behavior is obtained,
the simulation is run without the additional trajectory
constraints and the resulting description queried using
temporal logic expressions to confirm that it exhibits a
pair of decreasing oscillations . While a complex behav-
ioral description still results, our analysis has provided
us with an understanding of the description and confi-
dence that the model is correct .

Figure 5 : Simulation of sirnRlest model (Rev-4)

6 1

ten leads to additional branches . While increasing
the overall complexity of the simulation, new vari-
ables will not increase the complexity of the descrip-
tion from the perspective of the prexisting variables.
Thus, by using variable focus to ignore these added
variables, the additional complexity of the description
can be eliminated .

Overly-detailed models Qualitative simulation
describes all potential behaviors of the system that are
consistent with the qualitative description provided .
This often includes unlikely behaviors that cannot be
eliminated due to the inherent limitations of the qual-
itative algebra when a variable is dependent on two
opposing influences . For example, when a bathtub is
filling with water, the effect of evaporation is often
considered insignificant with respect to the netflow of
water . If a qualitative model included evaporation,
however, the behavioral description would include a
behavior in which evaporation becomes the dominate
influence and the level in the tank decreases . This
is an example of an overly-detailed model resulting in
unexpected behaviors . In addition, an overly-detailed
model may simply complicate the resulting behavioral
description making it difficult to evaluate and isolate
the effect of various features of the model .
We call the technique for refining such overly-

detailed models iterative simplification . Iterative sim-
plification is a two step procedure in which the model
is reduced to a more basic representation so that the
output can be easily analyzed . Then the original
model is reconstructed by gradually reincorporating
the additional information and analyzing the results
of the simulation as each new bit of information is
added .
At the heart of iterative simplification are the meth-

ods for model simplification :

1 . Algebraic simplification is based on two very
simple rules :

" variables related by a monotonic function can be
collapsed into a single variable within the model,
and

" multiplicative constants can be removed .

Assuming that the state variables are left un-
changed, the application of the rules results in a
reduction in the complexity of the behavioral de-
scription due to the elimination of intermediate and
output variables along with their landmarks . Fig-
ure 4 demonstrates how this technique has been ap-
plied .

2 . State simplification reduces the number of state
variables within a model . Since the size of the state
space affects the complexity of a model, fewer state
variables can simplify the behavior tree . One exam-
ple of state simplification is the use of time--scale

A : Ext-event : step-down
B : DDU : 0 DU: std

Event Dependencies : (A v B)
State-labels : S-203 : (A)

S-204 : (B)
S-205 : (A
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Label Primary Events

	

Dependent Events
----- --------------

	

-------------------
A : DDU : 0

	

DU: std
B :

	

U:

	

1

	

C : std H :(max std)
C : Z : std

Event Dependencies :

	

(C) IFF (A - B)
(AvB)

State-labels :

	

S-65 : (A)
S-67 : (B)
S-69 : (A - B - C)

(b) Event analaysis output for state S-5

(c) Behavior 7 from partial tree

	

(d) Extension of behavior 6

After understanding the behavior of the basic model (Rev-4), the saturation function h is incorporated back into the
model to create a qualitative model corresponding to Rev-3 . Analyzing the simulation results for this model explains how
the saturation function affects the behavior of the system and strengthens our confidence in the accuracy of the model .

A new branch occurs in the behavioral description at state S-5 following the initial perturbation (a) . Event analysis
reveals that the branch results from two unrelated events : the control signal U reaching the saturation landmark 1 and
the derivative of U (i .e . DU) becoming steady (b) . (Z is an intermediate variable within the model that equals h - u .)
Note how the event analysis describes the dependencies between the compound events.

9 For the bottom two branches in which the saturation landmark is reached, all of the behaviors result in the tank
reaching an equilibrium point that is greater than the set point (c) . Thus, the controller fails to regulate the tank level
as desired in this situation . (Recall that DU=O when 1 = 1,) .

As the rest of the tree following the first branch is extended, however, other behaviors are identified in which H reaches
saturation and then eventually decreases (d) .

To understand the distinctions between these behaviors and confirm that the model is behaving appropriately, successor
explanation is used to explain why the level in the tank, which corresponds to DU, cannot begin to decrease following
time-point t3 in behavior 7 (see figure 7) .

Once an understanding of Rev-3 was obtained, the process continued until a qualitative model matching Rev-1 was derived .
Simulation of this model resulted in a behavioral description that matched our intuitions . Iterative simplification not
only helped in the development of the model, but it provided an understanding of the branches within the description
with respect to the structural properties of the model .

Figure 6 : Successor explanation applied to model Rev-3



Continuity due to

	

Hrelated to U via S+ .
old val: (d-5 std)

	

USER SPECIFIED

	

Uis outside saturation points .

	

INFLOW is constant
plus new info : (NIL dec) .

	

Hmust retain its current value.

	

t

Continuity due to
old val : (0 std)

	

(DIDT DU DDU)

	

(MULT DU H Z)
plus new info : ((NIL 0) nil) .

Qmag :(0 d-5)

	

I Qdir:DEC

	

I Qval :(max STD)

	

I Qval :0-0 STD)

Continuity due to
old val (z-3 std) .

(ADD C H INFLOW)

Qval :((minf 0) DEC)

	

I Qmag:(NIL 0)

	

\ Qval :((0 z-3) DEC)

	

/Qmag:(0 inf)

	

/Qval :(c-I STD)

To gain an understanding of the system and confirm that the model is behavior correctly, successor explanation is used
to answer the question

Why can't DU begin to decrease after state S-245? (see figure 6 .) This corresponds to the time interval (t3 t9)

in figure 6(c) .

Successor explanation generates a proof tree explaining why a state matching this description is prevented . The boxed
nodes within the proof tree correspond to instantiated variables and the arcs correspond to inferences . Root nodes
are identified using text that describes the source of the information for an inference . (The figure above is the actual
output generated using a graph layout program called dot obtained from Bell Labs .)

9 The nodes in the proof tree are inferred as follows :
Ni :

	

The user specified that the qdir of DU is dec . Since it was previously (d-5 std), it
must now be ((0 d-5) dec) .

N2,N3:

	

Since U is above the saturation threshold, H must remain std . Inflow is constant so
its value is also asserted .

Nl, :

	

Since DU is decreasing, DDU must be negative . Since it is currently (0 std), continuity
requires it to also be dec .

	

-
A'5, N&

	

Z must be positive and decreasing due to the mult constraint and C must be (c-1 std)
due to the add constraint .

Conclusion :

	

The infered values for DDU, Z and C are inconsistent with the ssum constraint .

For a state matching the template to be consistent, DDU must already be negative when the saturation threshold is
crossed so that it can be increasing when DU begins to decrease . (i .e . If this occurs, the SSUM constraint will no longer
be violated .) This observation is consistent with the behaviors in which saturation is reached, but the controller is still
able to regulate the tank .

Therefore, the level in the tank must be decreasing when the saturation point is reached if the controller is to regulate
the tank appropriately.

Figure 7 : Successor explanation proof tree



abstraction (Kuipers, 1994) where state variables
can be eliminated by viewing their processes as in-
stantaneous with respect to other model processes .
Another example is the combination of multiple, re-
lated, state variables into a single state . Kay (1992)
applies state simplification to a model of the Space
Shuttle Reaction Control System .

3 . Order-of-magnitude reasoning introduces ad-
ditional information into the model that can dis-
ambiguate the relative scale of differing influences
within a model . Within the QSIM framework, the
W+ constraint can be used for this purpose (Kay,
1992) ) .

4 . Operating region partitioning splits the behav-
ior of a single model into pieces, each of which is
a simpler model . Since each model is simpler, it
produces fewer behaviors . The cost, however, is
that rules for translating between models must be
described . Kay (1992) uses operating region parti-
tioning when modeling a pressure regulator .

5 . Decoupling the model isolates the behavior of
subcomponents within the model, each of which
can be examined separately. Decoupling relies on
user-specified trajectory constraints (described us-
ing TeQSIM) to control the behavior of particular
model variables, (such as flows, which typically link
different components of the model) . Providing a
trajectory constraint effectively turns these endoge-
nous variables into exogenous ones, thus reducing
the resulting behavioral complexity .

Another decoupling strategy uses trajectory con-
straints to completely model a subcomponent of a
model . For example, one could decouple a plant
from its controller by specifying the behavior of the
controller completely via trajectory constraints and
then evaluate the effect of different controllers on
the behavior of the plant .

Discussion and Future Work
Model revision is a complex process that requires an
understanding of and experience with both the prob-
lem domain and the modeling methodologies . The
techniques presented here are an initial effort at sim-
plifying this process and reducing the level of experi-
ence within the field of qualitative reasoning required
to build a qualitative model . Due to the complexity of
this process and the diversity of knowledge required,
we feel that it is unlikely that the entire process can
be effectively automated . Instead, we are more inter-
ested in developing techniques that help the modeler
search the space of potential models thus simplifying
the model revision process . Some potential extensions
include :

" developing a more abstract modeling language that
matches the representations used by engineers when
reasoning about the behavior of a dynamical sys-
tem,

" providing an algebraic manipulation and simplifica-
tion component that can be used to automate the
process of iterative refinement using algebraic sim-
plification and identify redundant constraints that
may further constrain the model,

" developing more sophisticated explanation tech-
niques that can provide a comprehensive descrip-
tion of the classes of behaviors described within the
behavioral description, and

" incorporating
theory refinement techniques (Richards, Kraan and
Kuipers, 1992) to induce potential revisions to the
model using the current model and a description of
the expected, desired, or observed behaviors of the
system .

Conclusions
Recently, a number of applications using qualitative
reasoning techniques have begun to surface demon-
strating the effectiveness of these techniques when ad-
dressing complex, real-world problems . In general,
however, these applications do not use qualitative
simulation . One reason for this is the difficulty en-
countered when developing a non-trivial, qualitative
model due to the complexity of the model revision
process . The complexity of this process often makes
it difficult for researchers from other disciplines to ap-
ply qualitative simulation to tasks in which it may be
suitable .
We have addressed the process of model revision

from two perspectives . First, a set of tools have been
presented that simplify the process of analyzing the
results of a simulation to gain an understanding of the
classes of behaviors exhibited by the model . Second,
the process of model revision is discussed along with
a presentation of a variety of techniques that can be
used during this process .

Hopefully, this research coupled with recent de-
velopments that both reduce the complexity of a
qualitative simulation (Clancy and Kuipers, 1997 ;
Clancy and Kuipers, 1997) and incorporate additional
quantiative information will facilitate the application
of qualitative simulation techniques to a variety of
real-world tasks .
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