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Abstract

Physical system behavior is continuous, but the
use of modeling abstractions to simplify system
description can result in behavior analysis on a
hierarchy of time scales. At a given level of
detail, behaviors on faster time scales are per-
ceived to be instantaneous, therefore, the result-
ing hybrid models encompass continuous behav-
iors and discrete model configuration changes.
These changes cause discontinuities in system be-
havior generation which violate the physical prin-
ciple of continuity of power, and sometimes cause
an instantaneous loss of energy in the system.
This paper establishes a formal specification for
handling discrete model configuration changes at
well-defined points in time, and this allows for a
consistent transfer of the continuous system state
from a previous model configuration to a new one.
This is based on the principle of invariance of
state. Simulation algorithms designed to oper-
ate on hybrid models define behavior generation
schemes that operate on the interval (continu-
ous) to point (discrete) to interval (continuous)
switches on the time line.

Introduction

Physical systems are inherently continuous apd their
behaviors are governed by the principles of conserva-
tion of energy and continuity of power [3]. Perceived
discontinuities are in reality nonlinear continuous be-
haviors which operate at time scales much smaller
than the time scale of interest. For efficient analy-
sis and behavior generation schemes, the differences
in time scale may be exploited so that the nonlinear
behaviors can be abstracted to manifest as ideal dis-
continuities at points in time. An example is an ideal
elastic collision between a body and a floor where the
velocity of the body reverses instantaneously on im-
pact. In reality, the collision takes a small time in-
terval during which kinetic energy is converted into
potential elastic energy, which then reverts back com-
pletely to kinetic energy for the body. Discontinuous
effects can also be created by parameter abstraction

[11]. Small parasitic physical effects that cause nonlin-
ear continuous effects are abstracted away to simplify
system description. For example, an ideal non-elastic
collision between two bodies involves instantaneous
discontinuous changes in velocity for the two bodies
at the point of impact. A more precise model would
have included small elasticity coefficients for the two
bodies, and the period of impact would be a small but
finite time interval, in which the change in velocities
for the bodies would occur in a continuous manner.
Models that combine continuous and discrete effects
are called hybrid systems.

During discontinuous changes, physical laws of con-
servation of energy and continuity of power may be
violated [11]. In such situations, the initial state vec-
tor following the discontinuous changes is computed
using the principle of conservation of state along with
explicitly modeled interactions with the environment.
In previous work [11, 13], this theory of discontinu-
ous configuration changes in physical system models
has been developed into a hybrid bond graph model-
ing paradigm that combines traditional bond graph
elements with ideal switching elements controlled by
finite state automata. Formal schemes for verifying
the correctness of models based on the principle of
divergence of time have also been developed [10, 13].
The hybrid bond graph formalism can be effectively
applied to systematically design and analyze hybrid
models of dynamic physical systems. This paper fo-
cuses on developing a formal semantics for analyzing
systems with mixed continuous/discrete components.

A Hybrid Modeling Paradigm

Hybrid models operate in continuous modes (typical
physical system behavior), but at points in time when
signal values cross pre-defined thresholds or when ex-
plicit external (control) events are imposed on the sys-
tem [14], changes in model configurations cause dis-
crete changes in system behavior. An important ob-
servation is that the temporal trajectory of system
behavior becomes piecewise continuous, where simple
discontinuities can occur only at well-defined points
in time. The key to developing a correct modeling
paradigm is to ensure that interaction between the
continuous and discrete modeling formalisms is un-
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Figure 1: A general hybrid system.

ambiguous, rigorous, and consistent.

General Hybrid Dynamical System

The general architecture for a hybrid dynamical sys-
tem model illustrated in Fig. 1 can be specified by the
9-tuple [14]:

H=< Ilsl.éiXIU!fﬂ')g'hi‘r >l (l]

Each mode of continuous behavior is given a unique
state label ax € . Continuous behavior is governed
by field f,, which determines the continuous state
vector zo,. The function h computes signal (s € 5)
values from the state vector z,, in mode ag, which
may generate discrete events I specified by a mapping
~v. = is usually defined in terms of signal values reach-
ing or crossing pre-specified threshold values. Occur-
rence of a discrete event suspends the continuous be-
havior mode ai, and a new mode, ak41, is generated
by the discrete transformation ¢. The function g com-
putes a new state vector, z%, for the new operational
mode k41 using values of the continuous state vector
Zo, In the previous operational mode ay.

The Continuous Model

Dynamic physical system models are best represented
as a set of differential equations on the system state
vector. For example, the falling rod in Fig. 2 can be
described by three state variables, the rod’s linear ve-
locities, vy and vy, and its angular velocity, w. When
it is falling freely, only gravity acts on the center of
mass and accelerates vertical movement. This can be
described by the differential equation

Q:O,i},:ﬁ,!}yzag, (2)

where a, is the gravitational acceleration.
Differential equation state space models, supple-
mented by algebraic constraints (DAEs) directly re-
flect underlying physical principles such as Kirchhoff's
laws and phenomenological relations like Ohm's law.
Many model parameters have an immediate physical
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meaning and-equations can be systematically derived
from bond graphs, network representations, and block
diagrams [2]. A general representation of an ODE
model derived from DAEs is: z(t) = fo(z(t), u(t),t).
The field, fa, describes continuous temporal evolution
of system behavior in a mode of operation, a, with
the input vector, u, and the continuous state vector,
z. Note that f, is unique in mode a.

The Discrete Model

Discrete events are modeled by a discrete indexing set,
I and a switching function, ¢ : I x £ — . The set of
discrete states corresponds to

e real modes, where system behavior is governed
by energy principles, therefore, the state vector
changes in time, and

o mythical modes [10, 13], where the system behav-
ior transitions are instantaneous and state vector
changes are used to infer real modes by ¢.

T captures the event set. Events, o, may be associ-
ated with closed loop control, £,, or they can be gov-
erned by external, open loop, control signals, . (see
Fig. 1). (Z =X, x I;.) The closed loop control is a
function of the system’s physical process variables. ¢,
usually implemented with Petri-Nets or Finite State
Automata, determines the next state after an event
occurs.

Interactions

Interactions between the continuous and discrete
modeling formalisms have to be specified correctly.
For states that correspond to modes of continuous op-
eration, ODEs determine behavior. A discrete event
causes the system to change operational mode, and
the correct state vector in the new mode is deter-
mined by the function g : X x [ = X*. X defines
state vector values just before switching occurs, and
X7 represents state vector values at the initial point
in time when a switch or mode change has occurred.
A function h : X x U x I — S determines signal
values S and S*, computed by h from X and X,
respectively. The function ¥ : S x §* — I, generates
discrete events from the signal values. The interaction
between the continuous and discrete part consists of

e discrete events generated by the continuous signals,
and

e achange of operational mode by the discrete model,
requiring a consistent mapping of the continuous
state vector.

An example, adapted from (8], illustrates a rigid
body collision of a rod falling to the floor (Fig. 2). On
hitting the floor, the rod may disconnect after a point
in time where contact occurred, slide along the floor
and rotate about its point of contact, or just stick
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Figure 2: A collision between a body and a floor.

at the point of contact and rotate. Whether the rod
sticks at the point of contact or slides is determined
by a Coulomb friction coefficient, u, and whether the
horizontal force exceeds a threshold value given by:

?:{ IFA.S|>HFH40'IIM¢ {3]

|UA,:| S Uth = Ostuck.

The friction force cannot be predetermined because
it depends on the normal force at the surface. When
the o.ide event becomes active, the friction force
comes into effect and its direction is always opposed
to the direction of velocity. The events, ¢:.ro, Opos,
and op.g, correspond to states 1, 2, and 3 of the au-
tomata in Fig. 3, respectively. The events that cause
these internal state changes are defined as:

{ VAz = 0=> Ozero
¥:8 vaz <0=> 0pos (4)
va,s > 0= Oneg.

Since this behavior is piecewise continuous only
simple behavior discontinuities occur at time points,
which implies that operational modes have limit
values at discontinuities (e.g., Fig. 3). The com-
plete event set for Coulomb friction s £ =
{Osiides Tatucks Ozero, Opos; Oneg)- A distinction is
made between sliding with 0 velocity and being stuck,
though the velocity of the rod at the surface is 0. In
case the rod is stuck, the model does not have a degree
of freedom in the z-direction.

As an example of a transfer of the continuous state
vector between model configurations, consider the
falling rod when it first makes contact with the floor,
the model moves from mode agg to mode ap; in Fig. 4.
At this point it reaches a model configuration where
vy and vy at the rod-tip are forced to 0. This requires
the center of mass to move in the z and y direction
with a velocity that is completely determined by the

Figure 3: Coulomb friction.

angular velocity. Conservation of momentum deter-
mines that the initial momentum in the y direction
is redistributed over the angular and linear momenta.
Fig. 2 shows that the linear velocities can be repre-
sented in coordinate frame (zo, yo) by

vy = lw*sind, vy, = —lw* cosh. (3)

A detailed derivation (see equations (20) through
(24)) yields the new state vector:

f.»'+
Gao; - VE
Uy

Model Execution Semantics

A discontinuous change that occurs in given mode ax
has to happen at a point in time, say t,. The state
vector at this point, z,, labeled z7 = limes,, Za, (1)
= Zq,(ts;). This becomes the a priori vector for the
state computation function g that determines the ini-
tial state z* in the new mode ax4+;. The state vector
z*t is referred to as the a posteriori vector computed
by g. The new state vector, z¥, may immediately
trigger further discrete events determined by h and
@, causing a sequence of discrete mode changes till
a new operational mode, a,,, is reached at which no

Frogr (wJ + mi(sinbu: — cosbuy))
lwtsind (6)
—lw*cosh
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Figure 4: Operational modes of falling rod.

oy =R o a a U.’
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Figure 5: System state is derived from the orig-
inal state vector.

further switching occurs. All the intermediate states
traversed between two continuous modes are mythi-
cal [10, 13]. The sequence of state and state vector
changes is illustrated in Fig. 5. At mode a,, system
behavior evolution in time resumes, with the state vec-
tor z4, (t;) = z*. Sometimes, mode a,, may repre-
sent just a point of continuous operation (such as, the
point of contact in an elastic collision [13]). State vec-
tor changes from z, (t,) to z% in the new real mode
may cause the v function to generate additional events
resulting in another sequence of discrete state changes
before the next continuous operational mode, a,, is
arrived at (see Fig. 5).

Consider the falling rod in Fig. 4. Initially, it is
falling freely under gravity (mode agp). On hitting
the floor it exerts a force with two components, Fy
and F4r (mode ag;). Since the floor surface has
Coulomb friction, the rod immediately starts to slide
if |Faz| > pF,, mode ay,. Otherwise, it sticks and ro-
tates around the point of contact (mode ag;). When
the rod starts to slide, the floor exerts an opposing
friction force, Fy. In this case, the initial kinetic en-
ergy before contact is redistributed over the angular
and vertical momentum to ensure the vertical velocity
of the rod-tip, v4,y, is 0. The horizontal velocity of the
rod-tip, v4,z, is determined by the angular velocity, w,
and the horizontal velocity of the center of mass, v,.

Since v, is independent of w and determined by Fy, it
is initially 0 and the discontinuous change of w results
in a discontinuous change of v4 .. Therefore, the sys-
tem changes from the operational mode where F; = 0
to mode aj; where Fy = uF,.

The grayed modes of operation in Fig. 4 are mythi-
cal. They do not have physical meaning, therefore, no
representation on the real time-line. However, they
play the role of transition points for locally defined
switching functions.

Temporal Evolution of State

Discontinuities are abrupt point changes, caused by
modeling abstractions. Discontinuities that persist in
time intervals would violate continuity of power and
conservation of energy principles. Further, asymme-
try in temporal evolution ensures that the state vector
in modes of continuous operation has to be left closed
over the time intervals these modes are active. Mode
changes and discontinuous changes in the continuous
state vector can only occur at points in time t,. We
have shown in other work [13] that further continu-
ous evolution may cause a mode change, an, to ap, at
the point of transfer, but no discontinuous change can
occur in the continuous state vector between z,,, (t,)
and z} (t,) since its initial value would be derived
from lim, ¢, Za, (t) which requires knowledge of future
behavior and conflicts with the assumption of causal-
ity in physical system models [14].

Consider the stiction force when the rod discon-
nects from the floor as it slides. If this force causes
a discontinuous change in the vertical velocity of the
rod, limeye, vy(t) differs from the actual value vy(t,).
However, the value of lim,;, vy(t) may be such that
its value indicates that the rod would have gotten
stuck. This implies that in addition to the current



state vy(t,) and model configuration, the operational
mode needs to know future modes and the limit values
of state variables looking back in time. Such systems
are acausal which is physically impossible and results
in ill-defined models.

Since no discontinuous change of the state vector
can occur, it is continuous over a left closed interval
in time. This only requires the system state to operate
continuously in left closed intervals but field f is not
required to be differentiable. Therefore, other derived
system variables may still change discontinuously as
a result of configuration changes. These jumps are
well-defined by the continuous state vector and model
configuration.

Invariance of State

A discontinuous change in the state vector may invoke
further mode transitions. The state vector in a new
mode is computed from the last continuous state vec-
tor, and the state vector in all new modes is computed
from the last continuous state vector before switching
started. This is the principle of invariance of state
[13].

To illustrate, consider the falling rod in Fig. 2.
When it hits the floor, its vertical momentum is dis-
tributed over its angular, horizontal and vertical mo-
mentum to ensure its rotation and translation of cen-
ter of mass are such that the point of contact does
not move (mode ag;). In this situation, if the force at
the rod-tip, F4 -, exceeds a threshold value, it imme-
diately starts to slide (mode a;;). The rod-tip moves
freely in the x-direction, and its initial vertical mo-
mentum is distributed only over its a postertori angu-
lar momentum and vertical momentum to ensure the
y-value does not change at the point of contact. If
the continuous state vector in the sliding mode, ay;,
was computed from the previously inferred mode, aq;,
it would have a horizontal velocity associated with its
center of mass which would keep the rod-tip from mov-
ing in the x-direction as well, which is incorrect. This
demonstrates the importance of the proper computa-
tion of the state vector across a series of discontinuous
changes.

Divergence of Time

Discontinuous configuration changes in system behav-
ior are instantaneous so a model verification tech-
nique based on the principle of divergence of time en-
sures that the model does not end up in a loop of in-
stantaneous changes where system behavior does not
progress in time [13]. In previous work, we have de-
veloped a multiple energy phase space analysis that
establishes divergence of time before simulation is per-
formed [11].

As an example, consider the falling rod when it
starts to slide because its force in the vertical direc-
tion exceeds a threshold value. If the rod is specified
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to stick when the velocity of its rod-tip is below a cer-
tain threshold value, it may not have sufficient initial
vertical momentum to maintain a high enough verti-
cal velocity. Based on the specifications, this moves
the model into the configuration where it sticks and
rotates around the point of contact. However, in this
configuration, based on the initial vertical momentum,
its horizontal force causes it to start sliding and a loop
of consecutive changes occurs.

Hybrid Bond Graph Modeling

Modeling of physical systems typically starts out with
an ideal configurational representation from which a
set of component equations is generated based on first
principles. As an intermediate step, a generic rep-
resentation can be established to aid in a system-
atic derivation of the set of equations. Depending on
the system configuration, the variables of these con-
stituent equations are connected together, often in the
form of a block diagram, and a number of mathemat-
ical manipulation steps are performed to establish a
set of explicit differential equations.

Bond Graphs

To support the modeling process, bond graphs [7] can
be used as a generic representation across domains in
terms of a small set of primitive elements with well-
defined characteristics. Bond graphs are based on the
observation that all interaction in dynamic physical
systems occurs by energy exchange, and, therefore,
provides a unifying modeling approach across domains
(e.g., electrical, mechanical, chemical). Energy ex-
change is captured by its flow, or power, between el-
ements. Power is the product of two conjugate vari-
ables, e.g., Power(P) = Voltage(V) x Current([)
in the electrical domain. In thermodynamics, these
variables are distinguished as intensive and erten-
sive variables, where intensive variables are defined
at points and extensive variables are defined as an
aggregate property over a region or volume [4]. For
example, two bodies with the same velocity that are
connected together still have the same velocity but
now have twice the momentum. In bond graph terms,
the intensive variables are referred to as efforts, e, and
the extensive variables as flows, f, e.g., voltage and
current, pressure and volume flow.

The basic bond graph elements are energy stor-
age, C and I, and energy dissipation, R, representing
ideal reversible and irreversible physical processes, re-
spectively. These elements are connected by a junc-
tion structure that consists of two basic types: (i) 0-
junctions, the equivalent of electrical parallel connec-
tions, that enforce common effort variables like volt-
age and pressure, and (ii) 1-junctions, the equivalent
of electrical series connections, that enforce common
flows like current and volume flow. The model con-
text is specified by ideal sources of effort, Se, and flow,



Sf, that supply an effort or flow independent of their
load. If loading effects are important, they have to
be modeled by R, C, or I elements, and the context
has become part of the model. The set of primitive
elements is completed by transformers, T'F, and gyra-
tors, GY. These elements are used to transform power
impedance within and between physical domains.

Based on this primitive set of nine elements, a wide
variety of systems can be modeled at different levels
of detail [5]. They rigorously specify f, X,U, and,
therefore, capture the continuous model aspects un-
ambiguously. The fundamental laws on which bond
graphs are based, conservation of energy and continu-
ity of power [3], prohibit modeling of discontinuities
in physical systems. Mosterman and Biswas [13] have
been investigating the nature and effects of disconti-
nuities in physical systems and established a theory
from which they derived the hybrid bond graph mod-
eling paradigm [13].

Hybrid Bond Graphs

Hybrid bond graphs rely on a local ideal switching el-
ement to dynamically construct active model configu-
rations. By introducing an ideal element, the concept
of reticulation on which bond graphs are based is not
violated, and non-ideal switching can be modeled by
including ideal energy dissipating or storing elements.
A higher level control structure forms a meta-model
that controls the state of each of the ideal switching
elements. The meta-model is implemented as local fi-
nite state automata, one associated with each switch.
The switch becomes active when signal values in the
current bond graph configuration cross threshold val-
ues. The system may transition through one or more
configuration changes before it arrives at a bond graph
configuration where conservation of energy and conti-
nuity of power governs system behavior again. During
configuration changes these laws may be violated and
model behavior is governed by the principle of invari-
ance of state discussed earlier.

Local switches are implemented as controlled junc-
tions. These junction can be

e onin which state they operate as normal junctions,
and

e off in which state they are deactivated.

To ensure correct loading, the deactivated junctions
are replaced by either 0 value effort sources or 0 value
flow sources, respectively (Fig. 6). When turned off,
they inhibit transfer of energy between model frag-
ments that are connected through the junction. A
finite state automata associated with each controlled
junction interacts with the bond graph and determines
the on/off state of the junctions based on events gen-
erated by the bond graph, or from external control
events.
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Figure 6:

Figure 7: A multi-bond controlled junction to
model Coulomb friction.

Piecewise continuous functions are represented in
a compact form of the controlled junction by relying
on multi-bond notations [3]. For example, Coulomb
friction in Fig. 3 in the hybrid bond graph frame-
work is represented by the multi-bond representation
in Fig. 7, where all source elements now are continu-
ous functions over their active areas. This is required
to make mode switches within source elements explicit
in the hybrid bond graph framework. The net result is
this phenomena is easily incorporated into the mode-
switching algorithm. This guarantees consistency in
behavior generation, since all discrete phenomena are
handled by one mechanism and all other influences are
continuous.

Ideal switching behavior is established by enforcing
0 effort or 0 flow [15] and by using signal values from
the bond graph rather than power bonds to gener-
ate discrete events. Controlled junctions in the bond
graph are marked with a subscript, e.g., 0y, 1;, that
is used to identify the associated finite state machine.
The signal values that are used by the finite state ma-
chine to generate discrete events are shown as active
bonds into the controlled junction (see Fig. 8), and
specify the h function. As the finite state automata
represent a junction’s control specification, they are
referred to as CSPECs. A CSPEC may contain se-
quential logic with any number of internal states.
However, each one of these has to map onto either
a junction’s on or off state and, since each state re-
flects a physical manifestation, on and off states have
to alternate in each transition sequence.

Local configuration changes may cause sequences
of consecutive configuration changes, and require the
continuous state vector to be transferred correctly be-
tween modes of continuous operation. When configu-
ration changes occur, buffers may become dependent
or modeled é-sources may become active, which may



result in discontinuous change of the continuous state
vector specified by g. Two cases exist: (1) one or more
buffers may become dependent on a source, or (ii) two
or more buffer elements become dependent on each
other or d-sources become active, and the state vector
between the two configurations is different [10, 11].
In the first case, the energy stored in the dependent
buffers is determined by the value of the source, u,

pf =rsiCiu, (7)

where rs; is the gain of the route from the source to
the dependent buffer, i, with value C;. In the second
case, the general formula

PE=po+ I asimio+ Y asirio (8)

buffers, sources,j
can be applied, where
asi =pf —pi (9)

is the loss of generalized charge or momentum in the
dependent buffers. The values of dependent states are
primed to

Pt = roicipt (10)

i A CU 0

which, along with (8) and (9), can be applied to deter-
mine the new value of the independent state variable,
p;'. Note that if no d-sources become active, conser-
vation of state holds because the amount of general-
ized charge and momentum added to the independent
buffer equals the loss by each of the dependent buffers
combined. Therefore, the total amount of charge and
momentum in both modes remains the same. For n
dependent buffers, buffer 0 is chosen in integral causal-
ity and the new value of its stored energy, pg, is de-
termined by

n—1

P =po+ Y_(pF = pi)rio. (11)

i=1

This can be expressed in terms of the value of the
independent buffer, p7, by substituting (10)

n=1

C.
Ps =pPo+ ;(fo,i-é-spg —pi)rio (12)

or [12],

n=1 n-—1

HIEDY ri.O"ﬂ.i%) =po—»_riopi, (13)

i=1 i=1

where r; o is the gain of the route from buffer i to
buffer 0 and C; the buffer value of buffer i. Note that
this may result in loss of energy to the environment
[13].
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The meta-level control model separates discrete be-
haviors as specified by the finite state automata and
the continuous state mapping function from the con-
tinuous operation of the system where conservation of
energy and continuity of power govern behavior. As
part of the meta-model, a Mythical Mode Algorithm
(MMA) is formulated to govern the global effects of
configuration changes [13]. The CSPEC conditions
have to be verified to always generate sequences of
configuration changes that terminate in a model con-
figuration that has a real manifestation.

Implementation

The bond graph model of the idealized thin rod and
idealized floor, and the fragments dynamically gener-
ated by simulation [12] are shown in Fig. 8. The rod
is assumed to have three degrees of freedom: angu-
lar velocity, with a buffer element associated with the
J inertia, and linear velocity in the z and y direc-
tions, with buffer elements m: and m,, respectively.
The relation between those velocities is derived ge-
ometrically (Eq. (5)), and modeled by a modulated
transformer. Gravity is modeled as a constant effort
source, mag, in the y direction at the center of mass.

The z and y components of the forces and velocities
at point A connect to the model at the O¢ junction.
If the body is moving freely, this junction is off. If the
body is in contact with the floor, O¢ is on and if no
other elements are connected, it enforces a 0 velocity.
The friction force, Fy = uF,, in the z direction is
modeled as a piecewise continuous modulated source,
M 5., producing force values 0, Fy, — F; at A, opposite
to the direction of the surface velocity.

The control specifications (CSPEC) of the switching
junctions are specified by finite state automata, one
for each controlled junction. The controlled junction
15 1s specified by a hierarchical finite state machine,
which can be in one of several on states, depending
on the bond graph signals. Depending on the specific
state, a part of the piecewise continuous friction func-
tion is active. In its off state, the junction enforces 0
flow.

Initially, the rod is moving freely and controlled
Junctions O¢c and 1g are off. Replacing the junctions
with their 0 value sources results in the bond graph
(mode agg) shown in Fig. 8. The position of the rod-
tip closest to the floor, y4, is determined by the sum
of the position of the center-point, yar = [ vy, and the
distance of the rod-tip from the center point, —lsin8.
If this position, z4 = [ vy —[sinf, becomes 0, the rod
collides with the floor and 0¢ comes on, and the model
transitions to mode ag;. This results in dependency
between the linear and angular velocities, and the en-
ergy redistribution that may be required, specified by
g, is computed. If the rod-length and angle of colli-
sion are such that 1g comes on (the model transitions
into aj;), the rod begins to slide. Based on the for-
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Figure 8: Dynamically generated models.
mulas for energy redistribution, the function, g, can s .
be calculated as before, and the piecewise continuous Ya =_f "9‘1‘1“ L‘?";e
friction function may move into its F; area, mode aa;. SAE Sy e
i ; pay = m(vy + lwcosf)
As shown by this example, the hybrid bond graph ap- )
, . . h:¢ p 10 if ao (16)
proach provides a seamless integration of configura- n=

tion changes based on local switches. Other examples
of hybrid bond graph models are discussed in [13].

The continuous system model, directly derived from
each operational mode of the hybrid bond graph
(Fig. 8) is shown below ( f4,, is given in Eq. (2)):

&= —mlcaaﬁa
YT TTimiT B
agy - vy = lsinfw

vy = —lcosbw
S - —ml{cosb—usiné) (14)
== J+mlicosB|cosb—psind) 9
az v = —p(lcosfu + ay)

vy = —lcosfuw

The discrete control model, ¢, is specified by the
two automata functions, C and S. The specification
for the v and h functions are shown below.

ya <0Apsay <0 = Ocontact
Fn <0 = Ofree
|F4_x| > j.an Aya<O0na PAy < 0 = ogstide

v:{ |vaz| vV Fn,<0 = Oaruck
var=0 = Ozero
VA .z < 0 = Trieg
vaz >0 = Opos

(15)

m(iy —ay) otherwise

0 if arpg
muvus otherwise

FA.:=

To derive g it is observed that in a hybrid bond graph
discontinuous state changes only occur if buffers be-
come dependent. Two cases exist:

1. one or more buffers may become dependent on a
source, and

2. two or more buffer elements may become dependent

on each other and d-sources become active. In this
case, the state vector between the two configura-
tions is different [11].

In the first case, the a posteriori energy stored in the
dependent buffers, p]", is determined by the value of
the source, u (see equation 7). In the second case,
Dirac pulses, d, are induced that enforce a discon-
tinuous change of the independent, integrated, state
variable, p7. The area of such a pulse combined with
the gain from its origin, either a source or dependent
buffer to the independent buffer, specifies a change of
pt. This change is given by the general formula given
in equation 8. The area a; ; is the explicitly modeled
interaction with the environment. The area a;; can be
calculated from equation 9, which is the loss of gener-
alized charge or momentum in the dependent buﬂ'el:f.

The new signals generated by dependent states, %:.
are forced to values determined by the new signal from

+
the independent buffer, pz?;, and the route gain from



the independent buffer to the dependent one. This is
described by the equation 10, which along with equa-
tion 8 and equation 9 can be applied to determine the
new value of the independent state variable, pj .

In the special case that no explicitly modeled 4-
sources become active, conservation of state holds be-
cause the amount of generalized charge and momen-
tum added to the independent buffer equals the loss
by each of the dependent buffers combined. Therefore,
the total amount of charge and momentum in both
modes remains the same. For n dependent buffers,
buffer 0 is chosen in integral causality and the new
value of its stored energy, pg, is determined by

n-1
Ps =po+ Y_(pF —pi)rio (17)

i=1

This can be expressed in terms of the value of the
independent buffer, pf, by substituting Eq. (10)

n-1
Ci
PC =P+ (roigps —pdrio  (18)

i=1

or [12],

n-1 n-1
Ci
Py (1- gf‘i.ofo.ca"] =po— Y riopi.  (19)

i=1

where r; ¢ is the gain of the route from buffer i to
buffer 0 and C; the buffer value of buffer i. Note that
this may result in loss of energy to the environment
[13].

To demonstrate, we derive gq,,. In the correspond-
ing operational mode, ap;, there is dependency be-
tween three buffers, J, m., and m,, with stored en-
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Figure 9: Flow diagram of hybrid system simu-
lation.

This can be transformed into the state variables by
the translations h, = Jw, p» = mv,, and p, = my,
and by substitution of the gains of the respective
routes, found by tracing power amplification along a
route following causal strokes (Fig. 8),

P'me,d = —lsinb, rj,_ = lsinf
{ Tm,,J =lcos8, r;m = —lcosh, (23)
which yields
—mi — si
at = wJ — ml(cosfvy smﬂv,)' (24)

J + mli?

Analogously, the state vector mapping can be de-
rived for the other operational modes (gq,, is given

in Eq. (6))

ergy hy, p:, and py, respectively. This represents the [ wt=w
situation where the center of mass moves with veloc- agp: {4 vi=v:
ity such that, in spite of the rotation around it, the v =y
rod-tip A does not move in the horizontal or vertical wt = “’7-’4_-_3‘,‘5:7‘;‘;?
direction since it is in contact with the floor and stuck. g:{ o vF=v; (25)
Choosing J as the independent buffer, this results in vt = <lwtecosd
two dependent buffers, m. and m,, N "; _ wJ—mi(cosf—psinf)u,
W = J4+midcosb(coatl—psind)
Am, =Ph_ —Pe, PF =1im, 5503 (20) a2 9 v =—p(lwtcosd + vy) + vr
aa.m' :p:‘v == Py‘ p;’ - rer”fh:. ! U; = —IU+C059
So. In other work [13], we have used phase space analy-
. sis to verify the correctness of the model specifications,
Z = (r3m, _f-h:-p,)rm‘__,+{rlm,—n‘;"-—h: —Py)Tm, 1€ to ensure the given t.rans'lltionlspelt:iﬁ;ations w.fill
buffers result in the model behavior diverging in time, a prin-

(21)
There are no d-sources active upon switching so
Y sources = 0. The complete expression for the in-
dependent energy, h} now yields

m
h: =h, + Tme JTIm, T’h: - T™m. JPz +

m
Tmy,JTIm, ‘}ih: = Tm, JPy- (22)

ciple that has to be satisfied by all physical systems.
Hybrid System Simulation
The simulator operates in two modes:
1. continuous simulation in temporal intervals, and

2. discrete instantaneous configuration changes that
occur at points in time.



The Simulation Scheme

Numerical simulation schemes like Euler and Runge-
Kutta can be used for continuous behavior modes.
Discrete events generated by v trigger an event de-
tection module to determine the switching time, ¢,
within a margin of tolerance, ¢ (Fig. 9). The contin-
uous field, fa,, computes z,,(t,), then real time is
suspended, and the meta-level control model, ¢, gen-
erates the discrete state transition. The original con-
tinuous state vector is then transferred to the newly
found model configuration using g, and this may trig-
ger further events. The resulting model configuration
is established, and z,, (t,) is transferred to this model
configuration. Again, discrete events may be gener-
ated and this process continues until no further tran-
sitions occur and the prior continuous system state is
updated to z,,, (t;)

Further events are generated when the state vector
is updated and the a priori switching values change.
This may cause a new series of configuration changes
that are executed by the discrete model using the dif-
ferent h functions in each mode. There can be no more
discontinuous changes in the state vector. In the new
continuous mode ay, fa,, defines the simulation from
time t, with initial vector z,_(t,) (= za,(ts;)). This
implements simulation of f, _ at f, as a point in time
and allows an energy redistribution at a point spec-
ified by a function with discontinuities that are not
simple. Note that the method only applies under the
principle of temporal evolution of state.

Simulation of the Colliding Rod

To derive a numerical model of the continuous func-
tion, f, a O-order, forward Euler, approximation is
used. A forward Euler approximation is obtained by
using £ = ’—*‘!“;—:-i‘i, or k41 = fAt + zx. Deriva-
tives that are part of expressions in f are replaced

analogously. For example, v, = lcosfw becomes

_ leosbppywepy—cosfpws) _
Vr k41 = rY; At + vz k, OF, Uz k41 =

leosOkprwi 41 — lcosOkwi + vz k = lcosOrp1wi 4. The
expressions for fxy; and yar k41 are uniform across
configurations. These equations combined with the
rest of the numerical model constitute the simulation
of continuous behavior. The only other function of
the analytical specification that has to be represented
by a numerical equivalent is h:

[ YA = YM k41 — f.ﬂ-nag.n

Vaa = u:_k'“ - Isin9k+1w:'+1
Pay = Mm(vy k41 + lcosfiy1wisr)

if oo
Fa=

":ixi;_"v-i herwi
m( o — ag) otherwise

0
Fasz = ":-u‘"'-*

L otherwise.

(26)

if oo

.

The rest of the specifications are not temporal and
can be directly used for simulation. Note that v,  is
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computed based on a posteriori values whereas p, ,
(an energy variable) is computed from a priori values.

A simulation run for one scenario is shown in
Fig. 10. The rod falls down at a specific angle, hits
the floor and moves into configuration ag;. Based on
the state vector an immediate configuration change to
mode a;; occurs. In this configuration the rod slides
with a velocity that decreases in magnitude due to the
friction force acting on the rod-tip. At one time, this
velocity falls below a preset threshold value and if the
state vector is such that the rod gets stuck without
immediately satisfying the condition to slide, the sys-
tem moves into mode ag;. In this mode, it is stuck
and rotates around the point of contact until it falls
flat on the floor.

Conclusions

This work demonstrates a powerful hybrid system
modeling scheme that incorporates modeling abstrac-
tions and embedded discrete control of physical sys-
tems. The modeling formalism, based on a hybrid
bond graph methodology, combines continuous bond
graph models with local discrete finite state automata.
The automata define ideal switching specifications im-
posed on bond graph junctions to create instantaneous
model configuration changes. Configuration changes
may result in discontinuities in system variables. The
new state variables are then systematically derived
using the principle of conservation of state combined
with explicitly defined interactions with the environ-
ment. Global specifications are derived dynamically
based on systematic principles of invariance of state,
divergence of time, and temporal evolution of states.
This simplifies the modeling task and truly demon-
strates the use of compositionality in defining system
models. This is in contrast with the approach by Alur
et al. [1] which requires pre-defined global specifica-
tions of continuous system behavior in terms of dif-
ferential equations. Furthermore, global knowledge in
specifying discrete behavior is required to ensure no
mythical modes exist. Also, unlike the hybrid bond
graph modeling paradigm, there is no support for sys-
tematic modeling based on physical principles (e.g.,
conservation of state). The formal specifications are
incorporated into a hybrid system simulation scheme
that ensures the generation of correct system behav-
ior.

In the past, qualitative reasoning schemes have fo-
cused on abstraction of the numerical properties of
system behavior variables [6]. This has often led to
underconstrained models resulting in an explosion of
possible behaviors and the generation of physically in-
consistent behaviors. Ours is a more systematic and
encompassing approach to abstracting physical sys-
tem models: (i) time scale abstraction, and (ii) ignor-
ing parasitic parameter effects that often cause sharp
nonlinearities. The result is a truly hybrid behavior
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Figure 10: Physically consistent simulation.

generation scheme, where the abstractions result in
discrete qualitative behaviors (mode and configura-
tion changes), otherwise system behavior evolves con-
tinuously (and this can be simulated either by numeric
or qualitative methodologies). Future work will be di-
rected toward applying this methodology in embedded
(computer-based) control of physical systems.
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