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Abstract

A rheological equation of state is required to sim-
ulate the behaviour of a viscoelastic material in
many complicated industrial flow processes . The
generation of such a model is not a straightfor-
ward operation . In this paper we show how this
process may be automated using model-based
reasoning techniques . Data from three simple ex-
periments are required in our analysis in order to
completely characterize a material and formulate
its equation of state .
This paper builds on the work in (Capelo, Ironi &
Tentoni 1992 ; 1993) who have presented a system
which selects a mathematical model (the consti-
tutive equation) for a given viscoelastic material
from its response to an externally applied force
in a so-called creep-test . This process is based on
a qualitative abstraction of the plots generated
from this static experiment .
We extend this work to fully characterize the ma-
terial in terms of its rheological constants and
functions . The viscosity is then determined from
a steady simple shear experiment in which the
data is analyzed using a graph recognition tech-
nique . The relaxation and retardation times are
determined using data from a dynamic experi-
ment . An optimization technique is used to de-
terinine the number of relaxation and retardation
times and the values of these parameters . This
system delivers to the user a constitutive relation-
ship with material constants and functions which
may be used to simulate the flow of the viscoelas-
tic material under consideration .

Introduction
An understanding of the behaviour and properties of
viscoelastic materials, whose ranks include materials
such as paints, shampoo, polymers and lubricants, is
important in many industrial processes . Many im-
portant and industrially relevant questions remain
unanswered . For example, in journal bearing lubri-
cation, can normal stresses induced by viscoelasticity
compensate for the adverse effects of shear-thinning,

namely higher wear resulting from lower friction . The
formulation of a realistic viscoelastic model enables
the behaviour of a given lubricant to be predicted by
means of numerical simulation . The mathematical de-
scription of a viscoelastic fluid is much more complex
than its Newtonian counterparts . In addition to the
conservation equations of mass and momentum an ad-
ditional equation, the constitutive equation or rheo-
logical equation of state, is required which relates the
stress to the deformation . For a viscoelastic liquid this
relationship is nonlinear and it has no standard form
which is universally valid for each fluid in every flow
situation . This situation is one of the reasons why the
subject. of viscoelasticity is so challenging .
A constitutive equation is required in order to per-

form numerical simulations of viscoelastic flows. Al-
though some information can be gleaned from experi-
ments a complete description can only be obtained by
solving the full set of governing equations . This en-
ables local characteristics such as information about
the stresses and the energy dissipation, for example,
to be calculated . A constitutive model which is simple
enough to allow efficient numerical solution yet pos-
sessing predictive capabilities needs to formulated .

In practice the constitutive equation is formulated
by appealing to rheometrical experiments . The be-
haviour of the material is investigated in simple flows
such as steady simple shear flow and small amplitude
oscillatory shear flow . Then a model, which is able
to simulate the behaviour of the fluid in these simple
flows, is chosen from among those that are available .
The work in this paper automates much of this process
generating a complete constitutive equation directly
from experimental observations .

In this paper we present an intelligent hybrid sys-
tem which automates both the selection of the form
of the constitutive equation and the determination of
the material constants and functions which appear
in this equation . In (Capelo, Ironi & Tentoni 1992;
1993) a system is presented which selects a mathe-
matical model (the constitutive equation) for a given
viscoelastic material from its response to an externally
applied force in a so-called creep-test . This process
is based on a qualitative abstraction of the graphical
output generated from this static experiment . Their



analysis shows that there are four physically feasible
classes of models. Each class contains a family ofmod-
els each member being identified by the number of re-
laxation times of the material . At this stage the work
of calculating the material functions and parameters
of the constitutive equation (1) and also automating
the process of determining the number of relaxation
or retardation times (constant terms on the left and
right. hand side, respectively) has not yet been done .

Therefore, in this paper we extend their work by
building an intelligent hybrid system which can fully
characterize the material in terms of its rheological
constants and functions. A selection of rheometrical
experiments are necessary to provide data for this pro-
cedure . Once the equivalence class for the material
has been identified the material constants and func-
tions may be determined . The viscosity is determined
from a steady simple shear (viscometric) experiment
in which the data is analyzed using a graph recogni-
tion technique developed by (Mustapha et al 1997) .
The relaxation and retardation times are determined
using data from a dynamic experiment . An optimiza-
tion technique is used to determine the number of re-
laxation and retardation times and the values of these
parameters . This system delivers to the user a con-
stitutive relationship complete with values of the ma-
terial constants and functions which may be used to
simulate the flow of the viscoelastic material under
consideration.

Formulation of a Rheological Model
from a General Constitutive Equation
Good progress towards the formulation of a rheolog-
ical model from given experimental data has been
made by (Capelo, Ironi & Tentoni 1991 ; 1992 ; 1993 ;
1995) . There are four basic processes which enable
them to formulate a general rheological equation of
state . These are summarized in Figure 1 .
A static creep test experiment is performed on a

given viscoelastic material and the strain response
is analyzed . This analysis is performed using graph
recognition techniques . In (Capelo, Ironi & Tentoni
1993) this information is used to assign to this mate-
rial one of four formal admissible constitutive equa-
tions: n

aiD'o- = E OiD'-~,

	

(1)
i=1 i=6

where n = m, m + 1, b = 0, 1, ai, i

	

7n, Oi,
i =
6,...,,n

are material functions and D is the time
derivative operator . The function 01 is the viscosity
and we will also denote this by ?7 . All the other ma-
terial functions in (1) are assumed to be constant .

Process I shows a segmentation of the strain re-
sponse based on several successive steps of stress im-
posed on the material . Therefore the segmented com-
ponents are quite clear. Excellent descriptions for
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each of the components can be found in (Whorloa-
1980). Using first and second order derivatives, the
qualitative curve attributes can be obtained (Capelo,
Ironi & Tentoni 1995) . . A full qualitative descrip-
tion such as instantaneous, delayed elasticity and non-
recoverable deformation can be obtained by applying
heuristic rules as shown in Process II . Consequently, in
Process III, if the existence of certain properties such
as instantaneous, delayed elasticity and full recovery
(non-viscosity) are realised, then the value of the logi-
cal triplet for this example is (T,T,F) . The other three
possibilities are (F,T,T), (F,T,F) or (T,T,T) . Process
IV shows that a direct mapping to an equivalence class
is a straightforward task once the logical triplet is ob-
tained .
The two major drawbacks in the procedure de-

scribed above are : i) the number of relaxation or re-
tardation times are manually input from user and ii)
the material parameters or functions such as the vis-
cosity, relaxation and retardation times are unavail-
able . To overcome these difficulties, we propose two
further experiments to fully characterize the material .
Thus, three experiments in all will suffice to determine
a constitutive equation for a given viscoelastic mate-
rial . The interaction between the output from these
three experiments forms the basis of the intelligent
hybrid system shown in figure 2. The additional ex-
periments are:

1 . Dynamic experiment : Perform a small-amplitude
oscillatory shear experiment . The outputs from this
experiment are the storage and loss moduli denoted
by G' and G" respectively . The discrete relaxation
spectra can be determined from this data .

2 . Viscometric experiment : If required, run a steady
simple shear experiment to determine the shear vis-
cosity.

The details which show the output of the viscomet-
ric data analyser (calculating viscosity) can be found
in (Mustapha 1995 ; Mustapha et al 1997) . Under the
assumptions that the fluid is a linear viscoelastic liq-
uid, the flow conditions are isothermal and extensional
viscosity is considered small, the system shown in fig-
ure 2 is a complete one. Section 3 will explain in de-
tail the calculation of a viscosity function from data
obtained from a simple steady shear experiment . Sec-
tion 4 shows how the discrete relaxation spectrum of
a material may be calculated .

Determination of the Viscosity

Function

The most important material property which needs
to be determined is the viscosity. The flow of the
material in many situations can be predicted from
a knowledge of this function . The viscosity can de-
pend on variables such as shear rate, temperature



and pressure . However in many industrial and ev-
ervdav situations it is the variation of viscosity with
shear

_
rate which is the most important. Therefore

in this paper we restrict ourselves to this situation.
Several models are available for the purpose of fitting
the viscosity-shear rate data and each of them has its
own capabilities in characterising different shapes of
the flow curve. In the system developed by (Mustapha
1995 : hlustapha et al 1997), six models are used . The
process of determining several models on a piecewise
rheogram is found in two stages :-

1 . Explanation process (qualitative technique) : It is
important to explain to the user the meaning of the
curve in order to help choose the piecewise curve (up
or down curve) and the range of the curve chosen
(initial or endmost or whole part of the curve) . The
meaning of the mathematical models are also neces-
sary since the user needs to know why and when to
use them . In additional to these there are warning
messages for graph abnormalities and expert advice
to repeat. the experiment using the proper geome-
try. Since only a qualitative description is required
to fulfil these tasks, qualitative reasoning techniques
are the most appropriate.

2 . Curve-fitting process (quantitative technique) : The
objective of this curve-fitting process is to find the
best model/s and also to minimise the number of
models used in characterising the selected curve.
Frequently there will be no single model which is ca-
pable of characterizing the material over the whole
shear rate range. The criteria for selecting the mod-
els are as follows :-

(a) The model must cover the largest shear rate
range. This is important in minimizing the num-
ber of models used .

(b) The model must produce the highest correlation
among all other models or at least above 0.9975 .
The correlation is obtained by Pearson's method
(Weiss &!Hassett 1991) .

The six'iriodels'~~"ently used in the system are
listed in Table 1 where T is the shear stress and 7.
is the shear rate . Figire 3 illustrates how several
models can.be; assigned to aflow curve in a piecewise
sense.

Determination of the Discrete
Relaxation Spectrum

Suppose that following the creep test we have iden-
tified which of the four admissable constitutive equa-
tions describes a given viscoelastic material . In this
general equation the number of relaxation times (the
value m in (1)) needs to be determined in order to re-
duce the number of plausible models further. Ideally
we would like to describe the rheological behaviour of

the material with as few parameters as possible for
two important reasons. First of all to reduce the test
of numerical simulations and secondly to avoid the ill-
posed problems associated with the determination of
the discrete relaxation spectra of a viscoelastic mate-
rial. This is well-known to be an ill-posed problem in
which the degree of ill-posedness increases as the num-
ber of relaxation times increases (Honerkamp 1989) .
The relaxation modulus 0(t), defined by

may be measured using dynamic mechanical methods
in which the material is strained sinusoidally at a fre-
quency w. The measured stress response decomposes
into an in-phase and an out-of-phase component: the
storage modulus G' and the loss modulus G" . In os-
cillatory shear we define a complex shear modulus G'
through the equation

The complex shear modulus, G' (w), has the represen-
tation

'~ .7(Lo) _
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Experimental data provides us with information at
c.w = wi, i = 1, . . . , .'11 . Let us denote this by G; and
G,', i = 1 . . . . . . 11, respectively. This results in the
following system of equations for g.t, Aj , j = 1' . . .'M:

m
9jAjw2

(1 +w=A?)

m
97Aiwi

(1 +w?A?)

for i = 1, . . . , M. This is a system of 2M equations for
27n unknowns if m is known. However, the value of
,in is not known priori and must be determined along
with the other parameters to avoid unreliable numeri-
cal simulations at a later stage. The nonlinear nature
of this system of equations makes it extremely diffi-
cult to solve. One has to resort to a nonlinear least
squares method in order to fit the data .



We consider the minimization of the function
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with respect to rn, .1j and gj, j = 1, . . . , rn, where
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The measured values Gt and G are assumed to be
affected by standard errors of size v; and a , respec-
tively . The algebraic equations resulting from the
least squares process are solved using the Marquardt-
Levenberg algorithm. This turns out to be a highly
efficient numerical algorithm for this problem. The
Marquardt-Levenberg algorithm is a standard opti-
mization procedure although to our knowledge it has
not been used previously in this context.
The number of relaxation modes is increased gradu-

ally until there is no improvement in the minimization
of t . There are a number of criteria which may be
applied in order to terminate the procedure before the
problem becomes ill-posed . One termination criterion
is to stop when negative values of the parameters ap-
pear since these are physically infeasible . However,
realising that this criterion is insufficient, one of the
future tasks is to work out a more robust termination
criterion .

Table 2 shows a sample 6-mode relaxation spec-
trum generated for a polymer melt and a decrease of
standard errors as the number of modes (i) increases.
The corresponding result in Table 2 can be shown
graphically in Figure 4. Given a discrete relaxation
spectrum the corresponding discrete retardation spec-
trum may be determined using the Laplace transform
(Weiss & Hassett 1991) .

Conclusions
We have built on the work in (Capelo, Ironi & Ten-
toni 1991 ; 1992 ; 1993 ; 1995) and used data from ad-
ditional experiments in order to fully characterize a
given viscoelastic material. The viscosity is deter-
mined from asteady, simple.shear experiment in which
the data is interpreted using qualitative and quanti-
tative techniques . The discrete relaxation spectrum is
determined from a small-amplitude oscillatory shear
experiment . The extraction of the relaxation spec-
trum from this data is an ill-posed problem . A nonlin-
ear least squares method is proposed for circumvent-
ing the problems associated with ill-posedness. This
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method also determines the appropriate number of re-
laxation times for the material .
One limitation of this work is that we have assumed

that viscosity is a function oL,shear rate only.
practice it can also depend on pressure and in a non-
isothermal setting, temperature.
The methods described in this paper have provided

good results from rheological experiments with a va-
riety of substances .
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Table l : Viscosity models

Table 2 : Relaxation spectrum for a polymer melt

Viscosity model Equations Meaning of model parameters

Newtonian model no = rjo -- viscosity at zero-shear
Bingham model rt = + rlp r)p - plastic viscosity

7v - yield stress
Sisko model 7 _ 77. + kyn'i rl - viscosity

- infinite-rate viscosity
k - viscosity coefficient or consistency
n - rate index

Casson model rli/z -_ 'Y1/27'v/2 + ky k - consistency or viscosity coefficient
7y - yield stress

Power Law 77 =W-1 k - consistency or viscosity coefficient
n - Power Law index

Herschel-Bulklev rl = } + k~"-1 T, - yield stress
k - consistency or viscosity coefficient
n - Power Law index

i Ai gi U

1 28 .4075 4490 8 .7618e-01
2 3 .0371 7679 4 .5586e-01
3 0 .5184 18400 1 .9621e-01
4 0 .0911 38828 7 .9216e-02
5 0 .0164 74196 3 .3643e-02
6 0 .0023 167850 1 .8901e-02
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Figure 1 : Four major processes in analysing creep data and determining an equivalence class
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Figure 2 : An intelligent hybrid system for determining a complete rheological model for a
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Figure 3 : A flow curve which has models assigned to it

Figure 4 : A comparison of model data and measured data for polymer melt


