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Abstract. Integrating knowledge of cellular
and molecular physiology in biologically realistic
models of neural activity is a crucial part of modern
neuroscience. Existing state of the art computational
neural modeling tools such as GENESIS and NEU-
RON are constrained in their application by their
large computational demands . In this paper, we
present QRN, a semi-qualitative neural modeling ap-
proach based on QSIM, which achieves accurate and
efficient modeling of nerve cells at the molecular lev-
el, and provides significant speedups over numeric
differential equation models . Qualitative modeling is
well suited to computational neuroscience because
nerve cells are homeostatic, maintaining many cellu-
lar parameters within a relatively small number of
nearly discrete states . We introduce a simple weight
scheme for resolving ambiguity in QRN, and demon-
strate that QRN models closely match both neurobio-
logical reality and the results of numeric models . We
also present a simplified model, SQRN, that achieves
the same results at even greater efficiency .

1 Introduction
An increasingly popular tool among -neuro-

scientists interested in understanding neural behavior
is computational models . Computational models
summarize what is known about a system (Stein and
Glickstein 1992) and reveal emergent properties that
are difficult to deduce from neurobiological experi-
ments (Churchland and Sejnowski 1993). The field
of computational neuroscience focuses on the ques-
tion of how the brain computes as opposed to the
more classical question of what is the brain's struc-
ture (Bower and .3reman 1994). Modeling approach-
es in computational neuroscience generally fall into
one of two categories . In one approach, differential
equations describing the state of a neuron are devel-
oped by studying the electrical properties of a neuron

under laboratory conditions . The equations are then
used to model the behavior of a neuron in an idealized
situation . The Hodgkin-Huxley model of the giant
squid axon (see Hille 1992 for review) and Rall's
model of passive cable properties of dendrites (Rail
1964, Segev 1992) are two early models that gave
credence to the use of mathematical equations to de-
scribe neural phenomena . GENESIS, a general pur-
pose modeling tool, uses numerical integration
methods to the solve equations that characterize a
computational simulation (Bower and Beeman
1994) . Another general purpose neural simulator,
NEURON, connects cable sections together with
each section containing differential equations de-
scribing membrane properties and channel kinetics
(Hines 1993) . These mathematical models tend to be
computationally expensive and thus difficult to scale
up to large networks of neurons.

An alternative approach is the use of artifi-
cial neural networks, which model assemblies of ele-
ments that have some of the features of biological
neurons . These models tend to use weights to de-
scribe synaptic efficacy and either a step or a sigmoid
function to describe action potentials . Artificial neu-
ral networks have been instrumental in developing a
theory of distributed coding in the visual system (Le-
hky and Sejnowski 1990) and the vestibulo-ocular re-
flex (Anastasio and Robinson 1989) . However, these
models sacrifice features of real brain networks, such
as, synaptic transmission, temporal properties and ar-
chitecture for the ability to build large assemblies of
neuronal elements (Chapeau-Blondeau and Chambet
1995)

Recently, Idan Segev called for a class of in-
termediate models that "still retain the essential fea-
tures of the full models" of single neurons but allow
the creation of large networks (Segev 1992) . We have
developed an approach, called the Qualitative Rea-
soning Neuron (QRN), that meets this criteria . QRN
qualitatively reproduces single neuron behavior, but
is computationally simple enough to use in large
scale neural networks. QRN is based on the Qualita-
tive Simulation (QSIM) algorithm (Kuipers 1986),
but resolves ambiguity through the use of integer
weights identifying the relative importance of influ-
ences on states . The technique is extremely efficient
because few quantitative values need to be calculat-
ed . However, accurately detailed and predictive
properties emerge from QRN simulations . QRN has
been used to simulate the voltage and current re-
sponse predicted by the Hodglan-Huxley squid axon
model (Krichmar 1994) and simulate adaptive motor



control in a moderately sized model of the cerebellar
cortex (Krichmar 1995). The precision that mathe-
matical models provide can be unnecessary and bur-
densome on processing time . Qualitative reasoning
focuses on detecting and reporting critical changes
and trends in the system under simulation .

In this paper, we describe in some detail a
qualitative model of a particular type of neuron, and
demonstrate that the qualitative model retains impor
tant neurophysiological detail while being signifi-
cantly more computationally efficient than numeric
differential equation models . Our test case compares
QRN with a carefully validated numeric model,
which represents the current state of the art in numer-
ic neural modeling . This model is of a neuron called
the Purkinje cell, which has been mathematically de-
scribed in the literature (Bush and Sejnowski 1991,
Rapp et al . 1994, Rapp et al . 1992). QRN is compared
directly with a GENESIS model of the Purkinje cell
(De Schutter and Bower 1994ab) . We show that the
QRN model of the Purkinje cell is less computation-
ally intensive than GENESIS without losing accura-
cy or fidelity .

2 Methods
QRN simulates the behavior of a single

Purkinje cell by qualitatively describing the relation-
ships among the various ionic currents and cell's
membrane potential. Ambiguities in these influences
are balanced against each other by small integer
weights, which can be easily determined from the bi-
ological literature . In general, computation in the
QRN algorithm is performed through integer addi-
tion, subtraction or table lookups . Division and expo-
nential operators are unnecessary and only one
integer multiplication operation is used in the soft-
ware that executes the QRN algorithm . The software,
written in C++, has a modular design that facilitates
scaling to larger network models .

2.1 QRN Model Simulation of a Purkinje Cell
In this section, we describe in detail the states

and influences used to model the Purkinje cell . The
parameters of theQRN model are based on De Schut-
ter and Bower's GENESIS model of a cerebellar
Purkinje :;ell (De Schutter and Bower 1994ab). The
morphology of the cell, derived from the De Schutter
and Bower PN19 representation, is based on the mor-
phology of aguinea pig Purkinje cell from Rapp et al .
(cell 1, Rapp et al . 1994). TheQRN model contains 1
soma, 9 main dendrites, 60 thick dendrites, and 1530
spiny dendrites. The inputs to the model are as fol-

lows : Each spiny dendrite has a spine that receives
parallel fiber input. A single climbing fiber contacts
each thick dendrite and main dendrite .-A stellate cell
synapses on each spiny dendrite and two stellate cells
synapse on each thick dendrite . Each soma and main
dendrite receives basket cell inhibition .

The distribution of channels in the QRN im-
plementation of the Purkinje cell model is compara-
ble to those described by De Schutter and Bower.
QRN models a fast sodium current (NaF), a persistent
odium current (NaP), a Pcalcium current (CaP), aT
calcium current (CAT), an anomalous rectifier (Kh), a
delayed rectifier (Kdr), a persistent potassium current
(KM), an A current (KA), a BK calcium-activated
potassium current (KC), a K2 calcium-activated po-
tassium current (K2), a glutamate channel for parallel
fiber input (PF), a glutamate channel for climbing fi-
ber input (CF), aGABA channel for basket cell input
(BK), and a GABA channel for stellate cell input
(ST) . Table 1 describes the distribution of the mod-
eled channels, their relative weight by cell compart-
ment type, and a threshold landmark, if applicable .
The relative weight expresses the density, g, of chan-
nels, and is used to resolve ambiguities in the state
calculations . As was done in the GENESIS model,
the weights of the channels are allowed some varia-
tion from the published values so that the model pro-
duces appropriate global behavior for a Purkinje cell .

The threshold landmark is used if a channel
does not open until the level of activity of an input pa-
rameter increases beyond a given threshold . For ex
ample, the BK calcium-activated potassium channel
does not allow K+ ions to flow out of the cell until a
certain amount of Ca' is present inside the cell .
Qualitatively, this would be described by the equa-
tion :

M+(TH(Ca, BK Threshold), K+)
All of QRN's parameters are continuous

variables with the exception of the NaF and NaP
channels in the soma, and the KA and Kdr channels
in the soma and main dendrites. QRN models NaPas
a discrete yaria4le with open, closed and inactive
states . When : tk~e mmembrane potential reaches above
the threshold given, in Table 1, NaP transitions from
closed to open . :lRuring the open state, an influx of
Na' causes the + level within the cell to increase .
If the level of Na- reaches the peak landmark value,
NaP transitions to inactive . During the inactive state,
Na' influx halts and the level of Na+ stays steady .
When the membrane potential reaches the steady-
state landmark value, NaP transitions to the closed
state .



Table 1. Distribution and relative weights of the channels modeled by QRN. Weights are integers used to scale
opposing influences on a state to resolve ambiguities. These weights are derived from the neurobiological liter-
ature (e.g . Forsythe and Westbrook 1988, Holmes and Levy 1990, Nelson et al . 1986). A weight of N/A indi-
cates that the channel is not present in that compartment type . Channels with a threshold will be inactive until
the input to the channel is above the given threshold value. A threshold of N/A indicates that the channel does
not have a threshold.

The NaFchannel is similar to the NaPchan-
nel, but has additional logic to qualitatively represent
the faster time course in response to a large increase
in membrane potential. For example, active climbing
fibers increase the magnitude of change in soma
membrane potential, as given by the qualitative
weight, more than summation of synapses in the den-
dritic tree . If this larger increase in membrane poten-
tial occurs, the NaF channel transitions to an
accelerated state and a different set of landmark val-
ues are used to represent the faster opening and clos-
ing of NaF channels .

QRN models the KA channel as a discrete
variable with open and closed states . When the mem-
brane potential reaches above the threshold given in
Table 1, KA transitions from closed to open . During
the open state, an efflux of K+ causes the level of in-
tracellular K+ to decrease . When the membrane po-
tential reaches the steady-state landmark value, KA
transitions to the closed state. During the closed state,
K+ efflux halts and the level of K+ stays steady .

QRN models the Kdr channel as a discrete
variable with open, closing and closed states . When
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the membrane potential reaches above the threshold
given in Table 1, Kdr transitions from closed to open.
During the open state, an efflux of K+causes the level
of intracellular K+ to decrease and the qualitative
state of Kdr increases . When Kdr reaches the land-
mark representing the maximum open time for the
channel, Kdr transitions to closing and the qualitative
state of the Kdr channel decreases . Kdr transitions
from the closing state to the closed state when it
reaches its minimum landmark value. During the
closed state, K+ efflux halts and the level of K+ stays
steady . Kdr has an accelerated state similar to the
NaF channel described above during which the Kdr
landmarks represent faster open and close time con- .
stants .

The constraints on the Purkinje cell describe
the qualitative interaction of parameters within the
dendritic spine, spiny dendrite, thick dendrite, main
dendrite and soma compartments . The constraints
also describe the qualitative interaction between
compartments . A compartment receives the mem-
brane potential of its children and the calcium of its
parent as input. Attenuation is modeled by a weight

Name Soma
Weight

Main Dendrite
Weight

Thick Dendrite
Weight

Spiny Dendrite
Weight

Threshold

NaF 40 N/A N/A N/A 10

NaP 2 N/A N/A N/A 5
CaP N/A 7 7 7 N/A
CaT 1 2 2 2 N/A
Kh 2 N/A N/A N/A N/A
Kdr 10 1 N/A N/A 20
KM 1 1 N/A N/A N/A
KA 2 2 NIA N/A 5
KC N/A 50 10 9 30
K2 N/A 1 1 1 45
PF N/A N/A N/A 10 N/A
CF N/A 50 50 N/A N/A
BK 25 15 N/A N/A N/A
ST N/A N/A 20 20 N/A



Figure 1 . Constraints on the dendritic shine. The den-
dritic spine receives parallel fiber input (Pf) . Pf input
has a monotonically increasing effect on the mem-
brane potential of the spine (ESP) .

that decreases the magnitude of the parent calcium by
one half in the spiny dendrite and by one fourth else-
where. Attenuation of the child membrane potential
is modeled with a weight decrease of one fourth .

The dendritic spine receives parallel fiber in-
put. An increase in activity of the parallel fiber will
increase the membrane potential of the dendritic
spine. The constraint model for the dendritic spine is
shown in Figure 1 .

The spiny dendrite receives input from the
membrane potential of the neighboring spine, stellate
inhibition and calcium from its parent . The parent
branch can be either a thick dendrite, amain dendrite,
the soma, or another spiny dendrite . The constraints
on spiny dendrite calcium are resolved through qual-
itative simulation of the CAT and CaP channels . The
constraints on spiny dendrite potassium are resolved
through qualitative simulation of the K2 and KC
channels . The constraint model for the spiny dendrite
is shown in Figure 2. Not shown in Figure 2 are cal-
cium and potassium uptake currents that have a rela-
tive weight of one.

The thick dendrite receives as input the
membrane potential of the neighboring child bench-
es, a single climbing fiber, a single stellate cell and
calcium from its parent branch. -The child branch can
be a spiny dendrite or another thick dendrite . The par-
ent branch canbe either a main dendr~te, the soma, or
another thick dendrite . The constraints on thick den-
drite calcium are resolved through qualitative simul -

Figure 2. Constraints on the spiny dendrite . The
spiny dendrite receives input from the dendritic spine
(ESP), stellate cells (ST), and the parent's calcium
(CaParent) . CaParent, ESP, ST, spiny dendrite calci-
um (CaSPD), a persistent potassium current (KM),
andpotassium (K) all have a qualitative effect on the
membrane potential of the spiny dendrite (ESPD). An
increase in ESPD opens voltage gated calcium chan-
nels, CaP and CaT, that consequently has, a qualita-
tive effect on the calcium-activated potassium
channels KC and K2 (shown as CaK in the figure) .

tion of the CaTand CaPchannels . The constraints on
thick dendrite potassium are resolved through quali-
tative simulation of the K2 and KC channels . The
constraint model for the thick dendrite is shown in
Figure 3 . Not shown in Figure 3 are calcium and po-
tassium uptake currents that have a relative weight of
one .

The main dendrite receives as input the
membrane potential of the neighboring child branch-
es, a single climbing fiber, a single basket cell and
calcium from its parent branch . The child branch can
be a thick dendrite or another main dendrite . The par-
ent branch can be either the soma, or another main
dendrite . The constraints on main dendrite calcium
are resolved through qualitative simulation of the
CaT and CaP channels . The constraints on main den-
drite potassium are resolved through qualitative sim-
ulation of the K2 and KC calcium-activated channels,
as well as the KA and Kdr voltage-activated chan-
nels . The constraint model for the main dendrite is
shown in Figure 4. Not shown in Figure 4 are calcium
and potassium uptake currents that have a relative
weight of one.



Figure 3. Constraints on the thick dendrite . The thick dendrite receives input from the child dendritic branches
(EChild), climbing fiber (CF), stellate cell (ST), and the parent's calcium (CaParent) . CaParent, CF, EChild .
ST, thick dendrite calcium (CaTHD), a persistent potassium current (KM), and potassium (K) all have a quali-
tative effect on the membrane potential of the spiny dendrite (ETHD). An increase in ETHD opens voltage gat-
ed calcium channels, CaP and CaT, that consequently, has a qualitative effect on the calcium-activated
potassium channels KC and K2 (shown as CaK in the figure).
Figure 4. Constraints on the main dendrite . The main dendrite receives input from the child dendritic branches
(EChild), climbing fiber (CF), basket cells (BK), and the parent's calcium (CaParent) . CaParent, CF, EChild .
BK, main dendrite calcium (CaMD), potassium (K), a persistent potassium current (KM), and a leak current (L)
all have a qualitative effect on the membrane potential of the main dendrite (EMD). An increase in EMD opens
voltage-gated calcium channels, CaP and CaT, that consequently, has a qualitative effect on the calcium-acti-
vated potassium channels KC and K2 (shown as CaK in the figure) . An increase in EMD opens voltage-gated
potassium channels KA and Kdr.
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The soma receives as input the membrane
potential of the neighboring main dendrite branch
and basket inhibition . The constraints on soma calci
um are resolved through qualitative simulation of the
CaT channel. The constraints on soma potassium are
resolved through qualitative simulation of the KA,
Kdr and Kh voltage-activated channels . The con-
straints on soma sodium are resolved through qualita-
tive simulation of NaF and NaP voltage-activated
channels . The constraint model for the soma is shown
in Figure 5 . Not shown in Figure 5 are calcium, po-
tassium and sodium uptake currents that have a rela-
tive weight of one.

2.2 Simplified QRN(SQRN) Purk:nje Cell with
Active Spines and Axon

A second qualitative reasoning model
(SQRN) of the Purkinie cell was developed with the
intention of creating a model with qualitatively iden
tical output but simpler (and faster to compute) struc-
ture . Ultimately, we hope to be able to automate this
optimization process so that computationally effi-
cient and functionally identical models can be pro-
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Figure 5. Constraints on the soma . The soma receives input from the neighboring branch of a main dendrite
(EMD) and basket cells (BK) . EMD, BK, soma calcium (CaSO), potassium (K), a persistent potassium current
(KM), sodium (Na) and a leak current (L) all have a qualitative effect on the membrane potential of the soma
(ESO). An increase in ESO opens voltage-gated calcium channel (CaT), voltage-gated potassium channels (KA
and Kdr) and voltage-gated sodium channels (NaF and NaP) .

duced from initial models that are based on the
neurobiological literature .

This simplified model has one soma that has
64 dendrritc branches, each of which, have 24 den-
dritic spines . There are 1536 total spines in the mod
el . Simplifications of the Section 2.3 Purkinje cell
model include : 1) Collapsing the voltage-gated calci-
um channels into one dendrite parameter . 2) Collaps-
ing the calcium-activated potassium channels into
one dendrite parameter . 3) Building a uniform den-
dritic tree . 4) Changing the soma into a summing
junction of the membrane potential given by its child
dendrites. 5) Setting the weight of all parameters to
one . There are two versions of this simplified model ;
one with passive spines and the other with active
spines . The passive spine version utilizes the same
constraints as illustrated in Figure l . In the active
spine version, the bulk of the processing is in the den-
dritic spine (see Figure 6) . These spines model sub-
cellular processes that lead to calcium spikes and cer-
ebellar LTD (based on Figure 2 of Linden and Con-
nor 1995). The constraint model for the simplified
Purkinje cell is given in Figures 6 through 8.



Figure 6 . Constraints on the Dendritic Spine. The dendritic spine receives a parallel fiber (Pf) and dendritic cal-
cium (CaD) as input . The membrane potential at the dendritic spine (ESP), shown on the left, is based on the
qualitative interaction between sodium ions (Na), CaSP, internal stores of calcium at the spine (CaSP), and volt-
age attenuation (shown as the EXPD function) . Phospholipase C (PLC) is activated in the presence of glutamate
due to Pf activity . CaSP levels increase due to activation of instill- 1,4,5-triphospate (IP3) . Cerebellar long-term
depression (LTD), shown on the right is due to a desensitization of the AMPA receptor to Pf input . LTD is based
on the qualitative interaction of Na, CaSP, 1,2 diacyglycerol (DAG) and protein kinase C (PKC) .

Figure 7. Constraints on the Dendrite . The dendrite receives climbing fiber (CF) and a voltage signal from the
dendritic spines (ESP) as input . The figure on the left illustrates the constraints involved in the calculation of
dendritic membrane potential (ED) . ED is based on the qualitative interaction between ESP, CF, dendritic cal-
cium (CaD) and voltage attenuation of ED (shown by EXPD function) . The figure on the right illustrates the
constraints involved in the calculation of voltage-gated calcium at the dendrite . CaD is based on the qualitative
interaction between ED, stellate cell inhibition (st), and CaD current attenuation due to the opening of calcium
activated potassium channels (Ca-K) .

Figure 8. Constraints on the Soma. The soma receives climbing fiber (CF) and a voltage signal from the den-
drites (ED) as input . The figure illustrates the constraints involved in the calculation of somatic membrane po-
tential (ESO) . ESO is based on the qualitative interaction between ED, CF, basket cell (BK) inhibition and
voltage attenuation of ESO (shown by EXPD function) .



Similar to the version described in section
2. t, the simplified QRN Purkinje cell model simu-
lates the accelerated opening and closing of channels
during climbing fiber input by using landmark values
for the soma membrane potential that reflect the fast-
er time course .

2.3 Synaptic Inputs to the Model
The inputs to both the QRN and SQRN mod-

els are simulated similar to the GENESIS Purkinje
cell model. Parallel fiber excitation fired asynchro
nously ranging from 1 Hz to 100 Hz . Inhibitory stel-
late cells fired asynchronously ranging from I Hz to
30 Hz (Edgley and Lidierth 1987, Mitgaard 1992) .
Excitatory climbing fibers fired as an ascending vol-
ley from the main dendrites to the thick dendrites
(Llinas and Nicholson 1976) . Inhibitory basket cells
fired synchronously to the soma and main dendrites .

2.4 Execution of the Purkinje Cell Simulation
The QRN simulation of a Purkinje cell was

carried out as close to the GENESIS simulation as
possible . A time step represents a simulation time of
20 microseconds . The Purkinje cell model ran under

Figure 9. Single simple spike in response to excitatory input from parallel fibers . The chart on the left is a qual-
itative plot of the soma membrane potential parameter of the QRN model . The Y-axis lists the landmarks for
soma membrane potential . The parameter's value is either at or between a landmark . The arrows denote the
qualitative direction of the parameter . The double arrow represents a direction of steady . The chart on the right
is the post-processor output of the QRN model. Both charts represent the membrane potential at the soma over
time . On both charts, the number tags denote landmark transitions. Tag I marks sub-threshold steady-state . Tag
2 marks the transition from steady-state to above threshold . Tag 3 denotes the peak of the action potential. Tag
4 denotes the transition from the absolute refractory period to the relative refractory period . Tag 5 marks the end
of the relative refractory period . See text for details on the post-processor .

version 2.01 of the GENESIS simulator. All three
models executed their simulations under LINUX on
a 75MHz Pentium Personal Computer with 16Mb of
RAM .

2.5 Analyzing QRN Results
As was previously discussed, qualitative rea-

soning describes a system by the qualitative behavior
of its parameters . The parameters can be increasing,
decreasing or steady . The value of these parameters
are represented by landmarks and not numerical val-
ues . Therefore, it is difficult to display QRN's results
on a standard graph. The chart on the left of Figure 9
shows QRN's output of the qualitative parameter,
membrane potential at the soma (ESO), during a sin-
gle simple spike. The arrows in the chart represent the
qualitative direction of the parameter . The up arrow
denotes increasing, the down arrow denotes decreas-
ing, and the double arrow denotes steady . At tag 1,
the qualitative value is at "steady-state", that is, be-
tween the minimum landmark and the threshold land-
mark . Qualitative parameters, such as calcium,
sodium, and membrane potential in the dendritec tree
cause ESO to increase and decrease between these



two landmarks. Tag 2 illustrates ESO increasing
above the threshold landmark . This causes NaFchan-
nels to open resulting in a qualitative increase in the
sodium parameter that in turn increases ESO. At tag
3, the NaF channels are closing while the Kdr chan-
nels are opening . This results in a qualitative increase
in the potassium parameter that in turn decreases
ESO. ESO transitions from increasing to decreasing .
NaF channels transition to an inactive state. During
the inactive state, no more action potentials can oc-
cur. At tag 4, ESO reaches the minimum landmark
and remains steady . NaF channels transition from in-
active to closed, while Kdr channels are slowly clos-
ing. During this relative refractory period, action
potentials would be possible if enough excitation oc-
curred to overcome the efflux of potassium . Finally,
ESO increases signifying the end of the relative re-
fractory period at tag 5.

In order to display the output of QRN in a
way more resembling membrane potential record-
ings, a display post-processor was developed . The
post-processor replaces the qualitative values with
analog values of the soma membrane potential that
correspond to landmark transitions . Each of the five
tags shown in Figure 9 represents a landmark transi-
tion .

	

For example, between tags 1 and 2, the quali-

273

0.02 =

0.01

-0.03

-0 .04

-0 .05

0+

-0 .01

-0 .02

ORN- Complex Spike

-0 .06

	

h

	

I

	

F

	

I

	

1

	

1

	

f
-0.002

	

0

	

0.002 0.004 0 .006 0.008 0 .01 0.012

Tlnw Non)

Figure 10 . Complex spikes in response to climbing fiber input. This graph shows membrane potential at the
soma over time . The model receives at? ascending volley of climbing fiber activity at time 0. The model shows
the characteristic burst of activity associated with a complex spike.

tative values are replaced with analog values
corresponding to steady-state . The qualitative values
between tags 2 and 3 are replaced with analog values
representing the rising edge of an action potential.
The time and the value of points replaced is depen-
dent of the time and type of landmark transition in the
QRN simulation . The chart on the right of Figure 9
shows the output of the post-processor . All subse-
quent figures that display membrane potential at the
soma will use this method . Only the five landmark
transitions shown in the figure are necessary for dis-
playing simple spikes, complex spikes and the effects
of inhibition .

3 Results
All results reported in this section are based

on experiments testing the two qualitative reasoning
Purkinje cell models described in the Methods sec
tion . Experiments were designed to test the models'
responses to climbing fiber input, parallel fiber exci-
tation with stellate cell inhibition, and basket cell in-
hibition . The execution time of the qualitative
reasoning models is compared to the GENESIS
Purkinje cell model (De Schutter and Bower 1994ab)



Table 2: Comparison of nintimes . The times repre-
sent the amount of computer time in minutes needed
to complete a simulation of 250,000 time steps, or
five second real time . All tests are run on a 75Mhz
Pentium PC runningLINUX. ThePF activity is asyn-
chronous at 25 Hz and the stellate inhibition is asyn-
chronous at 1 Hz .

3.1 Response to Climbing Fiber Input
Summation of parallel fiber inputs in the

Purkinje cell dendritic tree results in a simple spike
shown in Figure 9. Activation of a single climbing fi-
ber input to the Purkinje cell results in a burst of ac-
tivity called a complex spike. Figure 10 illustrates
QRN's ability to model a complex spike in response
to climbing fiber input. As was described in the meth-
ods section, the climbing fiber input is an ascending
volley starting at the main dendrite and moving up
the dendritic tree to the thick dendrites . Consequent-
ly, the level of calcium increases first at the main den-
drites, then at the thick dendrites and finally at the
spiny dendrites . These calcium spikes coupled with
opening and closing of sodium and potassium chan-
nels in the soma result in a complex spike.

A wide variety of other tests were run on the
system, all producing results that either closely repro-
duced the GENESIS model or, in two minor cases,
identified failures of the GENESIS model to produce
physiologically reasonable results (probably due to a
bug in GENESIS) . These results are published in de-
tail elsewhere (Krichmar, Olds & Hunter, submitted) .

3.5 Comparison of Simulation Times
The amount of computer time the four differ-

ent Purkinje cell models needed to execute a simula-
tion is shown in Table 2. The times reported are based
on a 5 second simulation (250,000 time steps) with
asynchronous parallel fiber input at 25 Hz and asyn-
chronous stellate cell input at 1 Hz . QRN is approxi-
mately 2.5 times faster than the GENESIS model .
The simplified QRN with active dendritic spine pro-

cessing is approximately 3 times faster than theGEN-
ESIS model. The simplified QRN with passive spines
is approximately 7 times fasterthan the GENESIS
model. All simulations were ranonthe same comput-
er with the same number of time steps.

4 Discussion
The results reported in this paper demon-

strate that the use of the qualitative reasoning algo-
rithm facilitates the creation of efficient models
without sacrificing vital details. Specifically, QRN
simulated detailed, qualitative interactions between
the ions and channels found in the different compart-
ments that make up a cerebellar Purkinje cell . Al-
though dependent on qualitative parameters, the
output of a QRN model is testable, accurate and
quantitative . The complex spike time course, simple
spike firing rates, interspike intervals and inhibition
levels are all within physiological ranges . The nature
of the QRN algorithm, that is, its lack of multiplica-
tion, division, exponential, and floating point arith-
metic, allows it to be extremely efficient from a
computational perspective.

4.1 Modeling Different Levels of Abstraction
The qualitative reasoning modeling tech-

nique facilitates variable levels of abstraction within
the same model . For example, the SQRN model had
a very simple soma, which basically amounted to a
summing junction, but had a highly detailed, active
dendritic spine that simulated the sub-cellular pro-
cesses involved in cerebellar LTD. This allows the
modeler to focus the processing where it is most im-
portant and necessary . Passive cable equations in the
dendritic tree were not simulated in QRNand SQRN .
However, both models did simulate voltage gated
calcium channels and calcium activated potassium
channels . The importance of these active channels far
outweigh the need for modeling passive cable equa-
tions and save valuable computer time .

Qualitative reasoning does not emphasize
precision . The exact measurement of membrane po-
tential to "n" significant digits is not important . What
QRN does stress is meaningful changes in the behav-
ior of one or more parameters . The fact that the mem-
brane potential decreases as sodium channels close
and potassium channels open is an important detail
that needs to be specified .

4.2 Ambiguity
A limitation of Kuiper's QSIM (Kuipers,

1986) and qualitative reasoning in general is ambigu-

Model Runtime for five
second simulation

Genesis 464 minutes

QRN 189 minutes

SQRN (active spines) 138 minutes

SQRN (passive spines) 65 minutes



AN , between parameters (Weld and de Kleer, 1990).
QRN handles this limitation through the use of
weights. Weights assign each parameter a relative
importance in the system, so that all conflicting influ-
ences can be resolved .

There are three complementary reasons that
we can use such a simple scheme for handling ambi-
guity : natural homeostatic mechanisms in neurons,
the availability of empirical values for these weights,
and the relative insensitivity of the simulations to the
precise their precise values .

First, although physically it is possible for
the various influences on neurons to lead to ambigu-
ities in response, neurons have evolved so that they
are relatively insensitive to most changes that could
theoretically influence their state. This insensitivity is
called homeostasis in living systems, and involves a
wide variety of meeha s, such as active ion trans-
port, cascading reactions, and the cytoarchitecture it-
self, all acting to keep the cell within a relatively
narrow range of possible states .

	

For example, it is
possible that calcium ions will not flow through an
open channels (say, due to unphysiologic concentra-
tions) but this possibility can be safely ignored, since
such a state is rare (and, if not extremely rare, then fa-
tal!) Even the mechanisms of neural plasticity and
learning are often used by organisms to compensate
for changes in performance due to age, injury, and so
on . Neurons are themselves not very sensitive to
many kinds of changes in the state of the system .

The weights we do use are based on physio-
logical data . For example, a small section of the den-
dritic tree has thousands of calcium channels . One
way to model this is to create thousands of calcium
channel parameters . Our approach was to use a
weight to represent the abundance of calcium chan-
nels in a compartment. Evidence suggests that there
are more calcium channels in the dendrite than in the
soma (Llinas et al ., 1992) . Therefore, the weight of
calcium channels is greater in the dendrite than the
soma .

Finally, the behavior of the system is rela-
tively insensitive to the exact values of the weights
used . Most of our attempts to optimize the global per
formance of the system (See section 2 .1) made no dif-
ference to system output . The SQRN model, which
has all its weights set to unity, never exhibited anom-
alous global behavior .

This insensitivity to the precise choices of
weight values mirrors the homeostatic nature of the
neuron itself. For example, stellate inhibition on the
dendritic tree keeps the firing level of a Purkinje cell
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within a restricted range (Llinas and Sugimori, 1992) .
Basket cell inhibition, which synapses near the soma,
has more of an impact on the output of the Purkinje
cell than stellate inhibition, which synapses at the dis-
tal portion of the dendritic tree (see Figure 3.13) .

4.3 Conclusion
The objective of this paper was to introduce

QRN as a general purpose modeling tool for compu-
tational neuroscience . The QRN algorithm is effi
cient and allows for scaling upward to detailed
network models (Krichmar 1995). The primitive con-
straints, listed in the Methods section, can be used as
building blocks to create other models of neural be-
havior with a minimal effort .
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