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Abstract

Functional brain mapping studies in humans
may show contradictory results, as no one to
one correspondence can be found between acti-
vated cerebral zones and cognitive functions.
An explanation could be the networked physi-
cal organization of brain zones and the infor-
mation propagation mechanisms through the
network. As we focus on language-related brain
subsystems, Al models are the single alternative
to animal models. The brain being considered
here as a physical, rather ill-defined system, Al
qualitative approaches, especially causal meth-
ods, fit perfectly our purposes. The major con-
straint in the approach, i.e. the fact that phe-
nomena related to the system’s functioning
must be time-ordered, is compatible with our
knowledge on brain behavior.

This paper presents a tentative two-level
model of brain information propagation
mechanisms. At the structural level, the brain
anatomical structure is represented as a com-
ponent network whose nodes are cerebral zones
connected by propagating or inhibiting ana-
tomical links (axon bundles). At the func-
tional/behavioral level, each zone is modeled by
a causal qualitative network instanciated from a
generic model. A component/connection ap-
proach derives the global functional model cor-
responding to a structural network-from the
above models. As models must constantly
evolve with new hypotheses and findings in
brain research, we propose a flexible
« hypothesis simulator », BioCaen, for imple-
menting them. BioCaen is an offspring of
Ca~En (Bousson & Travé-Massuyés, 1993, 1994)
that extends its capabilities by : (1) dealing with
components, (2) giving more flexibility to
time-variation expressions, (3) coding causal
network nodes by couples of variables.

Introduction

Since the 19™ century, people have tried to iden-
tify cerebral locations of cognitive functions such
as language or reasoning. The first evidences came

from the comparison between cognitive disorders
in patients and locations of their brain lesions,
observed after death. Coarse relationships were
found between structure and function : supposedly
« missing » cognitive functions were assumed to
be located at the lesions. Today, a better under-
standing is obtained from activation studies. In
those experiments a patient, or a healthy subject,
is asked to perform a specific cognitive task while
evidences of his/her brain functioning are obtained
through imagery techniques (Positron Emission
Tomography -PET-, Magnetic Resonance Im-
agery -MRI- or Quantified Electroencephalogra-
phy -EEGq-). The anatomical correlates of the
task are supposed to be those brain zones whose
activation (as seen through cerebral blood flow
changes for PET and MRI, event-related poten-
tials -ERP- for EEGq) is significantly different in
the performed task when compared to a reference
task.

However, clinical observations as well as experi-
mental studies may show that no one to one cor-
respondence exists between brain zones and cogni-
tive functions (Démonet et al, 1994; Raichle, 1993).
Those incongruent results may have different
explanations such as the existence of a real func-
tional polymorphism in the cerebral areas or a

wrong interpretation of experimental results
(Sergent, 1994). A third answer (Damasio, 1989;
Friedman & Goldman-Rakic, 1994; Mesulam, 1990)

may be the existence of anatomical links between
remote cerebral zones and the possible network
organization of cerebral structures involved in a
specific task performance. Our assumption is that,
besides the possible functional specialization of
cerebral zones, the influence of brain network
organization (cerebral zones and anatomical links
connecting them) and of information propagation
mechanisms through the network may explain the
links between cognitive tasks processing and pat-
terns of cerebral activation.

Questions arise also on the automatic/controlled,
data/goal driven information processing in the
brain. Clearly, both stimulus-driven (whether vis-
ual (Fox & Raichle, 1984) , auditive (Price et al, 1994)
or motor (Sabatini et al, 1993) stimulus), automatic,



bottom-up mechanisms and goal-driven, con-
trolled (Corbetta et al, 1990 ; Funahashi et al, 1993),
top-down processes coexist in the brain. Our as-
sumption is that the efficiency and speed of the
brain processing come from the major part played
by automatic and stimulus-driven mechanisms.
Therefore, the brain can be considered as a rather
ill-defined dynamic physical system, whose func-
tion is information processing and whose behavior
is constrained by its physical structure and net-
worked organization of components (the cerebral
zones) connected through anatomical links (axon
bundles). No direct observation of the behavior
exists and the only external evidences are indirect
measures of the neuronal activity provided by
tomography or ERPs. Comparing these measures,
that will not feed our model, with outputs from
the model simulation will help validate our as-
sumptions and get a new insight on apparently
conflicting cerebral activation patterns.

Our research is twofold : modeling human brain
information propagation mechanisms and building
a flexible simulator that will allow to quickly im-
plement model changes and assess new hypotheses
on brain behavior and function. This paper pres-
ents our first tentative model of propagation
mechanisms, based on a former language-related
experiment (Démonet et al, 1994), model which has
been the starting point for the simulator specifica-
tions. We will also describe the main features and
implementational status of BioCaen, the model
simulator.

Al tools and brain modeling

Models of brain behavior belong generally to two
major trends in Al, the classical Al symbolic ap-
proach, on one hand, and connectionism, on the
other hand, or the combination of both, hybrid
methods (Wallace et al, 1993).

The symbolic AI approach provides purely
functional architectures that model high level
cognitive processes such as reasoning (Feigenbaum
et al, 1971) or memory (Schank & Farrell, 1988;
Anderson, 1988). This approach, that focuses on
mind considered as a set of emerging cognitive
functions independent of the biological device
that generates them, does not meet our goal,
which is the modeling of cognitive functions con-
sidered as an offspring of brain activity.
Connectionism is widely used for implementing
“ pure mind ” cognitive models (McClelland, 1981),
as well as for modeling cerebral functioning
(Mitchell et al, 1991). However, connectionism does
not fill our goal, i.e. the explicit modeling of cere-
bral brain propagation mechanisms, for it provides
black box models that give an accurate approxi-
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mation of a cognitive function output without
giving any information on the brain physical
mechanisms that generate it. Our work cannot
either take advantage of current researches in
“ biologically plausible formal neurons”, for our
modeling level is at the cerebral zones’ behavior,
which represents the integrated behavior of thou-
sands of neurons.

In our view (Pastor et al, 1995), the brain is a bio-
logical device, whose dynamics is largely auto-
matic and constrained by its physical structure.
The system’s behavior can be quantified through
functional imagery data, although not very pre-
cisely. All these facts suggest that the Al qualita-
tive approach is the best modeling paradigm.
Causal methods, which describe cause-effect
relationships between a system’s state parameters,
fit perfectly the current knowledge on brain struc-
ture and mechanisms. {Travé-Massuyés et al, 1993;
MQ&D group, 1996). The major constraint in this
approach, i.e. the fact that phenomena repre-
sented by causal relationships must be time-
ordered, is perfectly compatible with our knowl-
edge on brain behavior. The Ca~En formalism and
software (Bousson & Travé-Massuyés, 1994) are the
core of the tools used in this work.

Qualitative modeling of brain information
processing

Modeling the brain information processing at the
integrated level of zones requires to take into
account both a structural representation, the ana-
tomical organization of these zones, and a be-
havioral and functional representation, the de-
scription of the information processing within and
between the zones.

Structural modeling

Our goal is to disambiguate the interpretation of
cerebral zone activation by modeling and simu-
lating information propagation in the brain. Two
major assumptions relative to this propagation
(Pastor et al, 1995) have been suggested by former
experiments conducted in positron emission to-
mography (Démonet et al, 1992; Démonet et al, 1994)
and ERPs (Doyon et al, 1995). Their results support
the hypothesis that cerebral information is auto-
matically propagated from one cerebral zone to
another through the in-between anatomical links,
each zone having an acknowledgment mechanism
that lets the information in, for further processing,
or stops it. Once the information is processed, it is
transmitted.

A Cerebral Zone (CZ) is defined here as a closed,
functionally homogeneous, part of the brain that
can be located anatomically; its contours however



may be fuzzy. CZs are connected by anatomical
links, either neighborhood relationships, made of
a limited number or neuronal steps, or remote
links built of white matter. Information can only
be transmitted through these links.

The brain can hence be represented as a network
of interconnected CZs. Anatomical links consti-
tute oriented, across and inner links in the net-
work. Two links with opposite orientations may
exists between two CZs. In the CZ network,
propagation is largely automatic and constrained
by the network structure.

As shown in figure 1, two kinds of anatomical
connections exist. Most links are simple informa-
tion transmitters. Some are inhibitory links that
transmit to the target zone an inhibition order
instead of to-be-processed information.

wm=dzr>zxmomlenocroczoz

Figure 1. Part of a language-related network

From results in ) émonet et al. 1992)

In summary, any subpart of the brain can be rep-
resented as an oriented graph whose nodes are
cerebral zones and links are physical connections
between the zones. Knowledge for building the
corresponding structural network will be extracted
from our experiments (as in figure 1) and/or from
data in the literature. Each CZ can be interpreted
as to be a component, associated with a behavioral
and functional qualitative causal network.

Functional and behavioral modeling

e Hypotheses

One of our most fundamental hypotheses is the
existence of common operating mechanisms
among all the CZs, different CZ behaviors deriv-
ing from different instanciations of the mecha-
nisms. This assumption is supported by knowledge
on brain. plasticity - and cortical reorganization
(Sabatini et al, 1994). The basic assumption of brain
activation. experiments is that CZ’s activation
variations are good measures of their involvement
in the performing of a specific cognitive function.
From a computational viewpoint, this means that
information acknowledgment or processing in a
CZ will raise its activation level. Therefore, in a
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straightforward manner, activation can be coded
as an energy level. Moreover, information propa-
gating through the CZ network can be represented
as a couple (energy, type). An energy level can be
computed from physical parameters of auditory or
visual stimuli (i.e. exogenous information). In the
brain, information being the result of a neuronal
discharge, it makes sense to code it also as energy.
However, from our former hypotheses on brain
transmission information, any CZ must be able to
acknowledge incoming information. As energy
level is not discriminant enough, a typs has been
added in order to characterize a specific piece of
information. Each CZ “ knows ” to what extent it
is able to accept and process information signed
by a certain type.

e Model

The common operating mechanisms assumed
hereabove are implemented by a generic model.
Each CZ is considered as an energy processor
modeled by a dynamic causal network, the nodes
of which represent major mechanism components
as information acknowledgment, integration and
processing, inhibition, activation... An oriented
link between two nodes means an influence and a
temporal ordering between the origin and the tar-
get. The nodes’ states can, from our current
knowledge, be given only qualitative values, i.e.
real number intervals instead of precise numerical
values.

The CZ’s Type Preference Table (TPT) supports
the acknowledgment mechanism that assesses the
type of the received information. This mecha-
nism calculates the Type fuzzy weights for the
zone. The more the Type is preferred by the
zone, the larger the weight.

The generic model has five nodes (figure 2):

(1) Integration Buffer Node (IBN) : The rationale
for this node is that the information sampling
period is generally too short for a sample to be
meaningful. Meaning can be reached only after an
integration time-lag, specific to the zone. When
the generic model is instanciated for a specific
zone, there are as many integration buffer in-
stances IBN; = (IBNE;, IBNT);) as input CZs (i.e.
CZs originating anatomical pathways to the
zone). If the current zone is a primary zone (i.e. it
has no preceding zone), there are as many IBN; as
stimulus. Each IBN; is influenced by an Input In-
formation II; = (IIE;, IIT;), which can be either a
preceding zone’s Broadcast Node (see (4)), BN;,
or an information instance directly computed
from a stimulus properties. Each IBNE; instance is
the result of the integration of the input energy
IIE; over time. IBN instances have the following
properties :




* there is a rapid decrease of IBNE; when the
input Type changes,

* a too quick shift in the input Types allows no
acknowledgment,

* input information is considered as long as the
inhibition node is not active and the activation
energy AE is lower than a saturation threshold.

* IBNT; is the type of the II; currently being
integrated in IBN;j.
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Figure 2. The cerebral zone generic model

(2) Energy Broadcast Threshold (EBT) : As long
as the Activation Energy AE is below this thresh-
old, there is no information broadcast. EBT is a
function of all the IBNE; that varies with the
heterogeneity of the information pieces arriving
simultaneously at the zone and with the informa-
tion ambiguity. This implements the fact that
information processing in CZs is more efficient
(i.e. quicker, with a lower energy level) when the
zone is not overloaded by the mass of information
or puzzled by information ambiguity. The less
there are pieces of information and the more they
differ, the lowest the threshold.

(3) Activation Energy (AE) : Information broad-
cast occurs when AE > EBT. The Activation En-
ergy is a function of the Integration Buffer Node
Energies, weighted by the corresponding Type
weights ; it is also influenced by the Inhibition
Node Energy INE. AE varies between a Minimal
Threshold (MT) and a Saturation Threshold (ST).
MT represents the permanent brain activity while
ST allows a regulating mechanism to be imple-
mented (no input to a zone as long as its AE is
close to ST). AE variations are influenced by two
marginal components: information processing and
inhibition. The first component varies only with
the weight of the IBNE; influence (in fact, the
Type weights) : the more a Type is preferred, the
more its corresponding Energy will contribute to
AE. AE is an estimate of the zone activation
level; therefore, as a first model validation, its
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variations will be compared to those of the activa-
tion measurements.
(4) Broadecast Node (BN) : In the current state of
the research, the simplifying assumption is that
there is no real Type processing within the zone
and that BN = (BNE, BNT) is such that it corre-
sponds to the Integration Buffer Node that has
contributed the more to the variation of AE. BNT
is the Type of this Buffer Node and BNE is an
amplifying function of its Energy. The Broadcast
Node constitutes an Input Information for all the
CZs downstream the current zone. When informa-
tion is sent out of the zone, BN influences all
IBNs belonging to the zone by provokmg an en-
ergy discharge.
(3) Inhibition Node Energy (INE) ::Inmhibition
belongs to the class of regulation mechanisms. For
example, when many pathways are competent in
the processing of a specific information, inhibi-
tion can allow deactivation of the less efficient of
these pathways. An inhibition link and a normal
connection cannot simultaneously exist between
two zones. An inhibition link between two zones
has, in our model, the following effects :

* the target zone’s Activation Energy increases
briefly and the zone remains impermeable as
long as the Inhibition Node Energy is positive,

* after a peak increase, the INE decreases, if no
new inhibition impulse arrives at the zone.

For a given CZ, its model is an instanciation of

the generic model. Each parameter of the generic

model is given a value, specific to the zone, and
calculated with identification methods drawn from

Automatic Control techniques.

e Global model

A global model is directly derived from the corre-
sponding structural network and from the CZs’
instanciated networks (figure 3). When a CON-
NECT link exists between two zones, the up-
stream zone’s BN node is connected, for each
downstream zone, to one of its IBN nodes. An
IBN node is dedicated to a single preceding zone.
An INHIB link between two zones, creates a link
between the upstream BN and the downstream
INE. BN nodes belonging to different zones con-
nected to a specific CZ through INHIB links will
be connected to its unique INE node.

Such a model provides a way to simulate a fully
automatic, self-regulated, information propaga-
tion and brain activation mechanisms. Zope acti-
vation is completely data-driven and there is no
need of a goal to be expressed for some CZs to be
activated. The preferential activation of a given
network does not need either any strategy to take
place for it can be perfectly explained by the "all




direction broadcast” feature, in addition to the
acknowledgment and the inhibition mechanisms.
Another interesting feature is the "natural" im-
plementation of the behavior of structural net-
work cycles such as the « articulatory loop »
which is supposed to be a fundamental mechanism
of working memory in humans.

fa nerwork of components)

(A ser of local causal qun‘lmw networks)

/o5 /

(A causal thm nenwork)

Figure 3 Modeling levels

BioCaen : a flexible causal qualitative net-
work language and simulator

The structural model as well as the generic func-
tional model are written in BioCaen which is an
offspring of the Ca~En software (Bousson-& Trave-
Massuyés, 1994). We will describe hereafter Ca~En,
BioCaen and the specific implementation of the
generic functional model.

The causal qualitative simulator Ca~En

¢ The Ca~En knowledge representation formal-
ism
In Ca~En, time is dealt with explicitly, abstracted
to a logical clock-based sampled time. The clock
is set accordingly to the swiftness of the process.
The process variables may be either numeric (real-
valued) or symbolic. Numeric variables’ quality
Space is a value set which is assumed to be a closed
interval of reals; that of a symbolic variable is a
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finite set of symbols linearly ordered according to
the application context. The value of a numeric
variable may be any subinterval of its quality
space. Its variation is defined as its value change
within the unit of time. The variation value may
be a real number (if precisely known) or any in-
terval of reals.

The Ca~En formalism is based on a two-level rep-
resentation scheme for the description of the
relationships between the process variables: a
local constraint level and a global constraint level.

The local constraint level is in agreement with
our perception of a physical process das a net of
interacting variables influencing one another. This
is represented by a directed graph in which the
paths presume the perturbation flow causality.
The influences supported by the edges of the
graph allow for representing causal dependency
type knowledge. The Ca~En formalism allows for
two kinds of causal relations : (1) influence-based
relations which are concerned with cause-effect
interactions among numeric variables; (2) infor-
mation-based relations which are concerned with
direct information about variable states. Relations
of the latter kind are not useful in our application
and they are not described in this paper.

An influence-based relation between a variable X
and a variable Y is assumed to represent a linear
first order type relation, which means that the
influence corresponds to a linear first order differ-
ential equation. These relations are described by
means of the following predicates:

X Yc KT, T) or I-{X,Y,c K T, T)
where :

X, Y are the influencing and the influenced
variable, respectively;

c is the activation precondition of the causal
relation (the influence from X to Y is said to
be activated whenever ¢ holds);

K is a positive interval or real number repre-
senting the static gain of the influence;

T, is a positive real number or interval repre-
senting the delay of the influence, i.e. the
time needed by Y to react to a variation of
X;

T, is a positive real number or interval repre-
senting the influence response time, i.e. the
time needed by Y to get a new equilibrium
state after having been perturbed.

Note that the formalism allows one to cope with
imprecise temporal knowledge since T, and 7, can
be defined as intervals.



A weight w may eventually be associated with the
influence from X to Y to represent combination
distortion phenomena. It is expressed by means of
its relative order of magnitude with respect to the
weights of other influences on Y in a fuzzy coun-
terpart of the O(M) formalism that allows one to
compute automatically the fuzzy value of weights
as explained below (Bousson & Travé-Massuyés,
1993).
Given two quantities a and b, the O(M) formalism
proposes the seven following order of magnitude
relations :

a<<b (a>>b) a is much smaller (larger) than b

a-<b (a>-b) a is moderately smaller (larger)

than b

a~<b (a>~b) a is slightly smaller (larger) than b

a==b a is exactly equal to b
If r is an order of magnitude relation between a
and b, then (a r b) if, and only if (ab r 1))
(Mavrovouniotis & Stephanopoulos, 1988). Hence a
relation 7 can be characterized by the set of num-
bers which are in relation with 1. In our fuzzy
counterpart, the sets corresponding to the order
of magnitude relations are not crisp but fuzzy sets,
presenting then an overlapping region which
makes smoother the transition from one relation
to the other.
The automatic generation of numeric weights is
based on the marginal influence axiom: the mar-
ginal influence of a variable X on a variable Y is
the highest influence that X is able to exert on Y
when it is combined with influences coming from
other variables. In addition, it assumes that the
weights precedence graph is a high semi-lattice,
the maximal weight at the top of the lattice being
equal to one (from the above axiom). The algo-
rithm explores the weight lattice from its top
towards its leaves, in a width first manner (Bousson
& Travé-Massuyés, 1993).

The global constraint level is composed of
functional numeric constraints associated with
interval domains, e.g. constraints arising from
physmal laws. In other words, a global constraint
is.any mathematlcal equation - which may be non
linear as well - in which each unknown is assumed
to take on interval values; which still allows us to
manage, imprecise knowledge at this level.

e The Ca~En simulation algorithm

The input data are the causal model - including
initial conditions - and the evolution of the meas-
ured variables of the causal graph over time. The
output of the system is the behavior of each proc-
ess variable (Bousson & Travé-Massuyés, 1994). The
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temporal unit of the simulation is that of the logi-
cal clock. The following steps are executed :

1. At the local constraint level :

(1.1) Computation of the net variation: The
computation of the net variation is given by:

dy(t) = iw.ﬁy‘ (t) ()

where 8y(t) is the net variation of Y from instant
t-1 to instant ¢ and &/(1) is the variation induced
by &x,1) on Y assuming that only X, influences Y,
that is the marginal variation of ¥, on X. X, ,
i=1,...n, are the active variables influencing on Y,
dx,(1)is the net variation of X, from instant #-/ to
instant ¢ and w, is the weight assoc:ated to the
influence from X,.

For (X, Y ¢, K T;, T, the mﬂuence-based
relation, marginal variations are expressed as:

ad(t)/&+a,y(t)=bx,(t-T,) (2)

where coefficients a;, a, and b, are real numbers
or intervals.

If T, is the sampling period of the process behav-
ior, the values of Y and those of X, at the sampling
instants can be directly related by a recurrent
equation which is equivalent to (2) in a sampled
temporal scale.

y(t+1)=ant)+bx(t-d) 3)

where:
t stands for the logical time (an integer)
d is the least integer greater than or equal to
T,/ T
a=e'" and b=K(1-e™" 7 )if T, is finite (7
is the time-constant of the influence which
corresponds with a good accuracy to 7, /3)
a=1] and b= KT, if T, is infinite (integration
relation)
If we had a negative influence I-(X, ¥, ¢, K T, T,)
instead of I+ (X, Y, ¢, K T, T,), then the coeffi-
cient a would remain unchanged, but ¥ would un-
dertake a negative sign.
The recurrent equation relating the variation of ¥
to that of X, (the marginal variation) at sampling
instants is directly obtained from (3):

&'(1+1)=aBy (1) +bx (1-d,) @)

where :
=012,.., i=1 ...,n
a, b, and d, are the coefficients related to the
influence of X, on Y and are defined in the
same manner as in equation (3). The delays



and response times are automatically taken

into account.
The net variation of Y is then obtained by equa-
tion (1) which sums up all the marginal variations
weighted by the fuzzy weights of every influence
w, i=1,...n. These fuzzy weights are updated ac-
cording to the set of active influences at hand.

(1.2) Computation of the updated variables'

values : For each variable Y the net variation is
summed with the value of the variable at the pre-
vious clock tick. The result is an interval.

y(t)=y(t-1)+d(t) (5)

2. At the global constraint level :

(2.1) Refinement of the updated variables'
values : The numeric intervals obtained for the
updated values (Eq. 5) are refined with the global
constraints by performing a tolerance propagation
algorithm (Hyvdnen, 1991) on the set of variables.

The simulation results produced by the Ca~En
prediction module are envelopes that provide the
upper and lower bounds of the variable values at
each sampled instant.

BioCaen : adapting Ca~En to brain model-
ing requirements

BioCaen altogether is a restriction of Ca~En ca-
pabilities and extends the flexibility and expres-
siveness of Ca~En remaining features. It works
exclusively at the causal level : Ca~En global con-
straint level cannot be used here, as it is for
respresenting analytical knowledge which is not
available here. In fact, Ca~En global constraints,
when available, are only used to narrow the range
of qualitative results obtained from the local con-
straint propagation. Their use is not compulsory.
Therefore, in our domain, a restriction to the
local level can only improve the computational
efficiency.

BioCaen’s three major extensions of Ca~En causal
level are required by features of the cerebral in-
formation transmission model :

(1) Components : A structural model may be
censidered as a network ‘ef components (the CZs),
each component being itself a causal qualitative
network. A global model is a causal qualitative
network, automatically generated from its struc-
tural model and its components’ local networks
(figure 3).

(2) Node definitions : In the CZ generic model,
node variables represent a couple (energy, type).
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BioCaen needs therefore to extend Ca~En’s node
definition from a real (number or interval) vari-
able to a couple N=(Y,S) where :

¢ Y is a real variable whose values are
numbers or intervals,

¢ S is a symbolic variable having a finite
value set {s;, s;,..., S;}-

(3) Propagation functions: In Ca~En, the
function used to compute the nodes’ temporal
variations is unique and the same for every node
(cf. equations 4 and 1). In BioCaen, propagation
functions are not unique. They are provided in
functional libraries that are loaded together with
BioCaen. Therefore, anytime a propagation func-
tion is called by a model, its use is straightfor-
ward, provided the function exists in the libraries.
The choice of a model’s functions is up to the
user that builds the model. He/she can either use a
basic library provided with the system or add
his/her own library. This extension gives more
flexibility to the system behavior modeling. It is
made necessary by the fact that brain models
evolve very quickly and that we do need an
« hypothesis simulator ». However, if implemen-
tational problems linked to this extension are
currently solved, computational properties still
need to be studied. Completeness and soundness
concern only the energy component of a BioCaen
node (types have symbolic values). BioCaen, like
Ca~En, provides complete and non sound results,
that are value envelopes. However, new propaga-
tion functions may change dramatically the simu-
lator’s complexity, which must be studied under
different conditions (i.e. different propagation
function classes).

Four functions and a partial O(M) relation are
defined at each node N=(Y,S), the value set for S

being {s;,...,5; }. If {M=(X,C), i=1...n} is the
set of the nodes influencing N, {c]’,c;,...,r:;,I }the

value set of C; for i=1...n, and 8Y' the marginal
variation of Y under X,, we have :

e R, a fuzzy O(M) relation on O%:,c;,-..,c:,‘}
P

and W=O{v: sWiseers Wi }the set of the corre-
sponding ';I]JZZ}' weights

e F :U.{:l:’ci’”"c:n.}_’{SI"“’sk} gives the
value :11’ the target symbol from the influencing

node symbol values; the application of F is sub-
mitted to a precondition SC.



e f,, the marginal variation function, associated
to the influence of M, on N, such that

'(1)= f (&' (1=1)8(1-1)8,(1-T,),

n
G(t-1;)) )

The application of f,, is submitted to a precondi-

tion RC'.
e f_, the combination function, such that

dv(t)=f.(' (1)’ (1)...8" (1)) (1)
e f,, the update function, such that
y(t)=f,(y(t=1)8y(t)) (57)

BioCaen must be flexible enough to include vari-
ous local R, F, f, f. and f,. The implementation
strategy has therefore shifted from a global pack-
age (Ca~En) to a toolbox where function libraries
are provided and can be added. Currently, the
function library is restricted to the implementa-
tion of the generic model.

Implementation of the generic model

The generic functional model is a simple applica-
tion of BioCaen possnblhtles Let CZ be a spemf c
zone, and CZ i=l... r, such that for all i,

CONNECT (CZ' ,cz,r;) and CZ, j=1...
INHIB(CZ’ ,CZ,T}) ;

p, such
T/ and

T‘f mean that information propagation or inhibi-

that for all j,

tion order transmission have delayed effects.

| JBNT <TPT, where TPT is CZ’s type table,
=1

i.e. it is possible to give a weight to any incoming
type. That does not mean that any type will be
recognized, i.e. will be given a high weight. The
O(M) relation R, associated to CZ, has been de-
fined for TPT, with resulting weights W.

CZ’s nodes may be described as follows :

e IBN nodes

There are as many IBN nodes in CZ as preceding
zones to CZ For i=1,...,r1, IBN' = (IBNE, IBNT)
with IBNE being the node’s energy and IBNT
being its type.

(H Outpqts from the CZ s influence the variations
of IBNE in two different ways: their energy
variation is integrated in IBNE as long as their
type does not change whereas a type change pro-
duces a decrease of IBNE. Quick type shifts in the
inputs will therefore prevent IBNE to be high
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enough for the information getting pertinence.
The following influences hold :

I1+(BNE',IBNE',
((INE=0)and(AE<ST))1.T, ,»)

constant_influene(-K, ,IBNE',
((INE= 0)and(AE< ST Jand

((prec(IBNI'',1 ) # prec(BNT',T, ))))
where prec(X,T) = X(t-T)

The above influences hold as long as the zone is
not- inhibited and not saturated. Inhibition and
saturation make the cerebral zone « deaf », which
will entail a rapid decrease of the activation en-
ergy. The first one is a Ca~En influence, while the
second one’s precondition is an extension of
Ca~En’s conditions.

(2) It is assumed that after CZ has emitted infor-
mation, there is a sort of hush, and it becomes less
able to receive and interpret new information :

I-(BNE, IBNE',( prec( AE,1)> prec(EBT 1)),
K,.00)

The precondition being more complex than in
Ca~En, this is an extension of a Ca~En influence.

(3) Combination and update are similar to
Ca~En’s .

(4) The integration buffer type is that of the re-
ceived information: /BNT'(t)=BNT'(t-1T,)

e INE node

(1) As no zone is supposed to resist an inhibition
order, there is no type associated to an incoming
inhibition. Therefore the inhibition node has no
type.

(2) An inhibition order may have different
strengths (energy levels) and it is assumed that
CZ’s response to such an order is not immediate

after CZ receives the order (after the delay Tj )-

The response time to inhibition is supposed to be
intrinsic to each CZ. Therefore,

I+(BNE’,INE,t,1,T] ,T"™") holds.
(3) When CZ receives two or more inhibition
orders, they reinforce each other and their ener-

gies combine. Ca~En’s combination and update
functions are therefore used .

e EBT node

(1) This node is an energy threshold : as long as
the activation energy is below, there is no infor-
mation emission. Therefore, it has no type.



(2) It models the fact that CZ is sensitive to the
heterogeneity and the number of its incoming
pieces of information. Therefore its energy is not
dependent on variations of individual (IBNE
IBNT) Rather, it depends on the global incoming
information pattern. This can be expressed by the
fact that the energy at time t can only be calcu-
lated through an update function. There are no
influence or combination functions. Anytime, the
following equations hold :

EBT = EBT,,, - KZp‘Logp, -K, Zq, Logg,

=]

white: % rweighr(IBNT‘ ) ’
> weight(IBNT' )

=
weight(IBNT' )xIBNE'

Y weight(IBNT' JxIBNE'
i=l

0 <K, << K, to make overload less diffi-
cult than ambiguity ;

EBT,,;, is the value of EBT when there is
only one active IBN node.
This update function is based on the notion of
entropy. EBT will increase with overload, if too
many different types enter the zone at the same
time. It will increase also with ambiguity.

e AE node

(1) The activation energy is influenced by all inte-
gration buffers energies according to IBN’s type
weights. When incoming information to the zone
is not « recognized » (low weight), its energy par-
ticipates only to AE as acknowledgment energy.
When it is recognized (high weight), its energy
participates as processing energy. In addition, we
suppose that processing activity in itself creates
energy. This can be expressed, in an influence with
a variable gain, which extends a Ca~En influence:

I+ (IBNE',AE,t,K *weight(IBNT' )0,T!)

(2) Inhibition temporarily increases AE before the
rapid decrease due to the lack of incoming infor-
mation. This is written as
I+ (INE AE 1K, ,00).

(3) AE is calculated simply by adding up these
influences.

* BN node

When different information compete in order to
be processed, it is assumed that both the level of
recognition of the information and its energy will
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select the information to be broadcast. There-

fore :

BNE(1)= K, * max{weight(IBNT'(1))* BNE'(1),i= L. }

BNT(t)=IBNT"="(t)with :

weight( IBNT'="(t ) jx IBNE==(") (¢ ) =
max(weight(IBNT'(1)* IBNE'(t )i=1---r)

Information broadcast only occurs when the acti-
vation energy is higher than the broadcast thresh-
old, that is if the condition AE > EBT is met.

Conclusion

This paper, that reports a preliminary work, aims
at highlighting possible interactions between QR
and human brain mapping. Currently our work is
still in a development phase. A restricted version
of BioCaen compiler and simulator is already im-
plemented. From Ca~En to BioCaen, the language
has been notably augmented at two levels: the
structural network description level has been added
and the influence descriptions have been enriched
(for example, the influence gain which was a con-
stant is now an expression, and the influence con-
dition syntax is more complex). These changes,
together with the use of function libraries give
BioCaen all the expressiveness needed for brain
activation modeling. In fact, building the first
generic model aimed principally at getting perti-
nent specifications for BioCaen language. The
only current limitation to this expressiveness is
the fact that propagation function libraries accept
only Lisp functions. A more « natural » language
is going to be developed. In addition, a graphic
HMI is being designed so that any neuropsycholo-
gist could be able to design and simulate any
model. The two following steps of our work will be
completing the implementation and studying Bio-
Caen’s computational properties. Besides its obvi-
ous necessity, this will allow to get more confident
in the model simulation and to separate model
errors from computational errors. It is also a way.
to falsify the model if experimental data: fit the
simulation outputs. Indeed, BioCaen flexibility
allows to define node functions that could lead to a
non convergent system, which may not be found
out if test data are not numerous enough.

The generic model takes into account our first
hypotheses on brain information propagation.
This model that has few nodes and relationships,
has been designed to give a self-regulation capabil-
ity to the cerebral zones and an autonomous, data-
driven behavior to a structural network. Currently
it is evolving in order to give additional properties
to a zone, such as memory and learning capabili-



ties that are zone-dependent. It has to be imple-
mented and validated in order to make a pertinent
assessment of the model errors and to guide the
model evolution. The experimental validation is
particularly needed to assess the model physiologi-
cal plausibility. We planned to focus the validation
experiments on basic auditory processes in human
brain. We will capitalize on studies (Celsis et al,
1997) showing that brief acoustic events are coded
in the temporal cortex as separate units and that
this can be assessed in functional imaging experi-
ments. These experiments can manipulate the
temporal structure of stimuli so that brain coun-
terparts of temporal coding can be identified.
Mapping ERP with multiple surface electrodes will
be the best method to do so, combined with the
use of the BESA (Brain Electrical Source Analysis)
software (Scherg, 1990). Every experiment will be
based on the same principles : the simulation in-
puts are a brain zone network, the links of which
are exclusively established through anatomical and
physiological knowledge, neurophysiological and
neuropsychological data and stimulus values ; the
simulation outputs will be the envelopes of the
zones® activation node curves. These envelopes
will be compared to the activation values obtained
during the experiments on human subjects.

Extensions are already planned. An important
software extension concerns the information ex-
traction from stimuli. Currently this is "hand
made", that is the stimuli are artificially coded. It
would be an important improvement to extract
energy and type from the stimuli physical parame-
ters. This would lead to define more refined func-
tions for converting an information type, as it
circulates through the network. Another extension
is the modeling of brain information propagation
when sensory or visual stimuli are implied. It is
grounded on our belief that the brain propagation
mechanisms are not linked to a specific behavior
and that behavior is the outcome of different type
recognition capabilities and of connection pat-
terns between zones. One support to this assump-
tion are the well-known studies on hippocampus
(Carpenter & Grossberg, 1993 ; Squire & Zola, 1996)
that show that the non-specific mid-term memory
capability of this brain structure could be linked to
the great number of its connections with different
neocortical zones (Squire & Zola-Morgan, 1991).
Although we assume that the temporal evolution
of an activation pattern is the evidence of a spe-
cific cognitive function, the system is not able to
provide this function. Interpretation in terms of
cognitive functions is up to the neuropsychologist.
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This new approach, based on a systemic view-
point, of brain functioning, has shown, than de-
spite the biological complexity, cerebral modeling,
when taken at the right level of interpretation, is
not out of the scope of QR methods.
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