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Abstract

The second derivative sign-equality assumption
has to be made for the derivation of expressions
for higher-order derivatives of chattering system
variables in the qualitative simulation of models
containing monotonic function constraints.
Kuipers et al. [1] established this method and
showed that prediction failure is possible when
the sign-equality assumption is utilized. We
present a closer examination of the unwarranted
modeling restrictions entailed by this assumption
in connected tank systems. We show that all the
systems which are wvalidly considered in
simulations with HOD constraints necessarily
contain tanks with quite atypical shapes. We
conclude that the chattering and spurious
behavior elimination problem for systems of
connected tanks with reasonable shapes is still
open.

Introduction

Kuipers er al. [1] presented a method of utilizing
higher-order derivative information to eliminate
chattering behavior in qualitative simulation. As
explained clearly in [1], this method sacrifices
soundness (i.e. the ability to predict all qualitatively
distinct behaviors that might be exhibited by all real
systems corresponding to the input model) if
monotonic function constraints are included in the
system model. The reason for this is the sign-
equality assumption that has to be made at certain
points during the simulation for obtaining
expressions for the second derivatives of the
chattering variables. Each instance of the sign-
equality assumption imposes a constraint which is
not present in the input on one of the functional
relationships - in ‘the system model. Behaviors
predicted by the simulator have to satisfy these
additional constraints as well as the original model-
imposed ones, and so some genuine system
behaviors that do not satisfy these unwarranted
constraints are missed.

In this paper, we present a closer examination of
the subsets of systems that are represented by the
additionally constrained models created by the
application of the sign-equality assumption. After
obtaining descriptions of these soundly simulated
systems, we conclude that the sign-equality
assumption restricts the scope of validly considered
systems too severely, at least in the particular
domain of liquid flow through connected tanks.

QSIM with HOD Constraints: An Overview

The definitive reference on the QSIM representation
and algorithm is [2]. In the following, we use the
notation of Chapter 10 of [2], which supersedes [1].
Some key notational items are as follows:

For any real-valued expression E, [E] denotes the
sign (-, 0, or +) of E.

For a system variable x(7),
d
gdir(x) and [ x"] both denote the sign of Zx,

2

sd2(x) and [ x”] both denote the sign of x, and,

dr®

3
nr

d
sd3(x) and [ x™ ] both denote the sign of —d—3 x.
t

The symbols inc, std, and dec mean —, 0, and +,
respectively, when they are used as the value of a
qdir term.

: + i
The constraint M (x,y) means that there is a
reasonable function f mapping values of x to values
of y such that f’ is greater than zero throughout its

domain.

Qualitative simulation with HOD (higher-order
derivative) constraints starts with a stage in which
the variables likely to chatter (i.e. cause an
intractable simulation that branches on each of their
possible “twists and turns”) are identified by an
automatic examination of the input model. A



variable may chatter if its derivative is not
constrained in the model.

The second stage involves the derivation of
algebraic expressions for the second- and third-
order derivatives of the variables identified in the
first stage. The aim is to obtain expressions which
consist solely of terms that are contained within the
vocabulary provided by the input model, so that
their signs can be evaluated using the qualitative
information available during the simulation. A set of
transformation rules is used in a search process to
obtain these expressions. Here are a few example
transformation rules:

sd2(x) where constant(x) — 0

qdir(y)

d
sd2(x) where y= Ex —

sd2(x) where M+(x,y) — sd2(y)

All the transformation rules are validity-preserving
at critical points of chattering variables, with the
exception of the last one shown above, which
embodies an assumption about the monotonic
relation between variables x and y. Only if this sign-
equality assumption is correct, that is, if

MEy) = sd2xt)=sd20.t)
where ¢, is such a critical point, will an expression
obtained by using this transformation be valid.

After the derivation of the expressions for the
higher-order derivatives of the chattering variables,
qualitative simulation of the system commences.
During the simulation, whenever a newly generated
time-point state contains a value gdir(x) = 0 for a
chattering variable x, the signs of the related higher-
order derivative expressions are evaluated and the
appropriate HOD constraints are applied to provide
an additional filter that may eliminate that state
from the tree. (The HOD constraint actually
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operates twice for each critical point, see [2] for the
details.)

Cascaded Tanks of Restricted Shapes

Clearly, each time an expression whose derivation
included the sign-equality assumptlon is used for a
HOD filter during simulation, the msoner is
making an unwarranted assumption ‘about the input
model, eliminating a subset of the systems that are
representable by it from consideration. In. this
section, we will examine the restrictions of this kind
imposed on the shapes of the tanks in the two- and
three<tank cascade systems presented in [1] by
tracing the simulations.

The Two-Tank Cascade

This system (Fig. 1) has a constant inflow of liquid
into the tank at the top. The explanations of the
variables are given in Table 1. The model is

netflowA = inflow - outflowA
netflowB = outflowA - outflowB.

=)
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Figure 1: The two-tank cascade

Table 1. Variables in the two-tank cascade

Name Explanation

inflow constant inflow to tank A

amtA : mass of liquid in tank A

outflowA outflow from tank A; this is an M function of am:A ou{ﬂonA = flamtA)
netflowA “net” flow into tank A; amiA’s time derivative

amtB mass of liquid in tank B

outflowB outflow from tank B; this is an M function of amtB: outflowB = g(amtB)
netflowB “net” flow into tank B: amtB’s time derivative




Variable netflowB is identified as a candidate for
chattering at the first stage, and so an expression for
sd2(netflowB), which will be evaluated whenever
qdir(netflowB) equals zero in a newly generated
time-point state during the simulation, is derived as
follows:

sd2(netflowB)

]

sd2(outflowA) — sd2(outflowB)
sd2(amtA) — sd2(amtB)
qdir(netflowA) — qdir(netflowB)
gdir(netflowA)

Note that the sign-equality assumption is made
twice in this derivation, in order to replace
sd2(outflowA) by sd2(amtA), and sd2(outflowB) by
sd2(amtB). Exactly what restriction this will impose
on the functions fand g will be understood when the
obtained expression is utilized during the
simulation.

Simulation commences (Table 2,) and arrives at
time point 7, where a candidate state has
gdir(netflowB) = 0, (Table 3) and so the HOD
constraint has to be put to use. At this moment, the
aforementioned assumptions

sd2(outflowA, 1)) = sd2(amtA, t;), and
sd2(outflowB, 1)) sd2(amtB, t;)

have to hold.

I

Table 2. First two states of two-tank cascade

behavior

time ly (to, 1)
inflow in*, std in*, std
amtA 0, inc (0,00), inc
outflowA 0, inc (0,e0), inc
netflowA (0,0), dec (0,20), dec.
amtB 0, std (0,00), inc
outflowB 0, std (0,0), inc
netflowB 0, inc (0,22), inc

Table 3. A candidate state considered for #, in the
two-tank cascade simulation

inflow 't in*, std
amtA i (0,00), inc
outflowA (0,00), inc
netflowA (0,0°), dec
amtB (0,2), inc
outflowB (0,22), inc
netflowB nB*, std
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Let us examine the effects of these on the
functions fand g.

As explained in [2], the definition of the
monotonic function f can be differentiated twice to

get
outflowA” (1) =

f'(amtA()).amiA” (1) + f "(amzA(r)).(amzA"(2))>.

Now, we know that [amtA”(1,) ] ={~] (it is simpfy
the sign of the derivative of amrd’, ie.
gdir(netflowA) in Table 3,) and [amtA’(r,) ] = [+],
and we are assuming that [amzA”(1,)] is equal to
[outflowA”(t,)]. Using the fact that f“> 0, we can
manipulate the above equation for outflowA”(r) to

obtain information on the requirements about f at
the point amtA(1,):

f’(amiA(s, )).am"(rt))

¥ (m(ra))'(_{ (amaﬁ'(f]))z

All nonpositive values of f”, and the sufficiently
small positive ones, satisfy this condition. See [2, p.
256] for a system which violates this restriction.

The restriction imposed on g is more serious.
Consider the equation

outflowB” (1) =
¢’(amiB(1)).amiB” (1) + g” (amtB(1)).(amtB’(1))* .

At 1,. it is known that amtB” =0, amtB’ > 0, and
we want outflowB” to be zero too, because of the

sign-equality assumption. Inserting those values into
the above equation for outflowB"(t) , we obtain

g"(amtB(1,)) = 0.

This is a serious restriction, as will be explained
later.

At time point #,, another state (Table 4) with a
critical point for netflowB is considered by the
algorithm. The HOD constraint is used to eliminate
this state, thus adding

f’(amtA(z,)).amtA"(t, )]

" \ <__
[ (amiA(z,)) [ (amiA 1))

and

g"(amtB(t,)) =0

to the list of unwarranted restrictions on the
functions fand g.



Table 4. A candidate state considered for ¢, in the

two-tank cascade simulation

inflow in*, std
amtA (0,22), inc
outflowA (0,e0), inc
netflowA (0,0°), dec
amtB (0,00), inc
¢ outflowB (0,00), inc
netflowB nB2*, std

(Note that we do not use the time index #,, but
rather another symbol £, in the formulae above.
Since the proposed state at f, was eventually
eliminated, we are not entitled to call that time point
“t,”. On the other hand, the new restriction formulae
certainly hold at a time point 7, > t,, otherwise the
proposed state would not have been eliminated. We
are justified to add any formulae stemming from
HOD constraints “activated” during simulation to
our list.)

Let us now examine what these conditions mean
for the shape of tank B. In addition to the usual

information about M+—type functions, we know that
g’s second derivative has the value zero for at least
two distinct values of amtB. (This is obvious, since
amtB is increasing all through the simulation.) It is
easy to show that g” is always negative for a tank

whose cross-sectional area does not change as a
function of vertical position. So tank B in our
example cannot be, say, an upright cylinder.

g” has the value zero for tanks with “tall thin
stacks™ on top (like the one in the prediction failure
example in [2]) only when the level of liquid
reaches the base of the stack, and then only if the
“curving” of the wall of the tank at that level
satisfies certain conditions. So our tank B can have
a structure as in Fig. 2. The simulation results for
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the two-tank cascade (Table 5) would then reflect
the case where netflowB reaches its critical point
exactly when the liquid level in tank B reaches L1.
For all cases where the level is not at such a bend at
t;, Table 5 is not a mathematically justified
representation of the behavior of this tank.

If we wish tank B’s shape to be as “regular” as
possible given these restrictions, we can assume that
g” =0 all through a finite interval containing the
points amtB(t;) and amtB(t;). Let us examine what
such an assumption would mean for a monotonic
function /(amr) which relates the amount of liquid in
the tank to the liquid level.

Under the wusual simplifying assumptions
applicable to such systems,

1
glamt)= C.(I(amt))?,

-1
g’(amt) = g.(i(amt))?.f'(amt) ,and,

g"(amt) =

2

where C is a constant.

-1 3 =
< .("z" (itam)) (1 (@) +((a@m))? ""(""')J’

L1l

T

Figure 2: A possible shape for tank B

Table S. The output of QSIM (using HOD constraints) for the two-tank cascade

time o (15, 1)) 1 (1), 12) [§)
inflow in*, std in*, std in*, std ! in*, std in*, std
amtA 0, inc. (0,00), inc (0,0°), inc (0,0), inc aA*, std
outflowA 0, inc (0,20), inc (0,0), inc (0,00), inc i 0A®, std
netflowA (0,00), dec (0,2°), dec (0,00), dec (0,00), dec 0, std
amtB 0, std (0,00), inc (0,00), inc (0,00), inc aB*, std
outflowB 0, std (0,0), inc (0,e0), inc (0,0°), inc oB*, std
netflowB 0, inc (0,00), inc nB*, std (0,nB*), dec 0, std




Figure 3: Another possible shape for tank B

For g” to be zero, the sum in the parentheses has

to evaluate to zero, which gives us the differential
equation

v 1 (P@mn)
ot} = 5 l(amt)

whose solution is
[(amt) = (C, .amt +C, )2

Since /(0) =0, C>=0, and

l(amt) = Cs.am?’,

where Cj is a positive constant.

Tank “segments™ with this property have g” = 0.
It is easy to see that the cross-sectional area of such
a tank segment at vertical position L is inversely
proportional to the square root of L. Fig. 3 is thus a
representative of the set of most likely candidates
for the side view of tank B, with the proviso that
amtB(t)) corresponds to a level in the “thinning”
segment. Fig. 4 depicts some families of shapes
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overruled by the sign-equality assumption for this
tank.

The Three-Tank Cascade

This system (Table 6) is obtained by placing another
tank named C under the two-tank cascade. The
model is:

netflowA = inflow - outflowA
netflowB = outflowA - outflowB
netflowC = outflowB - outflowC

There are two variables (netflowB and netflowC)
which chatter “independently” from each other, so
HOD expressions are derived for both of these. The
sign-equality assumptions embedded in the
derivations are

sd2(outflowA) = sd2(amtA),
sd2(outflowB) = sd2(amtB), and,
sd2(outflowC) = sd2(amtC).

VA
A 4

Figure 4: Forbidden shapes for tank B

Table 6. Variables in the three-tank cascade

Name Explanation

inflow constant inflow to tank A

amtA mass of liquid in tank A

outflowA outflow from A; this is an M function of amtA: outflowA = =fam4)
netflowA “net” flow into A; amtA’s time derivative

amtB mass of liquid in tank B

outflowB outflow from B; this is an M function of amiB: outflowB = g(amtB)
netflowB “net” flow into B; amtB’s time derivative

amtC mass of liquid in tank C

outflowC outflow from C this is an M function of amiC: outflowC = h(amtB)
netflowC “net” flow into C; amiC’s time derivative




Table 7. The output of QSIM (using HOD constraints) for the three-tank cascade
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time Io (to, 11) h (1, 1) 5 (52, 85) (5]
inflow in*, std in*, std in*,std in*, std in*, std in*, std in*, std
amtA 0, inc (0,0),inc i (0,00),inc_: (0,e), inc : (0,%), inc (0,00), inc i aA®*,std
outflowA | 0, inc (0,90),inc i (0,0),inc : (0,20), inc (0,0), inc (0,20), inc oA* std
netflowA [ (0.00),dec : (0,00),dec : (0,00),dec : (0,00), dec (0,0), dec (0,0), dec i O,std
amtB 0, std (0,00),inc i (0,90),inc : (0,e°), inc (0,20), inc (0,20), inc aB* std
outflowB | 0, std (0,%0).inc { (0,00),inc : (0,00), inc (0,2), inc (0,0°), inc oB* std
netflowB | 0, inc (0,00),inc | nB*;std i (0,nB*),dec : (0.nB*).dec : (0,nB*),dec : 0,std
amtC 0, std (0,%0),inc i (0,%),inc i (0,%0), inc (0,00), inc (0,00), inc i aC*,std
outflowC | 0, std (0,00),inc : (0,e0),inc : (0,20), inc (0,0°), inc (0,e), inc oC*,std
netflowC | 0, std (0,00),inc i (0,00),inc i (0,e0),inc i nC*, std (0,nC¥*),dec : 0, std

During the simulation, the HOD constraint is
employed several times. Just like in the two-tank
cascade, tank A’s shape is the one which is the least
severely affected by the assumptions. The
conditions frﬂposed on f are the same as described in
the previous section, and are satisfied by a wide
variety of tank shapes, including cylindrical ones.

The restrictions imposed on h”, and hence on the
shape of tank C are similar to what happened to tank
B in the previous subsection. The applied HOD
constraints specify

h”(amtC(t..)) =0,
h”(amtC(t,)) =0, and
h”(amtC(t,,)) =0,

where 1< < tgy (5 is as defined by the unique
simulation result in Table 7,) and, clearly,
amtC(t¢ )< amtC(t;)< amtC(lgy).

The middle tank (B) in the cascade undergoes the
greatest number of restrictions. At a candidate state
for 1, (Table 8,) the general equation for
outflowB”(t) and the facts that [amtB”] = [+],
[amtB"] = [+], and [outflowB”] = [amtB"] is
assumed yield the condition
g'(amtB(t.)).amtB” (1, )J

(amtB'(1.))*

g”"(amB(t.)) > —(

which is satisfied for all ponnegative and only some
negative values of g”.

Another candidate state for ¢ (Table 9)
necessitates sd3(netflowC) to be evaluated. During
this expression’s derivation, the expressions for
both sd2(netflowB) and sd2(netflowC) are used.
These imply both

g"(amiB(1,)) > ~ [

and

so we add the latter, more restrictive equation to our

list.

Table 8. A candidate state for ¢, in the three-tank

g (amiB(t, )).amrB”(r, )

(amtB’(t, )3

g"(amiB(1,)) =0,

cascade simulation

. inflow i in*, std
amtA (0,e), inc
outflowA (0,0°), inc
netflowA (0,00), dec
amtB (0,0°), inc
outflowB i (0,0), inc
netflowB (0,90), inc
amtC { (0,00), inc
outflowC (0,20), inc

. netflowC nC*, std

Table 9. Another candidate state for ¢, in the three-

tank cascade simulation

inflow in*, std
amtA (0,00), inc
outflowA (0,%0), inc
netflowA (0,00), dec
amtB (0,22), inc
outflowB (0,00), in¢
netflowB nB*, std
amtC (0,e2), inc
outflowC (0,e0), inc
netflowC nC*, std
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Table 10. A candidate state for 7; in the three-tank
cascade simulation

inflow in*, std
amtA (0,00), inc
outflowA (0,2), inc
netflowA (0,00), dec

{ amtB (0,0°), inc
outflowB (0,0), inc
netflowB (0, nB*), dec
amtC (0,0), inc
outflowC (0,0°), inc
netflowC nC2*, std

Finally, a candidate state for 7; (Table 10) also gets
eliminated by the HOD constraint, adding

” B(1.)) < — g '(amtB(t,)).amtB"(t,)
g”(amtB(1,)) ( T

to what we know about g”.

The “simplest” shape for tank B that would be
compatible with these restrictions would again be a

“linear” tank (thus called because g is a linear
function when the liquid level is in the “thinning”
region) such as that of Figure 3. However, the
possibility that netflowB reaches its maximum while
the liquid level has not reached the thinning region
would again be overlooked by the simulator.

Ruling out a “Smooth” Tank

For another example of the theoretical problems
caused by the sign-equality assumption, consider the
system of Table 11, which is presented in p. 266 of
[2] as a specimen to be simulated using HOD
constraints. This is a U-tube with constant external
inflow to the first tank and a hole at the bottom of
the second tank.
The model is

prdiffAB = pressureA — pressureB
netflowA inflow - flowAB
netflowB flowAB — outflowB.

Table 12 shows the prediction of QSIM with HOD
constraints for this system where inflow is positive.

il

I

Table 11. Variables in the open-ended U-tube

Name Explanation

inflow constant inflow to tank A

amtA mass of liquid in tank A

pressureA pressure at the bottom of A; this is an M function of amtA: pressureA = p,(amtA)

netflowA “net” flow into A; amtA’s time derivative

amtB mass of liquid in tank B

pressureB pressure at the bottom of B; this is an M function of amitB: pressureB = p,(amtB)

outflowB outflow from B; this is an M function of amtB: outflowB = g(amtB)

netflowB “net” flow into B; amtB’s time derivative

prdiffAB pressure difference between the tanks

flowAB flow through pipe from A to B: this is an M function of prdiffAB: flowAB = fprdiffAB)

Table 12. The behavior of the open-ended U-tube
. time 10 (1o, 1) Ly (1. 1) L)

inflow in*, std i in*, std : in*,std . in*, std in*, std
amtA 0, inc i (0,0)inc i (0.0)inc i (0,0), inc aA*, std
pressureA 0, inc (0,90),inc (0.0).inc (0,00),inc pA*, std
netflowA (0,20), dec (0,00), dec (0,0<), dec (0,00), dec 0, std
amtB 0, std (0,0),inc (0.e0).inc (0,e0),inc aB*, std
pressureB 0, std (0,e0),inc (0,00).inc (0,20),inc pB*, std
outflowB 0, std (0,0),inc (0,00).inc (0,90),inc oB*, std
netflowB 0, inc (0,00),inc nB*, std (0,nB*), dec : 0, std
prdiffAB 0, inc (0,00),inc (0,00),inc (0,00),inc pdAB*, std
flowAB 0, inc (0,0°),inc (0,00).inc (0,00),inc fAB*, std




netflowB is one of the potentially chattering
variables of this system. Let us consider the
derivation of the sd2 term for it:

sd2(netflowB) = sd2(flowAB) - sd2(outflowB)
= sd2(prdiffAB) - sd2(amtB)
= sd2(prdiffAB) - qdir(netflowB)
= sd2(prdiffAB)
= sd2(pressured) - sd2(pressureB)
= sd2(amtA) - sd2(amtB)
= sd2(amtA) - gdir(netflowB)

= sd2(amtA4)

= gdir(netflowA)
This derivation involves the sign-equality
assumption for two  different  functions

corresponding to tank B. Take QOstate(r,) in Table
12. Since gdir(netflowB) = 0, the HOD constraint is
utilized. The restriction imposed on g is

g"(amB(1,)) =0.

The restriction imposed on p, at the same value
amtB(t)) 1s

pr(amB(t,)) =0.

Let us see what this means. We will again use the
function /(amt) mapping amounts to liquid levels. In
the previous section, we had established that

g”"(amt) =

2\ 2

Fa

C (-1 3 =
—.(— (lame)) 2 (1" (am))’ +(1(@m))? .i”(am:)),

The pressure is a linear function of the liquid
level, hence

p, (amt) = K.l(amt) ,
pi(amt) = K.l'(amt), and,

pi(amt) = K.lI”(amt) ,

where K is a positive constant.
Knowing p,’(amtB(t,)) = 0, we obtain

["(amtB(t,)) = 0.

Plugging 0 for both ["(amtB(z,)) and
g"(amtB(t,)) in the equation for g”(amz), we get
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-3
-—2-1-(I(amrB(I, )))?-(3'(‘"’“5(‘1 )))2 =0.
Since I’ > 0,
N =
= amss )7 =o,

which has no finite solution, indicating that there is
no level corresponding to the amount in tank B at 7,,
which is an absurdity. Since the only additional
assumption we made in this line of reasoning was
the existence of the derivatives of the / function, we
have proven that, in this simulation, tank B can have
no “smooth” shape, that is, one governed by a
“level” function I/(amt) which is twice differentiable
all through its domain. In this example, it is
interesting to note that the sign-equality assumption,
which is essentially a “smoothness” assumption
about the underlying functions, rules out the
possibility of another functional relationship in the
system being smooth in a somewhat similar sense.

Conclusion

Our analysis has shown that the restrictions imposed
on the simulated model by the sign-equality
assumption (at least in the domain of liquid flow
among containers) are very harsh: No shapes with
uniform cross sections are covered for the tanks
(except the topmost one) in the cascade examples.
No “smooth” shape is covered for the second tank in
the open-ended U-tube simulation. The systems that
actually satisfy the additional restrictions (and thus
get validly simulated) are an unrealistically small
subset of the subject domain.

This leads us to conclude that the chattering and
spurious behavior elimination problem for systems
of connected tanks with reasonable shapes is still
open, and one should treat the output of qualitative
simulation with HOD constraints in any domain
with additional care.

It should be noted that other aspects of simulation
with HOD constraints (identification of chattering
variables, filtering given an HOD sign, etc.) are
sound and useful contributions to the qualitative
reasoning repertory, and can be used fruitfully in
conjunction with a method of determining the signs
of the HODs without making the sign-equality
assumption, for example, in a scheme where the
user explicitly supplies the values or expressions to
be used when applying the HOD constraint.
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