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Abstract
One of the original motivations for qualitative
physics research was the creation of a computa-
tional account of mental models . For instance, a
key intuition often associated with mental models
is that they are runnable, i.e., there is a sense of
deriving answers via mental simulation rather than
logical reasoning. This paper examines three ex-
planations for runnability, and argues that none of
them is sufficient. Instead, a hybrid model com-
bining aspects of all three is proposed, focusing on
the integration of ideas from qualitative physics
with ideas from analogical processing . Some psy-
chological implications of this hybrid model are
discussed .

Introduction
An active area of research in cognitive science is

studying mental models (Gentner & Stevens 1983),
the models people use in reasoning about the physical
world' . Understanding mental models is a central
issue for cognitive science because they appear im-
portant in reasoning about complex physical systems,
in making and articulating predictions about the
world, and in discovering causal explanations for
what happens around us . Mental models research also
offers practical benefits . In an increasingly techno-
logical society, understanding the nature of mental
models for complex physical systems and could help
people learn better models which could reduce acci-
dents and improve productivity (Norman, 1988).

One of the original motivations for qualitative
physics research was to create a computational ac-
count of such mental models (de Jeer & Brown
1984; Forbus, 1984; Bredeweg & Schut 1991, White
& Frederiksen 1990). A key intuition often associated
with mental models is that they are runnable, i .e .,
there is a sense of deriving answers via mental simu-
lation rather than logical reasoning . One explanation
for runnability is that people are doing qualitative

' Our focus on physical domains and long-term
knowledge structures distinguishes this sense of
mental model from the other standard usage, e.g.
Johnson-Laird (1983) .
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simulation, based on general, first-principles knowl-
edge of a physical domain. Another explanation is
that we use some high-resolution mental simulation
facility . Yet another explanation is that we are using
memories of similar situations previously observed to
construct a story about what will happen in the cur-
rent situation.

In this paper we argue that none of these explana-
tions by itself is adequate to account for human com-
mon sense reasoning. We believe a psychological ac-
count of qualitative reasoning will rely heavily on
analogical reasoning in addition to reasoning from
first principles . We propose a hybrid model, moti-
vated by a combination of psychological findings and
computational considerations . Aspects of this model
have been tested by computer simulation. We believe
that this hybrid account is more consistent with evi-
dence about human learning than any of the pure
models .
We begin by examining the three `lure" explana-

tions for runnability . Then we outline our hybrid
model and some of its psychological implications .

Three views of qualitative mental models
We focus on the use of mental models in common

sense prediction tasks, like thinking about what might
happen when filling acup with coffee .
High-resolution mental simulations
An appealing intuition is that mental model reason-

ing is like watching a movie of a physical system with
your mind's eye. This intuition has been the basis for
proposals that link mental model reasoning with vis-
ual imagery (Funt, 1980 ; Kosslyn, 1980 ; Glasgow,
1992 ; Hegarty 1992 ; Gambardella, Gardin, & Melt-
zer, 1988). Evidence for our visual apparatus being
involved in spatial reasoning includes psychological
studies (Kosslyn, 1980), computational necessity ar-
guments (Forbus, 1983 ; Forbus, Nielsen, & Faltings,
1991), and neuroscience experiments (Kosslyn,
1996). However, there is evidence that visual proc-
essing alone is insufficient. Hinton (1979) demon-
strated distortions in mental imagery that do not fit
within an array model of imagery, although they are
consistent with mixed symbolictmetric representa-



tions . Schwartz (1996) summarizes evidence sug-
gesting that several kinds of knowledge are used in
imagery, including physical, social, and haptic
knowledge .

It seems likely that spatial mental models rely in part
on visual computations . On the other hand, we know
of no evidence suggesting that the data needed for
quantitative simulation is available in common sense
reasoning tasks, nor do we know of any evidence that
people have a mental simulation facility capable of
using such information. Consider predicting the pat-
tern of liquid that will appear on a rug if a half-full
cup of coffee is knocked off a table . Our visual appa-
ratus is powerful enough to describe the shape of the
patterns that result . However, we are not capable of
predicting what specific shapes will result in advance .
Solving this problem to a high degree of accuracy in-
volves computational fluid dynamics ; it seems quite
unlikely that we are capable of performing such a
prodigious feat mentally.

First-principles qualitative simulation
In some qualitative physics research, running a

mental model is identified with carrying out a quali-
tative simulation of the system. Qualitative reasoning
captures several important properties of mental model
reasoning, namely
"

	

Handling incomplete and inexact data .

	

Qualita-
tive information is easily extracted via perception, and
such rough distinctions are more likely to be easily
remembered than precise details .
"

	

Support for simple inferences. Simple, everyday
"obvious" inferences can be carried out easily.

	

For
instance, if nothing is happening, nothing is changing .
"

	

Representation of inexact knowledge . Qualitative
representations make causal knowledge explicit.
They provide a vocabulary for expressing partial
knowledge about causal theories and mathematical
relationships, and methods to assemble this partial
knowledge on demand for reasoning .
"

	

Representation of ambiguity.

	

In many everyday
prediction tasks we can imagine several distinct out-
comes . Qualitative simulations capture this ambigu-
ity .
However, there are two problems with using current

theories of qualitative simulation to account for men-
tal model reasoning : excessive branching and exclu-
sive reliance on generic models . We discuss each in
turn .
Excessive branching Current qualitative simulators
often produce a huge number of possible behaviors
even for relatively simple situations (Kuipers, 1994) .
In some applications exploring every possible behav-
ior, i.e., envisioning, is necessary (Shimomura, Tani-
gawa, Umeda, & Tomiyama, 1995 ; Price, Pugh, Wil-
son, & Snooke, 1995) . But today's qualitative simu-
lation algorithms tend to make many more distinctions

than necessary for most tasks, leading to unnecessary
complexity in the behaviors they generate (deCoste,
1994). This makes them seem psychologically im-
plausible, for two reasons2 . First, qualitative simu-
lators often produce states containing many more dis-
tinctions than people report when considering the
same scenario .

	

Comparisons between derivatives of
rates, for example, are needed for continuity calcula-
tions that rule out inappropriate state transitions . But
we have never seen such comparisons mentioned in
protocols.

	

This does not by itself rule out their use
internally . It could be that certain information is sim-
ply underreported in protocols . However, these dis-
crepancies are grounds for asking whether such cal-
culations are psychologically frequent. Second, the
exponential nature of most qualitative simulation al-
gorithms makes them implausible models for the ra-
pidity of common sense reasoning .
Exclusive reliance on generic models The goal of
most qualitative physics research is to build an ideal-
ized physical reasoner, a system that can reason with
sophistication about the physical world in the way
that the best human scientists and engineers do, with-
out their frailties . This goal leads to a preference for
systems that maximize generality and generativity .
That is, the laws of qualitative physics are expressed
in domain-independent terms, and knowledge of do-
mains is expressed in situation-independent forms . It
seems likely that people's mental models include laws
and principles that are at least somewhat domain-
independent, as well as domain knowledge that is
situation-independent . But there is ample evidence
suggesting that much of what people know about the
physical world and how they reason about it is more
concrete than that (Brown, Collins, & Duguid, 1989) .
The exclusive reliance of current qualitative simula-
tion accounts on first-principles knowledge makes
them implausible candidates for psychological mod-
els, except perhaps in very narrow ranges of high-
expertise reasoning .

Memory-based reasoning
The third explanation is that running a mental model

of a system corresponds to remembering how that
system has behaved previously when in similar cir-
cumstances . The fact that people store and remember
behaviors of physical systems is uncontroversial .
How far memory-based explanations can go in ex-
plaining physical reasoning is still an open question.
A major issue is generativity : How flexibly can past
experiences be used to make new predictions, and
especially predictions about novel systems and/or

2 We do not know of experiments in the literature
that address these questions : We are arguing based on
our informal observations of people and qualitative
simulators .



configurations? We believe there are three factors
that make memory-based reasoning more generative
than some might otherwise expect. First, qualitative
representations reduce differences . Assuming people
store and use qualitative representations of situations
and behavior, then two situations that vary only in
quantitative details will look identical with respect to
the qualitative aspect of their behavior . Second,
analogical reasoning can generate predictions for
novel situations . For common sense reasoning,
within-domain analogies (i.e ., predicting what will
happen when pouring coffee into a cup based on pre-
vious experiences pouring coffee into a different cup)
should provide a reliable guide to action . Third, mul-
tiple analogies can be used to piece together models
for complex systems (Spiro et al 1989) .
There is psychological evidence that the same com-

parison processes used for cross-domain analogical
thinking are also used for within-domain compari-
sons, in tasks ranging from visual perception to con-
ceptual change (Gentner & Markman, 1997) . It
would be surprising if such processes were not used
in common sense physical reasoning . However,
memory-based reasoning alone is insufficient to ex-
plain our ability to use general-purpose, domain-
independent physical knowledge - something that we
undeniably do, even if there is disagreement over how
much of it people do routinely and under what cir-
cumstances .

Similarity-based hybrid qualitative simulation
None of the pure models are sufficient to account

for the runnability of mental models . We claim that a
hybrid model is needed to explain the full range of
human common sense reasoning. The model of rea-
soning and learning in physical domains we propose
here differs from our previous model (Forbus &
Gentner, 1987). We now suspect that the kinds of
knowledge and processes that we previously divided
into stages are actually more tightly interwoven .
Specifically, we now believe that comparison, proc-
esses play a central role throughout the span of ex-
pertise .
We begin by first examining what aspects we are

adopting from each of three approaches discussed.
Then we illustrate how predictions can be made in
this hybrid model, providing a sense of "running" a
mental model .

High-resolution mental simulations
We assume - that , some high-resolution representa-

tions are available for diagrammatic and spatial rea-
soning tasks, mainly through facilities shared with our
visual systems. However, we assume that, spatial rea-
soning aside, there are no high-resolution mental
simulations . Since assumptions about spatial reason-

ing are almost independent of the rest of the model,
we ignore this issue in the rest of the paper.

What Qualitative Physics provides
We assume that people use many of the representa-

tional constructs of qualitative physics when reason-
ing about mental models . This includes
" Methods for representing partial information

about numerical values, including signs (de Meer
& Brown, 1984), ordinals (Forbus, 1984), simple
symbolic vocabularies (Guerrin, 1995), and order
of magnitude relationships (Raiman, 1991 ; Mav-
rovouniotis & Stephanopoulos, 1988).

"

	

Causal and mathematical relationships capable of
expressing partial knowledge (i.e ., direct influ-
ences and qualitative proportionalities from QP
theory and the extensions described in (Bobrow et
al 1996))
Representations for modeling assumptions
(Falkenhainer & Forbus, 1991 ; Rickel & Porter,
1994)

"

	

Many of the ontologies that have been developed
for specific domains, and multi-domain abstrac-
tions such as physical processes and devices .

We also assume that people encode varying amounts
of detailed information about the values of continuous
properties, in addition to qualitative properties .
We assume that people sometimes use domain-

independent principles of qualitative reasoning and
situation-independent general knowledge of particular
domains . We also assume that much of people's
physical knowledge is highly context-specific . That
is, we assume that many principles of qualitative rea-
soning people use are domain-specific, and that much
of their knowledge about a particular domain is also
tied to situations or classes of situations within that
domain . The difference between these may be seen
by the following sequence of states of knowledge,
each of which could be used for prediction, but takes
quite different forms :
1 .

	

Aremembered behavior concerning a specific cup
at a specific time, e.g ., more coffee pouring into your
favorite cup leading to it flowing over the top and
spilling on your desk. The behavior's description
probably includes many concrete details, such as vis-
ual descriptions of the objects and their behaviors .
Z .

	

Aremembered behavior concerning a specific cup
at a specific time, including a causal attribution relat-
ing different factors or events, e.g ., the overflow was
caused by continuing to pour coffee once the cup was
full . This attribution might come about by someone
explaining the situation to you, or by analogy with an
explanation given for another situation, or by the ap-
plication of a more general abstraction. Additional
qualitative relations might be included, such as
blaming the overflow event on pouring a liquid, with
the rate of overflow depending on the rate of pouring.



3.

	

Ageneralization that coffee cups can overflow if
you keep filling them up with liquid . This generali-
zation might be formed by successive comparisons of
very concrete situations, conservatively stripping
away details that are not common across otherwise
similar situations . Visual properties may be gone, but
many aspects of the descriptions are still very con-
crete - coffee cups instead of containers, for instance,
or even coffee instead of any liquid . More qualitative
relationships may be included .
4.

	

Ageneric domain theory of containers, liquids,
and flow that supports limit analysis, e.g ., the coffee
cup is a container, the coffee in it is a contained liq-
uid, therefore one limit point in the quantity space for
the level of the contained liquid is the height of the
cup's top, and that a qualitative transition in behavior
will occur when the level (which is rising due to being
the destination of a liquid flow, which is the only
thing happening that is affecting the amount of coffee
in the cup) reaches the height of the top of the cup.
The first state of knowledge represents pure mem-

ory. The last state of knowledge represents the sort of
explanation that would be generated by first-
principles qualitative simulators . They represent ex-
tremes on a continuum of knowledge about the physi-
cal world. The states in between represent what we
suspect what might be very common in human mental
models : intermediate levels of generalization and ex-
planation, where partial explanations have been con-
structed in a conservative fashion (e.g ., generalizing
across liquids but still restricted to coffee cups). They
are examples of what we could call situated rules,
pieces of knowledge that are partially abstracted but
still partially contextualized .
From an applications perspective, situated rules are

the bane of good knowledge engineering practice.
When engineering a domain theory, one strives for
generality and broad coverage . In that context, the
use of partially abstracted, partially contextualized
knowledge represents a failure of analysis 3. But the
situations faced by knowledge engineers and by hu-
man learners are very different. Human learning is
often very conservative, especially when someone
knows little about a domain . Situated rules provide
an intermediate form of knowledge between con-
crete/slightly schematized descriptions of behaviors
and the mechanism-based ontologies of standard
qualitative physics .
We conjecture that situated rules are used to express

principles of qualitative physics as well as knowledge
about particular domains. That is, it seems likely that
there is a range of knowledge about physical reason-
ing, varying from concrete rules applicable to a small
class of situations to the kinds of overarching, general

3 It violates the no structure in function principle (de
Kleer & Brown, 1984) .

principles encoded in performance-oriented qualita-
tive reasoning systems. English-speakers commonly
use the phrase "what goes up must come down", and
other language communities have similar expressions.
How many of those speakers know that, assuming
classical continuity, this statement implies the exis-
tence of an instant of time between going up and go-
ing down where the vertical velocity is zero? There is
a large terrain between knowing nothing and having a
broad-coverage general theory, and that terrain is not
empty.
What analogical processing provides
Analogical processing provides several key capa-

bilities :
Robust matching and inference. Structure-mapping

theory (Gentner, 1983) provides an account of com-
parison processes and their roles in various cognitive
processes that is consistent with a growing body of
psychological evidence (Gentner & Markman, 1997).
These computations have been simulated with SME
(Falkenhainer et al 1989; Forbus et al 1994), which in
turn has been used as a module in other simulations
and in performance systems . Given two structured
propositional representations as inputs, the base
(about which more is presumably known) and the tar-
get, SME computes a mapping (or a handful of them).
Each mapping contains a set of correspondences that
align particular items in the base with items in the
target, and candidate inferences, which are statements
about the base that are hypothesized to hold in the
target by virtue of these correspondences . SME can
incrementally extend its mappings as more informa-
tion is added to the base and/or target.
Integration of multiple types of knowledge .

	

The
same analogical processes can be used to operate on
rules, concrete descriptions, and abstractions such as
equations and plans (Forbus et al 1994) . In the case
of rules, the base is the rule and the target is the situa-
tion to whichthe rule is to be applied . Each mapping
corresponds to an instantiation of the rule, with the
candidate inference providing the new information4.
Incremental abstraction and rule generation. SEQL

(Skorstad, Gentner, & Medin, 1988) uses SME in
successive comparisons of examples to incrementally
remove irrelevant aspects of a conceptual description
and to automatically generate rules. We believe that
these processes are applied to behaviors as well, for

4 We think it is unlikely that this rule application
method suffices for all cognitive processes that use
rules; encoding seems to require an additional mecha-
nism, for example. However, we wish to point out
that the dividing line between rule-based processes
and similarity-based processes may not be as solid as
some might suppose.



the construction of prototypical behaviors (Forbus &
Gentner, 1986) and situated rules .
Scaleable similarity-based retrieval. MAC/FAC

(Forbus, Gentner, & Law 1995) models similarity-
based retrieval . The MAC stage first uses a simple,
non-structural matcher to filter out a few promising
candidates from a (potentially immense) memory of
structured descriptions . The FAC stage then evalu-
ates these candidates more carefully, using a struc-
tural matcher (SME). The MAC stage lends itself to
implementation in parallel (including connectionist)
hardware, and has been tested with a variety of repre-
sentations .
Analogical theory construction . PHINEAS

(Falkenhainer 1987, 1990) demonstrated that struc-
ture-mapping processes could model several aspects
of scientific theory construction, including matching
behaviors and constructing qualitative domain theo-
ries by elaboration of candidate inferences . We be-
lieve that PHINEAS provides a good working model
of some ways analogy is used in theory construction.
Moreover, we conjecture that the same processes can
be applied to modeling aspects of learning by instruc-
tion (where the teacher provides the starting corre-
spondences) and within-domain analogical learning
(where overall similarity guides the initial behavior
match, and situation-specific explanations are incre-
mentally generalized by a SEQL-like process) .

Making Predictions
Let us see how these pieces might combine to solve

a prediction task . Let the input be a (partial) descrip-
tion of a physical situation. An augmented version of
generate and test could be used to make predictions
as follows :
1 . Retrieve similar behaviors (using MAC/FAC).
The candidate inferences from mapping these re-
membered behaviors onto the observed behavior pro-
vide additional expectations about the current situa-
tion, and hypotheses about the states to follow, based
on what happened in the remembered behavior . The
state transitions hypothesized in the candidate infer-
ences form the initial set of predictions .
2 .

	

If qualitative simulation rules or procedures are
available for generating new behaviors (either by as-
sociation with this type of task or because they are
retrieved by MAC/FAC along with the behaviors
used in the previous step), use them to expand the set
of predictions .
3 .

	

If qualitative simulation rules or procedures are
available for evaluating the consistency of possible
transitions (from the same sources as the previous
step), use them to filter the set of predictions .
4 .

	

If there are multiple predictions remaining, esti-
mate their relative likelihood . Return the best, or
several, if others are close to the best .

The first step provides quick recognition of familiar
behaviors . If the overlap with the current situation is
high and the behavior predicted unique, processing
may stop at this point, depending on task demands .
The second step augments this recognition by do-
main-specific or first-principles consequences . The
third step provides an opportunity for applying ex-
ceptions and caveats ("if it were overflowing, you
would see coffee coming down the outside of the
cup" and "strong acid dissolves coffee cups") . In the
fourth step, we suspect that a variety of methods are
used to estimate relative likelihood, ranging from
domain-specific knowledge ("filling a wax paper cup
with hot coffee usually causes it to leak") to esti-
mates of relative frequency based on accessibility in
memory ("I've never seen a ceramic coffee cup shat-
ter when it was filled") .

Psychological implications
Qualitative reasoning is not an island ; it should use

the same mental processes used in other aspects of
cognition . Consequently, properties of analogical
processing that have been found in other areas of cog-
nition should appear in reasoning about mental mod-
els as well . We focus on three predictions next.

Distribution of reliance on memory with expertise
We conjecture that the use of memories in predic-

tions with experience may vary as a U-shaped curve.
That is, when little is known, memory use dominates,
because comparison with previously observed be-
haviors encoded in perceptual terms are all that is
available. As more is known, memory use may drop
in favor of more abstract representations, such as situ-
ated rules . This may be especially likely in domains
where the learner needs to articulate their models, e.g .
situations where they are collaborating with others . It
may be the case that as the domain becomes very fa-
miliar, memory use increases again, because the
learner has experienced a large number of samples
from the distribution of situations that occur. The
theory-laden vocabulary learned by this stage may
also greatly increases the frequency of relevant re-
mindings (see below) .

Differences in novicelexpert retrieval patterns
The usual pattern in similarity-based retrieval

(Gentner, Rattermann, & Forbus, 1993) is that re-
trieval is heavily based on surface properties (i.e ., in-
formation about appearance and attributes of partici-
pating objects) rather than relational properties (i.e.,
causal arguments or abstract principles) . In experts,
however, the frequency of relational remindings in-

5 Consider deciding where to put a cup of coffee
down on an uncluttered dining table versus deciding
where to put it down in a very cluttered office.



creases (Novick, 1988).

	

Apossible explanation for
this phenomena is that an expert's ability to encode
phenomena in theory-laden terms provides additional
overlapping vocabulary that helps the MAC stage fmd
appropriate matches. For example, in solving physics
problems, it has been observed that experts sort
problems based on similarity in underlying principle,
while novices sort problems based on similarity in the
kinds of objects involved (Chi, Feltovich, & Glaser,
1981) .

	

Additional support for this explanation is
provided by results suggesting that inducing subjects
to encode materials more deeply increases the pro-
portion of relational remindings (Faries & Reiser,
1988). The same phenomena should be observable in
teaching people to make predictions in novel domains.
Factors that should promote expertise
Research on the role of comparison in development

suggests two ways to speed up learning : progressive
alignment and inviting comparisons with relational
language.
Progressive alignment: (Gentner, Rattermann,

Markman & Kotovsky, 1995) By exposing someone
to a large number of very similar examples, their con-
servative learning mechanisms are more easily able to
create the abstractions needed for transferable knowl-
edge than if the same examples are interspersed with
very different examples. Kotovsky and Gentner
showed that experience with concrete similarity com-
parisons can improve children's ability to detect
cross-dimensional similarity. Specifically, 4-year-
olds' ability to perceive cross-dimensional matches
(e.g ., matching size symmetry with color symmetry)
was markedly improved after experience with blocked
trials of concrete similarity (blocks of size symmetry
and blocks of color symmetry), as compared to con-
trol groups who received no training
Inviting comparison with relational language .

(Gentner & Rattermann, 1991) Giving a learner lan-
guage for expressing a shared relational system can
dramatically improve their ability to learn it via com-
parisons .
For example, Kotovsky and Gentner (in press)

taught 4-year-olds labels for the relations of mono-
tonic change ("more-and-more' and symmetry
("even") . During the training task, children learned
(with feedback) to classify the stimuli as to whether
they were "more-and-more" or "even." After this
training, the children who were successful in the la-
beling task scored far better on a cross-dimensional
version of the task than children without such train-
ing.
Applying these results to qualitative mental models

yields three suggestions for how they might be
learned more easily :
1 .

	

Show learners many situations varying in quanti-
tative details but with identical qualitative behaviors

before showing them behaviors with a different
qualitative structure . For example, someone learning
about heat andtemperature might first be exposed to a
number of situations involving only heat flow before
showing them a situation where heat flow is involved
in phase changes, because in the latter the temperature
of the object changing phase remains constant instead
of increasing .
2.

	

Name patterns of behavior (heating, cooling) first,
and then move on to naming the physical mechanisms
underlying them (heat flow, boiling) .
3.

	

Teach the compositional primitives of qualitative
physics explicitly, to give learners a richer vocabulary
for expressing their partial but growing knowledge .

Conclusions
Are qualitative mental models simulations or memo-

ries? Our answer is, some of both . No "pure" model
provides a sufficient account for the runnability of
human mental models . We propose instead a hybrid
model, where similarity-based processes of compari-
son and abstraction provide the initial organization for
knowledge of a domain, and broader principles of
qualitative reasoning emerge from the accumulation
and analysis of large numbers of examples, aided by
the use of relational language as a focusing device and
an invitation to comparison . As they emerge, these
principles can be used for more rule-directed reason-
ing, but this augments, not replaces, analogical rea-
soning . We believe such a hybrid model is necessary
to capture the flexibility of human common sense rea-
soning about the physical world over a broad range of
states of knowledge . Currently we are exploring this
model further, using a combination of psychological
experimentation and computer simulation .
We would like to close with two points . First, we

believe that qualitative simulation should not be iden-
tified only with reasoning from first principles using
generic domain theories . The psychological intuitions
that originally gave rise to the notion of qualitative
simulation might be better served by making its de-
fining characteristic be the use of qualitative repre-
sentations to simulate, even if the predicted behavior
is generated via analogical reasoning or with domain-
specific rules. Second, we believe that qualitative
physics has much to offer cognitive psychology . The
vocabulary of qualitative physics (e.g ., processes, in-
fluences, etc.) seems well-suited for expressing hu-
man beliefs about physical phenomena. We believe
than an account combining these representational re-
sources with analogical processing could provide a
deeper understanding of human physical reasoning .
Qualitative physics is already proving its worth in
real-world applications . It can also contribute what
might be a key piece in solving the puzzle of human
cognition.
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