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Abstract

The computational properties of qualitative spa-
tial reasoning have been investigated to some de-
gree. However, the question for the boundary be-
tween polynomial and NP-hard reasoning prob-
lems has not been addressed yet. In this paper we
explore this boundary in the “Region Connection
Calculus” RCC-8. We extend Bennett'’s encoding
of RCC-8 in modal logic. Based on this encod-
ing, we prove that reasoning is NP-complete in
general and identify a maximal tractable subset
of the relations in RCC-8 that contains all base
relations. Further, we show that for this subset
path-consistency is sufficient for deciding consis-
tency.

Introduction

When describing a spatial configuration or when rea-
soning about such a configuration, often it is not pos-
sible or desirable to obtain precise, quantitative data.
In these cases, qualitative reasoning about spatial con-
figurations may be used.

One particular approach in this context has been
developed by Randell, Cui, and Cohn (1992), the so-
called Region Connection Calculus (RCC), which is
based on binary topological relations. One variant of
this calculus, RCC-8, uses eight mutually exhaustive
and pairwise disjoint relations, called base relations,
to describe the topological relationship between two
regions (see also Egenhofer (1991)).

Some of the computational properties of this cal-
culus have been analyzed by Grigni et al. (1995) and
Nebel (1995). However, no attempt has yet been made
to determine the boundary between polynomial and
NP-hard fragments of RCC-8, as it has been done for
Allen’s (1983) interval calculus (Nebel and Biirckert,
1995). We address this problem and identify a maxi-
mal fragment of RCC-8 that is still tractable and con-
tains all base relations.

* This research was partially supported by DFG as
part of the project FAST-QUAL-SPACE, which is part of the
DFG special research effort on “Spatial Cognition”.

As in the case of qualitative temporal reasoning,
this proof relies on a computer generated case-analysis
that cannot be reproduced in a research paper.’ Fur-
ther, we show that for this fragment path-consistency
is sufficient for deciding consistericy.? We also give an
estimation of how the efficiency of the general reason-
ing problem can be improved when using the maximal
tractable fragment.

Qualitative Spatial Reasoning with
RCC

RCC is a topological approach to qualitative spatial
representation and reasoning where spatial regions are
subsets of topological space (Randell et al., 1992).
Relationships between spatial regions are defined in
terms of the relation C(e, b) which is true iff the clo-
sure of region a is connected to the closure of region b,
i.e. if they share a common point. Regions themselves
do not have to be internally connected, i.e. a single re-
gion may consist of different disconnected parts. The
domain of spatial variables (denoted as X,Y, Z) is the
whole topological space.

In this work we will focus on RCC-8, but most of
our results can easily be applied to RCC-5, a subset
of RCC-8 (Bennett, 1994). RCC-8 uses a set of eight
pairwise disjoint and mutually exhaustive relations,
called base relations, denoted as DC, EC, PO, EQ,
TPP, NTPP, TPP~!, and NTPP™!, with the meaning
of DisConnected, Externally Connected, Partial Over-
lap, EQual, Tangential Proper Part, Non-Tangential
Proper Part, and their converses. Examples for these
relations are shown in Figure 1. In RCC-5 the bound-
ary of a region is not taken into account, i.e. one
does not distinguish between DC and EC and between
TPP and NTPP. These relations are combined to
the RCC-5 base relations DR for DiscRete and PP for
Proper Part, respectively.

Sometimes it is not known which of the eight base
relations holds between two regions, but it is possi-
ble to restrict to some of them. In order to represent

' The programs can be obtained from the authors.

?Due to space limitations, some of our proofs will only
be sketched while others will be left out. Full proofs can
be found in our technical report (Renz and Nebel, 1997).
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PO(X,Y) EQ(X.Y) NTPP(X.Y) NTPP}(X,Y)

Figure 1: Two-dimensional examples for the eight
base relations of RCC-8

this, unions of base relations can be used. Since base
relations are pairwise disjoint, this results in 2% differ-
ent relations, including the union of all base relations,
which is called universal relation. In the following we
will write sets of base relations to denote these unions.
Using this notation, DR, e.g., is identical to {DC, EC}.
Spatial formulas are written as XRY', where R is a
spatial relation. Apart from union (U), other opera-
tions are defined, namely, converse (™), intersection
(M), and composition (o) of relations. The formal def-
initions of these operations are:

VX,Y: X(RUS)Y & XRYVXSY,
VX,Y: X(RNS)Y & XRYAXSY,
VXY : XR-Y o VYRX,

VX,Y: X(RoS)Y +« 3Z:(XRZAZSY).

The compositions of the eight base relations are
shown in Table 1. Every entry in the composition
table specifies the relation obtained by composing the
base relation of the corresponding row with the base
relation of the corresponding column. Composition
of two arbitrary RCC-8 relations can be obtained by
computing the union of the composition of the base
relations.

A spatial configuration can be described by a set
© of spatial formulas. One important computational
problem is deciding consistency of O, i.e. deciding
whether it is possible to assign regions to the spatial
variables in a way that all relations hold. We call this
problem RSAT. When only relations of a specific set
S are used in ©, the corresponding reasoning prob-
lem is denoted RSAT(S). In the following S denotes
the closure of S under composition, intersection, and
converse.

Encoding of RCC-8 in Modal Logic

In this work we use Bennett’s (1995) encoding of
RCC-8 in propositional modal logic. A concise in-
troduction to modal logic is given in the appendix.
Bennett obtained this encoding by analyzing the rela-
tionship of regions to the universe I/. He restricted his
analysis to closed regions that are connected if they
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share a point and overlap if they share an interior
point. If, e.g, X and Y are disconnected, the comple-
ment of the intersection of X and Y is equal to the
universe. Further, both regions must not be empty,
i.e. the complements of both X and Y are not equal to
the universe. In this way the eight base relations can
be represented by constraints of the form (m = U),
called model constraints, and (m # U), called entail-
ment constraints, where m is a set-theoretic expression
containing perhaps the topological interior operator 1.
Any model constraint must hold, whereas no entail-
ment constraint must hold (Bennett; 1994).

The model and entailment constraints can be en-
coded in modal logic, where spatial variables corre-
spond to propositional atoms and the interior opera-
tor i to a modal operator I (see Table 2).

The axioms for ¢ must also hold for the modal oper-
ator I, which results in the following axioms (Bennett,
1995):

IX - X (1)

IIX & IX (2)

IT + T(for any tautology T) (3)
I(XAY) & IX ALY, (4)

Axioms 1 and 2 correspond to the modal logics T and
4, axioms 3 and 4 already hold for any modal logic K,
so I is a modal S4-operator.

The four axioms specified by Bennett are not suf-
ficient to exclude non-closed regions. In order to ac-
count for that, we add two formulas for each atom,
which correspond to topological properties of closed
regions. A closed region is the closure of an open re-
gion and the complement of a closed region is an open
region:

X o ~I-LX (5)
-X & I=X. (6)

In order to combine the different model and entail-
ment constraints, Bennett (1995) uses another modal
operator 0. Om is interpreted as m = U and -Om
as m # U. Any model constraint m can be writ-
ten as Om and any entailment constraint as -Om. If
OX is true in a world w of a model M, written as
(M,w|-0X), then X must be true in any world of
M. So O is an S5-operator with the constraint that
all worlds are mutually accessible. Therefore Bennett
(1995) calls it a strong S5-operator. The encoding of
RCC-8 in modal logic is a multi-modal logic, with an
S4-operator and a strong S5-operator.

Let O be a set of RCC-8 formulas and Reg(©) be the
set of spatial variables used in ©, then m(©) specifies
the multi-modal encoding of ©, where

m(@)=( A m;(XRY))A( A m,(X))
X€Reg(O)

XRYe®©
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s DC EC PO TPP NTPP TPP! | NTPP! EQ
DC - PO,TPP |PO,TPP|PO,TPP| PO.TPP DC DC DC
NTPP | NTPP | NTPP NTPP
DC.EC | DC.EC | DC.EC | EC.PO PO
EC ||rPO,TPP'!| PO, TPP |PO,TPP| TPP TPP DC.EC DC EC
NTPP! |TPP1EQ| NTPP | NTPP NTPP
DC.EC | DC.EC PO PO DC.EC | DC.EC
PO ||PO.,TPP!|PO,TPP! * TPP TPP PO, TPP!|PO,TPP*| PO
NTPP! | NTPP! NTPP NTPP NTPP! | NTPP!
DCTEC | 1pp DC.EC | DC.EC
TPP DC DCEC |PO,TPP| \ 0o NTPP PO,TPP [PO,TPP’!| TPP
NTPP TPP L EQ| NTPP!
DC.EC DC.EC
NTPP DC DC |PO,TPP| NTPP NTPP PO,TPP . NTPP
NTPP NTPP
DC.EC | EC,PO PO | PO.EQ FO =
TepP! |[PO.TPP!| TPP?! | TPP! | TPP TPP NTPP-} NTPP! | TPP!?
~NTPP! | NTPP! [NTPP!| TPP! NTPP
DC,EC PO PO PO PO, TPP!
NTPP! || PO, TPP'| TPP! | TPP! | TPP! | TPP,NTPP | NTPP! | NTPP! |NTPP!
NTPP! | NTPP! |NTPP! [NTPP! INTPPLEQ
EQ DC EC PO TPP NTPP TPP! | NTPP! EQ

Table 1: Composition table for the eight base relations of RCC-8, where * specifies the universal relation

Relation Model Constraints Entailment Constraints
DC(X,Y) (X AY) -X,-Y

EC(X,Y) ~(IX ALIY) ~(X AY),=X,-Y
PO(X,Y) = S(IXAIY), X 2 Y,Y = X,-X,-Y
TPP(X,Y) XY XoIY,Y - X,-X,~Y
TPPY(X,Y) Y=+ X Y=SIX,X2Y,-X,~Y
NTPP(X,Y) X1y Y = X,-X,~Y
NTPP~(X,Y) Y 51X X-oY,-X,~Y

EQ(X,Y) X-Y,Y+X -X,-Y

Table 2: Encoding of the base relations in modal logic (Bennett, 1995)

m;(XRY) is a disjunction of the conjunctively con-
nected model and entailment constraints for the base
relations in R. mgy results from the axioms of the
I-operator and the additional properties of closed re-
gions: -

ma(X) = 0OIX = X)AJ(IX = IIX)
AD(=X = I-X) AO(X — -I-IX).

O(ILX = IX), O(I-X = -X) and O(-I-IX — X)
are entailed by the other formulas and can be ignored.
As follows from the work by Bennett (1995), © is con-
sistent iff m(©) is satisfiable.

In order to refer to the single model and entailment
constraints, we will introduce some abbreviations.

Definition 1 Abbreviations for the
straints:

model con-

azy, = 0O((XAY))
Bzy = O(X=Y)
Ty = 0O = X)
Ay = O(H(IXAILY))
By = DX-=1IY)
C.y, = 0O - IX).

As the entailment constraints are negations of the
model constraints, they will be abbreviated as nega-
tions of the above abbreviations. When it is obvi-
ous which atoms are used, the abbreviations will be
written without indices. The abbreviations can be re-
garded as “propositional atoms”. Then it is possible
to write the modal encoding m,; (X RY’) of every rela-
tion R of RCC-8 as a “propositional formula” of ab-
breviations. We will call this formula the abbreviated
form of R. In the remainder we will use the encod-
ing of my (X RY') such that the abbreviated form is in
conjunctive normal form (CNF). .



Computational Properties of RCC-8

In this section we prove that reasoning with RCC-8 as
well as RCC-5 is NP-hard. A similar but weaker result
has been proven by Grigni et al. (1995) (see Related
Work).

In this paper NP-hardness proofs for different sets S
of RCC-8 relations will be carried out. All of them use
a reduction of a propositional satisfiability problem
to RSAT(S) by constructing a set of spatial formulas
O for every instance I of the propositional problem,
such that © is consistent iff 7 is a positive instance.
These satisfiability problems include 3SAT, NOT-ALL-
EQUAL-3SAT where every clause has at least one true
and one false literal, and ONE-IN-THREE-3SAT where
exactly one literal in every clause must be true (Garey
and Johnson, 1979).

The reductions have in common that every lit-
eral as well as every literal occurrence L 1s reduced
to two spatial variables X; and Y; and a relation
R=R;URy, where RN Ry =0 and X RY . Lis
true iff Xy R,Y 1 holds and false iff X R;Y; holds.
Additional “polarity” constraints have to be intro-
duced to assure that for the spatial variables X _; and
Y ., corresponding to the negation of L, X .t R;Y 1
holds iff X R;Y | holds, and vice versa. Using these
polarity constraints, spatial variables of negative lit-
eral occurrences are connected to the spatial variables
of the corresponding positive literal, and likewise for
positive literal occurrences and negative literals. Fur-
ther, “clause” constraints have to be added to assure
that the clause requirements of the specific proposi-
tional problem are satisfied in the reduction.

Theorem 2 RSAT(RCC-5) is NP-hard.

Proof Sketch. Transformation of NOT-ALL-EQUAL-
3SAT to RSAT(RCC-5) (see also Grigni et al. (1995)).
R, = {PP} and Ry = {PP™'}. Polarity constraints:
X {PP,PP! } X, Y {PP,PP! Wz,
X {PO}Y_.,Y {PO}X ;.

Clause constraints for every clause ¢ = {¢, j, k}:

Xi{PP,PPT}X;, X;{PP,PP 1} X}, X {PP,PP Y} X,,
Xi{PO}Y, X;{PO}Y;, X {PO}Y;. s

Since RCC-5 is a subset of RCC-8, this result can be
easily applied to RCC-8.

Corollary 3 RSAT(RCC-8) is NP-hard.

In order to identify the borderline between
tractability and intractability, one has to examine all
subsets of RCC-8. We limit ourselves to subsets con-
taining all base relations, because these subsets still
allow to express definite knowledge, if it is available.
Additionally, we require the universal relation to be
in the subset, so that it is possible to express com-
plete ignorance. This reduces the search space from
2756 subsets to 2247 subsets. We proved a property
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that has likewise been used in identifying the max-
imal tractable subset of Allen’s calculus (Nebel ang
Biirckert, 1995) that can be used to further reduce
the search space.

Theorem 4 RSAT(g) can be polynomially reduced to
RSAT(S)

Corollary 5 Let S be a subset of RCC-8.
1. RSAT(S) € P iff RSAT(S) € P.
2. RSAT(S) is NP-hard iff RSAT(S) is NP-hard.

The first statement of Corollary 5 can be used to
increase the number of elements of tractable subsets
of RCC-8 considerably. With the second statement
of Corollary 5, NP-hardness proofs of RSAT can be
used to exclude certain relations from being in any
tractable subset of RCC-8. The NP-hardness proof
of Theorem 2, e.g., only uses the relations {PO} and
{PP,PP~'}. So for any subset S with the two rela-
tions contained in &, RSAT(S) is NP-hard. The follow-
ing NP-hardness results can be used to exclude more
relations.

Lemma 6 Let S be a subset of RCC-8 containing all
base relations. If any of the relations {TPP,NTPP,
TPP~! NTPP~'},

{TPP, TPP '}, {NTPP,NTPP!}, {NTPP,TPP~ 1
or {TPP,NTPP~'} is contained in S, then RSAT(S)
ts NP-hard.

Proof Sketch. When R i U R, is replaced
by {TPP, NTPP TPP~!,NTPP~'}, {TPP, TPP !} or
{NTPP,NTPP~'}, the transformation of Theorem 2
can be applied. For {NTPP,TPP~'} and {TPP,
NTPP~'} ONE-IN-THREE-3SAT can be reduced to
RSAT using the same transformation steps. .

By computing the closure of all sets containing the
eight base relations together with one additional rela-
tion, the following lemma can be obtained.

Lemma 7 RSAT(S) is NP-hard for any subset S of
RCC-8 containing all base relations together with one
of the 72 relations of the following sets:

1={R|{PO} Z R and ({TPP,TPP"!'} C R or
{NTPP,NTPP~!} C R)},
N; = {R|{PO} € R and ({TPP,NTPP™'} C R or
{TPP™!,NTPP} C R)}.

Transformation of RSAT to SAT

For transforming RSAT to propositional satisfiability
(SAT) we will transform every instance © of RSAT to
a propositional formula in CNF that is satisfiable iff
© is consistent. We will start from m(@©), the multi-
modal encoding of ©, and show that whenever m(8)
is satisfiable it has a Kripke model of a specific type.



This model will then be used to transform m(©) to a
propositional formula.

m(@) is satisfiable if it is true in a world w of
a Kripke model M = (W, {R; = W x W,R, C
W x W},n), where W is a set of worlds, R, the
accessibility relation of the O-operator, R, the ac-
cessibility relation of the I-operator, and = a truth
function that assigns a truth value to every atom in
every world. The truth conditions for M,w |Fm(9)
can be specified as a combination of truth condi-
tions of the single atoms according to the form of
m(©®). In this way M,w|-Ip, eg.. can be writ-
ten as (Vu : wRouM,ullFy) and M,w|--Ip as
(Fu : wRyu.M,ulF--p). We will call this form of
writing M |- m(©) the ezplicit form of m(©).

Before transforming m(©) to a propositional for-
mula, we have to show that there is a Kripke model
of m(©®) that is polynomial in the number of spatial
variables n.

Definition 8 Letu € W be a world of the model M.
e u is a world of level 0 if vRou only holds for v = u.

e u is ¢ world of level | + 1 if vRou holds for a world
v of level | and there is no world v # u of level > 1.

We assume that every occurrence of a sub-formula
of m(©) of the form -0, where y contains no O oper-
ators, introduces a new world of level 0. As these sub-
formulas correspond to entailment constraints, the
number of worlds of level 0 is polynomial in n.

For every spatial variable X and every world w
there might be sub-formulas that force the existence
of a world u with wRsu where X is true or where =X
is true. Because there are n different spatial variables,
2n different worlds u with wRsu are sufficient for each
world w.

Definition 9 An RCC-8-frame ¥ = (W,{R:, R2})
has the following properties:

1. W contains only worlds of level 0,1 and 2.

2. For every world w of level k (k = 0,1) there are
ezactly 2n worlds u of level k + 1 with wRou.

3. For every world w of level k there is ezactly one
world u for every level 0 <[ < k with uRyw.

An RCC-8-model is based on an RCC-B-fmme.

Lemma 10 m(0©) is satisfiable iff M, w |- m(@) for
an RCC-8-model M with polynomially many worlds.

Now it is possible to transform the explicit form
of m(©) to a propositional formula p(m(©)) in CNF
such that p(m(©)) is satisfiable iff m(©) is satisfiable
in a polynomial RCC-8-model M. For this purpose,
for every world w and every atom X a propositional
atom X ?Ew) is introduced which stands for the truth

w)

of atom X in world w of the RCC-8-model M. The
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functions f and g are necessary to preserve the struc-
ture of the RCC-8-frame in propositional logic. f(w)
determines the world of level 0 with f(w)Rsw. g(w)
determines the level and the position of w in the frame
with respect to f(w).

Universally quantified truth conditions are trans-
formed into conjunctions over the corresponding truth
conditions. In order to cope with existentially quan-
tified truth conditions, we use the property of RCC-8-
frames that for every world w of level ! there are ex-
actly 2n worlds u of level [ + 1 with wRsu. Each of
these 2n worlds will be reserved for a different positive
or negative literal. Suppose, e.g., w is a world of level 1
and u is the world of level 2 with wR,u that is reserved
for -X. If u holds X, then all 2n worlds v of level 2
with wRsv hold X. If any of the 2n worlds holds =X,
then u also holds ~X. To assure that these proper-
ties hold, additional propositional formulas have to be
specified for each atom X. These formulas are Horn
formulas. Using this property of RCC-8-frames, exis-
tentially quantified truth conditions are transformed
into truth conditions on worlds w of a particular level
and position g(w).

Theorem 11 RSAT(RCC-8) can be polynomially re-
duced to SAT.

Together with Corollary 3 this leads to the following
corollary.

Corollary 12 RSAT(RCC-S) is NP-complete.

Tractable Subsets of RCC-8

In order to identify a tractable subset of RCC-8, we
analyze which relations can be expressed as proposi-

tional Horn formulas, as satisfiability of Horn formulas
(HORNSAT) is tractable.

Proposition 13 Applying the transformation p to
the model and entailment constraints, to the azioms
for I, and to the properties of closed regions leads to
Horn formulas.

Since the model constraints @ and A are trans-
formed to indefinite Horn formulas, the transforma-
tion of any disjunction of these constraints with any
other constraint is also Horn. All relations with an
abbreviated form using only abbreviations or disjunc-
tions of abbreviations transformable to Horn formu-
las can be transformed to Horn formulas. In this way
64 different relations can be transformed to Horn for-
mulas. We call the subset of RCC-8 containing these
relations Hg (see Appendix B).

Theorem 14 RSAT(Hs) can be polynomially reduced
to HORNSAT and therefore RSAT(Hs) € P.

Theorem 15 ﬁs contains the following 148 rela-
tions:

Hg = RCC-8\ (M; UN3 UNG)



with Ny and N3 as defined in Lemma 7 and

N3 = {RI{EQ} C R and (({NTPP} C R,{TPP} £ R)
or ({(NTPP™'} C R, {TPP~'} Z R))}.

For proving that Hs is a maximal tractable subset
of RCC-8, we have to show that no relation of N3 can
be added to Hg without making RSAT intractable.

Lemma 16 The closure of every set containing
Hs and one relation of N3 contains the relation

{EQ.NTPP}.

Therefore it is sufficient to prove NP-hardness of
RSAT(#Hs U {EQ,NTPP}) for showing that Hg is a
maximal tractable subset of RCC-8.

Lemma 17 RSAT(#Hg U {EQ,NTPP}) is NP-hard.

Proof _Sketch. Transformation of 3SAT to
RSAT(HgU {EQ,NTPP}). R; = {NTPP} and Ry =
{EQ}. Polarity constraints:

. Xp{EC,NTPP}X_ ., Y {TPP}Y .,
X {¥PP,NTPP}Y ,Y {EC,TPP} X,

Clause constra.ix_lts for each clause ¢ = {1, 7, k}:
}".-{NTPP"}Xj,Yj{NTPP"}Xk,Y;,{NTPP"}Xu

Theorem 18 Hs is a mazimal tractable subset of
RCC-8.

It has to be noted that there might be other maxi-
mal tractable subsets of RCC-8 that contain all base
relations.

As 'Hs is tractable, the intersection of RCC-5 and
Hg is also tractable. We will call this subset Hs.

Theorem 19 ?-{5 1s the only mazimal tractable subset
of RCC-5 containing all base relations.

Applicability of Path-Consistency

As shown in the previous section, RSAT(Hs) can be
solved in polynomial time by first transforming a set
of Hg formulas to a propositional Horn formula and
then deciding it in time linear in the number of literals.
This way of solving RSAT does not appear to be very
efficient.

As RSAT is a Constraint Satisfaction Problem
(CSP) (Mackworth, 1987), where variables are nodes
and relations are arcs of the constraint graph, algo-
rithms for deciding consistency of a CSP can also
be used. A correct but in' general not complete
O(n?) algorithm for deciding inconsistency of a CSP is
the path-consistency method (Mackworth, 1977) that
makes a CSP path-consistent by successively remov-
ing relations from all edges using

Vk : Ri; + Rij N (Rix o Ry;j),

where 1, j, k are nodes and R;; is the relation between
i and j. If the empty relation occurs while performing
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this operation, the CSP is not path-consistent, other-
wise it is.

In this section we will prove that path-consistency
decides RSAT(’H.g) This is done by showing that the
path-consistency method finds an inconsistency when-
ever positive unit resolution (PUR) resolves the empty
clause from the corresponding propositional formula.
As PUR is refutation-complete for Horn formulas,
it follows that the path-consistency method decides
RSAT(H3g). The only way to get the empty clause is
resolving a positive and a negative unit clause of the
same variable. Since the Horn formulas that are used
contain only a few types of different clauses, there are
only a few ways to resolve unit clauses using PUR.

Definition 20

e Ry denotes the set of relations of Hg with the con-
junct K appearing in thew abbreviated form.

e Ry, K, denotes Rk, U Rk,.
e Rr denotes R,UR,yyURAvyURcURavcURAvc.

® An Rg-chain Ry (X,Y) is a path from region X
to region Y, where all relations between successive
regions are from Rg.

Proposition 21 Let © be a set of Hg-formulas and
p(m(©)) be the corresponding Horn formula.

o A positive unit clause {X ?i':,)]} can only be resolved

from {Y;{[:))} and a clause of p(m(©)) resulting
from XRrY € ©. When such a resolution is possi-
ble, XR, AY cannot hold so X R, cY must hold.

; X (w)
* A negative unit clause {~X7 '} can only be re-

solved from {Y;({::))} and a clause of p(m(©)) re-

sulting from X R, oY € ©.

Lemma 22 If the positive unit clause {X ;E:’J‘;} can

be resolved with PUR using an Rr-chain from X to
Y, the path-consistency method results in XR, cY.

Using Lemma 22, it can be proven that the path-
consistency method decides RSAT(Hg). Using the
proof of Theorem 4, it is possible to express every,
relation of Hg as a Horn formula. Then the following
theorem can be proven.

Theorem 23 The path-consistency method decides
RSAT('Hs)

Another interesting question is whether and for
which sets of relations the path-consistency method
also decides the minimal-label problem RMIN. As the
following proposition shows, this is not the case even
for the set s, the intersection of Hg with RCC-5.

Proposition 24 The path-consistency method is not
sufficient for deciding the minimal-label problem
RMIN(Hs).



Proof. The following figure shows a constraint graph
that is path-consistent but not minimal. The relation
between A and D can be refined to PO but not to PP.

Related Work

Nebel (1995) showed that RSAT(B) can be decided
in polynomial time, where B is the set of the RCC-8
base relations. Since B C Hg, our result is more gen-
eral. Further, B contains only 38 relations, whereas
Hs contains 148 relations, i.e. about 58% of RCC-8.

Grigni et al. (1995) proved NP-hardness of problems
similar to RSAT. For instance, they considered the
problem of relational consistency, which means that
there exists a.path-consistent refinement of all rela-
tions to base relations, and showed that this problem
is NP-hard. While our NP-hardness result on RSAT
implies their result, the converse implication follows
only using the above cited result by Nebel (1995).

In addition to this syntactic notion of consistency,
Grigni et al. (1995) considered a semantic notion of
consistency, namely, the realizability of spatial vari-
ables as internally connected planar regions. This no-
tion is much more constraining than our notion of con-
sistency. It is also computationally much harder.

Applicability of Hg

In this section we will discuss some practical advan-
tages of the theoretical results obtained so far. One
obvious advantage of the maximal tractable subset Hg
is that the path-consistency method can now be used
to decide RSAT when relations of g are used and not
only when base relations are used.

As in the case of temporal reasoning, where the us-
age of the maximal tractable subset ORD-HORN has
been extensively studied (Nebel, 1997), Hz can also
be used to speed up backtracking algorithms for the
general NP-complete RSAT problem. Previously, ev-
ery spatial formula had to be refined to a base relation
before the path-consistency method could be applied
to decide consistency. In the worst case this has to
be done for all possible refinements. Supposing that
the relations are uniformly distributed, the average
branching factor, i.e. the average number of different
refinements of a single relation to relations of B is 4.0.

Using our results it is sufficient to make refinements
of all relations to relations of Hs. Except for four
relations, every relation not contained in ‘Hg can be
expressed as a union of two relations of Hg, the four
relations can only be expressed as a union of three

323

#s relations. This reduces the average branching fac-
tor to 1.4375. Both branching factors are of course
worst-case measures because the search space can be
considerably reduced when path-consistency is used
as a forward checking method (Ladkin and Reinefeld,
to appear).

The following table shows the worst-case running
time for the average branching factors given above.
All running times are computed as b(" ~")/2 where
b is the average branching factor and n the number
of spatial variables contained in ©. We assumed that
100.000 path-consistency checks can be performed per
second.

#spatial variables | B (4.0) | #Hg (1.4375)

3 10sec Jmsec

7 500aays 20msec

10 104years 2min
Summary

We analyzed the computational properties of the
qualitative spatial calculus RCC-8 and identified the
boundary between polynomial and NP-hard frag-
ments. Using a modification of Bennett's encoding of
RCC-8 in a multi-modal propositional logic, we trans-
formed the RCC-8 consistency problem to a problem
in propositional logic and isolated the relations that
are representable as Horn clauses. As it turns out,
the fragment identified in this way is also a maximal
fragment that contains all base relations and is still
computationally tractable. Further, we showed that
for this fragment path-consistency is sufficient for de-
ciding consistency.

As in the case of qualitative temporal reasoning
(Nebel, 1997), our result allows to check whether the
relations that are used in an application allow for a
polynomial reasoning algorithm. Further, if the appli-
cation requires an expressive power beyond the poly-
nomial fragment, it can be used to speed up back-
tracking algorithms.

Appendix A: Basics on Modal Logic

Propositional modal logic (Fitting, 1993; Chellas,
1980) has the same syntax as standard propositional
logic except for an additional unary operator O. One
common approach to interpret modal logical formulas
are the Kripke semantics, where models M are build
upon so-called frames F = (W, R) that consist of a
set of worlds W together with an accessibility relation
R C W x W defined on worlds, and a truth function
m that assigns truth values to all the proposnmnal
atoms in every world.

The truth of a modal formula t,b in a. world w of
a model M, written as M,w |- ¢, is defined on the
inductive structure of ¢:



M,wlra
.M,w|l-—-¢r
MuwlFoAy
MuwlFoVvy
MuwlFo—=v
JM,W!I_ Dt“b

iff
iff
iff
iff
iff
iff

w(w,a) = true
M,wlfo

M,w|-¢ and M,w|-9¢
MuwlF¢or Mw|-v¥
M,w|foor Mw|-¢
Vu:wRuM,ul-o

It can be seen that a modal operator is closely con-
nected to the corresponding accessibility relation.

A modal logic is determined by a set of frames, while
frames can be determined either by specifying particu-
lar relations or defining axioms that all corresponding
frames must hold. Some well-known modal logics are
given in the following table:

Name | Relation | Axiom

reflexive

oA 4 X

transitive
euclidian

O(¢ = v) = (0o - DY)
O¢ — ¢

O¢ — O0O¢

-0¢ — O-0¢

K is the set of all frames. Other modal logics can
be obtained by combining these logics. Two of them,
which are of particular interest in this paper, are 54
and S5. 5S4 are all frames that are K and T as well as
4. S5-frames are both S4 and 5, they have the special
property that worlds are clustered. All worlds of a
particular cluster are mutually accessible.

In a multi-modal logic it is possible to use more than
one modal operator, where every operator O; has it's
own accessibility relation R;, defined on the same set
of worlds. The D-rule defined above has to be changed

to different O;-rules:

M,w l'_ D,¢

iff VYu:wRuM ulo.

Appendix B: Abbreviated Form of H;

Relation Abbreviated Form
{DC} a

{EC} ~aAhA

{DC,EC} A

{PO} “BA-yA-A
{DC,PO} SBA-YA(aV-A)
{EC,PO} —aA-f Ay
{DC,EC,PO} =B A~y

{TPP} BA-yA-B
{DC,TPP} -yA-BA(aVp)
{EC, TPP} “aA-yA-BA(AVp)
{DC,EC, TPP} -YA-BA(AVf)
{PO,TPP} -y A-AA-B
{DC,PO, TPP} =y A=BA(aV-4)
{EC,PO, TPP} —~aA-yA-B

{DC,EC.PO, TPP}
{NTPP}

{DC,NTPP}
{EC,NTPP}
{DC,EC,NTPP}
{TPP,NTPP}
{DC.TPP,NTPP}
{EC, TPP,NTPP}
{DC,EC, TPP,NTPP}
{PO, TPP,NTPP}
{DC,PO, TPP,NTPP}
{EC,PO, TPP,NTPP}
{DC,EC,PO, TPP,NTPP}
{TPP~1}

{DC, TPP 1}

{EC, TPP~!}

{DC,EC,TPP~'}
{PO, TPP~'}
{DC,PO,TPP™'}
{EC,PO, TPP™'}
{DC,EC,PO, TPP™!}
{NTPP~1}
{DC,NTPP™!}
{EC,NTPP~!}
{DC,EC,NTPP~'}
{TPP~! NTPP~'}
{DC, TPP~} ,NTPP™'}
{EC,TPP~I NTPP'}
{DC,EC, TPP~! ,NTPP™'}
{PO, TPP~! NTPP™!}
{DC,PO, TPP~! NTPP'}
{EC,PO, TPP~! NTPP™'}
{DC,EC, PO,

TPP~! NTPP~'}
{EQ}
{DC,EQ}
{EC,EQ}

{DC,EC,EQ}
{TPP,NTPP,EQ}
{DC, TPP,NTPP,EQ}
{EC,TPP,NTPP,EQ}
{DC,EC, TPP,NTPP,EQ}
{TPP~! NTPP~! EQ}
{DC,TPP~! NTPP~' EQ}
{EC,TPP~},NTPP~! EQ}
{DC,EC, TPP~! ,NTPP~! EQ}
{PO,TPP,NTPP,
TPP~!,NTPP~!,EQ}
{DC,PO, TPP,NTPP,
TPP~!,NTPP!,EQ}
{EC,PO, TPP,NTPP,
TPP~! NTPP~! EQ}

-y A-B

-yAB

-vyA(aV B)

—aA-yA(AV B)

~yA(AV B)

BA-y

—yA(aV B)

—~a A=y A(AVB)

~yA(AVB)

-yA-A

-y A(aV=-A4)

—a A -y

ﬂ‘)‘

“BAyA=C

“BA-CA(aV?y)

—aA=FA=C
AAVYy)

“BA-CA(AVYy)

“BA-AN-C

“BA-CA(aV-A)

—aA-BA-C

-8 A-C

-BAC

-8A(aVvC)

~aA-8A(AVC)

~BA(AVC)

B Ay

~8A(aVy)

—aA-BA(AVY)

“BA(AVYy)

-4 A-A

=8 A (aV-4)

-a A -8

-8

BA~y

(@aVB)A(aVvy)

~aA(AVp)
A(AV )

gAvﬁ)/\(AV'r)

(aVvp)
~aA(AVpP)
(AvB)

v

(@Vvy)
—aA(AV7y)
(Av7)

-A
(aVv-A)

-a
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