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Abstract: Model identification is a core part of
many automated process supervision tasks, and
is conventionally achieved by estimating the
parameters of a real-valued model which
minimise some error function. However, the
tractability of these analytic estimation methods
places limitations on the nature of the process
model used, such as linearity and low order.
Further, the estimation algorithm has to be tuned
heuristically for each application to facilitate
satisfactory performance. It is argued in this
article that heuristic tuning is necessary because
of the inherent inaccuracy of linearised, low
order, real-valued models.

This paper proposes a mnovel alternative
parameter identification method, based on the
use of fuzzy qualitative models and simulation.
Fuzzy qualitative models allow imprecise and
uncertain process knowledge to be explicitly
represented, leading to more accurate models of
ill-defined processes. The value domains
underlying qualitative models mean that the
parameter variations of the process model are
finite, enabling a search approach to be used to
identify the correct qualitative parameter values.
This non-analytic approach to parameter
identification removes the assumptions and
limitations associated with conventional analytic
parameter estimation methods. Experimental
results for a 3rd order benchmark dynamic
system are given.

1. Introduction

The main contribution of this paper is an
investigation of how Qualitative Reasoning (QR)
techniques can be used to form a novel approach to

the classical control engineering task of parameter
estimation. QR offers altemative methods of
representation and reasoning about ill-defined
dynamic systems. The aim is to create a qualirative
parameter identification technique which removes
the assumptions and limitations associated with the
use of quantitative analytic process models. Such a
technique would enable model-based process
supervision to be applied to a larger class of real ill-
defined processes.

Abe (1993) presents work on model identification
based on QR methods, where QSIM (Kuipers, 86)
qualitative models are identified from sequences of
(symbolic) qualitative observations of state variable
magnitudes. This work can be viewed as a first pass
at the system identification task using qualitative
methods, and as such it fails to address many issues
necessary for practical application. It's use of the
original QSIM representation restricts it to a purely
symbolic quantity space and associated timeline,
making it impractical for use with sequences of real
world observations. Also, the models must be
autonomous i.e. no input signals are modelled.
Lichtenberg et al. (1994) provides a quite different
qualitative model identification method, where a
qualitative model in the form of a non-deterministic
automaton (Lunze, 94) is derived from a series of
quantised measurements of state variables of
dynamic systems. This approach also has a number
of restrictions regarding its practical application,
such as the restriction to autonomous systems, the
identification of linearised dynamic models only and
the assumption that (qualitative) observations of
every state variable are available.

Recent model-based diagnostic systems, MIMIC
(Dvorak and Kuipers, 1989) and DYNAMO (Shen
and Leitch, 1995), have performed fault



identification by adapting qualitative process models
until the error between the qualitative model's
predicted behaviour and the process observations is
minimised. Thus, at some level of description, these
systems are based on qualitative model identification
techniques. However, both MIMIC and DYNAMO
make crucial use of domain dependent knowledge for
their operation. For example, both methods require
that all qualitative ‘fault models’ are specified a
priori, and use expert knowledge in rules to relate
process symptoms to the selection of candidate fault
models. As such, these systems can also be
considered as early work on qualitative model
identification, where the requirement for domain
dependent fault knowledge limits their generality.
This paper describes an approach to identifying
explicitly parameterised dynamic qualitative models,
where domain independent search heuristics are used
to modify the qualitative parameter values until
predicted behaviour matches observed process
behaviour. This search-based approach is radically
different to the conventional analytic parameter
estimation approaches used with quantitative models.
Further, the finite nature of the qualitative model’s
value domain enables multiple models of varying
precision to be created from the given qualitative
process model. These multiple models can be used as
the basis of a time constrained reasoning system,
which trades-off the precision of the final solution for
computation time.

The next section outlines the use of quantitative
parameter estimation algorithms in  process
supervision tasks, and argues that their limitations
can be overcome by using a more appropriate model
representation. Section 3 gives background on the
fuzzy qualitative modelling and simulation algorithm
used in this work. Section 4 describes the
fundamental difference between parameter estimation
of quantitative models and parameter identification in
the finite space of qualitative models. The
architecture developed for qualitative parameter
identification is described in Section 5, and results
from applying this system to a benchmark process,
including the use of multiple models of varying
precision, are given in Section 6. Finally, Section 7
provides conclusions about the applicability of this
qualitative alternative to the task of model
identification.
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2. Parameter Estimation of Quantitative Models

Model identification is achieved by using an
algorithm to identify an accurate model of a dynamic
system from measured data. The classic approach is
that of parameter estimation, where an assumed
quantitative model structure (order) is specified and
an algorithm is used to calculate the values of that
model’s parameters which minimise some error
function.

Disturbance, dft)
Input, u(t) P Output, v{g
arameter
P stimation p-
Algorithm

Estimated parameters, P(t)
Figure 1 A typical parameter estimation scheme

A large variety of parameter estimation approaches
have been proposed in the literature (Soderstrom,
1989). A typical approach is the widely used least
squares method (Strejc, 80), where the parameter
values of the quantitative model are calculated by
minimising the sum of squared errors between the
experimental data and the predictions from the
model. Applications of parameter estimation methods
are widespread, as in self-tuning regulators and fault
detection (Isermann, 84), achieved by recursively
estimating the parameters of a given quantitative
process model, and detecting when these parameter
values deviate from their nominal values.

Although parameter estimation algorithms and
applications have been adopted successfully in many
domains, it is well accepted that there are a number
of restrictions and fundamental problems in their
general application. A significant limitation of the
majority of quantitative model parameter estimation
schemes is the restriction to the use of linearised
process models. This limitation is a consequence of
the requirement to minimise an error function
representing the difference between model predictions
and measured data. The tractability of the analytical
approaches to this function minimisation generally
requires that the process models are linearised.
Certain special classes of non-linear process models,



such as the linear-in-the-parameters and bilinear
structure, can be estimated analytically (Billings,
1980). However, even with these simplified classes of
non-linearity, analytic estimation algorithms appear
to be very difficult to implement satisfactorily.
Successful operation of quantitative parameter
estimation algorithms and applications is achieved by
judicious tuning of aspects of the algorithm. For
example, it is necessary to provide good initial values
for the parameter estimate vector and the covariance
matrix, and to manage the covariance matrix
throughout the execution of the algorithm to avoid
poor identification and instability. Other aspects of
the algorithm such as ‘forgetting factors’ to diminish
the influence of older data are tuned heuristically by
the analyst to optimise performance of the algorithm
for a particular process and application. For
example, in the presence of a fault, the operating
point of the process may change significantly,
making it all the more necessary to ‘forget’ older data
when estimating the parameters of the new operating
condition. This heuristic tuning of features of the
algorithm clearly destroys the analytic properties of
the approach implied by the use of quantitative
analytic models.

It is argued here that these restrictions and the
requirement for tuning of the algorithm arise because
of the inevitable inaccuracies which exist due to the
use of a finite order, linearised quantitative model to
represent the behaviour of the real process. The
motivation of the approach in this paper is to
overcome these problems by addressing the core
issue of modelling and reasoning about real dynamic
processes which must be ill-defined to some degree.
It is proposed that it is better to explicitly represent
this ill-defined process knowledge in the model, and
to use an appropriate reasoning mechanism, than to
assume an exact quantitative model and then tune
aspects of the algorithm to produce satisfactory
performance. A more appropriate modelling
approach will enable a wider range of real processes
to be reasoned about without the need for application
dependent tuning and optimisation of algorithms.
Capturing ill-defined knowledge of a dynamic
process obviously requires a representation other
than that of the conventional quantitative analytical
model, where the underlying real number line cannot
represent any uncertainty or imprecision the modeller
may have about aspects of the process. The thesis
here is that QR can provide the desired representation
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and reasoning methods for ill-defined dynamic
systems.

3. Fuzzy Qualitative Reasoning about Dynamic
Systems

The work presented in this paper on qualitative
parameter identification builds on the work on fuzzy
qualitative modelling and simulation, FuSim (Shen
and Leitch, 1993), which extended the QSIM
approach through the use of fuzzy sets to represent
the qualitative values of parameters and variables in
the model.

Similarly to the qualitative models of QSIM, the
fuzzy qualitative models used by FuSim consist of
two distinct parts:
Constraints (or
relationships  between model variables and
parameters expressed in terms of qualitative
equivalents of conventional differential and algebraic
operators (e.g. div, mult, add, sub, sgrt etc,;
all defined for fuzzy sets).

Fuzzy Quantity Spaces; the value domains
underlying the model quantities i.e. finite sets of
qualitative values (fuzzy sets defined on the real
number line) from which the model’s variables and
parameters take their values.

Figure 2 gives a simple example of a fuzzy
qualitative model of a single tank system, which
shows the two and three place predicate syntax of the
model constraints and gives one example of a fuzzy
quantity space for the model parameter,
pipe_param.

A

q_out
=

5
pipe_param %ﬁ

qualitative  equations); the

1. Constraints

| sqrt AUX V )

{ mult q out pipe_param AUX )
{ sub V_dash g_in g out }

ﬁ q_n

v 2. Fuzzy Quantity Spacetony ppa_param shown hes)

| gQuantity-space pipe_param
{v_small ( 0 0.3500.2 )1
f small { 0.55 0.95 0.2 0.2 11
| medium ( 1.15 1,55 0,2 0.2 ) )
| large { 1.75 2,15 0.2 0.2 ) ) )

Figure 2 A Fuzzy Qualitative Model of a Single Tank

Once the system modeller has specified the model
constraints, fuzzy quantity spaces for each model
variable and parameter, an initial qualitative state
and values of any exogenous inputs, a fuzzy
qualitative simulation algorithm is applied to
generate all the possible qualitative behaviours over
time of that model. In this work, an enhancement of
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the original FuSim algorithm, Mycroft (Coghill,
1996), is used to provide the fuzzy qualitative
simulator. Mycroft provides the important advantage
of producing predicted qualitative states for discrete
points in time, by the use of a Fuzzy Euler
Integration step in the transition analysis phase of the
algorithm. The output of this discrete time fuzzy
qualitative simulator is a qualitative behaviour tree,
containing all the possible fuzzy qualitative states
consistent with the model, initial conditions, inputs
and simulation algorithm. Figure 3 gives an example
of the output from Mycroft, with the smaller window
showing the qualitative values of each model variable
in the highlighted qualitative state.
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Figure 3 A Qualitative Behaviour Tree Generated by
Mycroft

The qualitative behaviours produced by applying the
Mycroft simulator to the fuzzy qualitative model
form an exponentially growing tree of possible
behaviours. This ambiguity in predicted behaviour is
a natural consequence of the qualitative calculus of
the model.

Thus, QR in general, and the fuzzy QR algorithms
FuSim and Mycroft in particular, provide alternative
modelling and reasoning methods to the conventional
quantitative models and analytic methods of the
control engineering domain. These alternatives
provide important advantages for reasoning about
processes which are incompletely known. The ability
to arbitrarily define the quantity spaces of fuzzy
qualitative models provides a degree of freedom to
the process modeller which is simply not present in
quantitative models, where the value domain is fixed
as the real number line.
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4. Parameter Identification of Qualitative Models

In this section, a method for the identification of
qualitative model parameters is proposed which is
very different to the parameter estimation techniques
associated with quantitative models. The significant
difference in these approaches can be explained by
comparing the Parameter Spaces of qualitative and
quantitative models.

The Parameter Space, P, of a model is defined here
as that space generated from the Cartesian product of
the value domains, D, of the n parameters of the
model i.e.

_ P=D, xD,X..xD,

This represents the space all the possible assignments
of parameter values which a model of a given
structure can take. Thus, any parameter estimation or
identification algorithm can be thought of as selecting
elements from the model’s Parameter Space which
satisfy some prescribed criteria (e.g. minimising an
error squared metric). Figure 5 presents two
exemplary Parameter Spaces generated from the
three parameters (a, b, ¢) of a quantitative and a
qualitative model respectively :
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Figure 5 Parameter Spaces of Quantitative and
Qualitative Models

The value domains, Q., underlying the parameters

of a qualitative model are all finite domains.
Consequently, the Parameter Space generated from
these finite domains, F,, is also finite. This leads to

the possibility of implementing a parameter
identification approach using a state-space search
procedure (Pearl, 1984) to search amongst the finite
elements of the Parameter Space for those elements
which satisfy the prescribed criteria. (The next
section describes the matching criteria used in this
approach to qualitative parameter identification). Put



simply, parameter identification of qualitative models
can proceed by searching for candidate parameter
assignments, then testing these candidates against the
prescribed criteria, and so on until all correct
assignments have been identified.

In contrast, the value domains, R, underlying the

parameters of the quantitative model are all segments
of the real number line and are therefore infinitely
dense domains. Consequently, the Parameter Space
generated from these infinitely dense domains, Py, is

also an infinitely dense space, meaning that there
exists an infinite number of possible parameter value
assignments for any quantitative model. This
necessitates the use of analytic procedures to
estimate the values of model parameters which
satisfy the prescribed criteria. These analytic
procedures lead to the restrictions and assumptions
described in Section 2, and consequently to the need
for heuristic tuning of the estimation algorithm to
compensate for the inaccuracy of the quantitative
model.

5. QPID: An Architecture for Qualitative
Parameter Identification

The QPID (Qualitative Parameter Identification for
Diagnosis) system (Steele, 1996)(Steele and Leitch,
1996a) performs parameter identification of fuzzy
qualitative models of dynamic systems from batches
of measured data. QPID is designed to operate under
a variety of user requirernents typical of an industrial
application such as computation time constraints,
specific fault requirements and diagnostic precision.
Figure 6 shows the architecture of QPID, an
instantiation of the generic model-based diagnosis
architecture developed for the ARTIST project
(Leitch et al., 1992).

4
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v
"
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Figure 6 QPID’s Meta-Level Architecture

QPID has a meta-level architecture (Jackson et al.,
1989), where each level is characterised by the type
of knowledge used. The object-level modules reason
with knowledge about the domain, in the form of a
fuzzy qualitative model of the process, and it is these
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modules which interact to perform the qualitative
parameter identification task. The meta-level module
reasons with knowledge about the object-level (not
the domain) to provide a control function over the

object-level reasoning, ensuring that the user
requirements are met.
Qualitative  parameter identification  involves

identifying those points in the Parameter Space ( fp)

of the qualitative process model which satisfy some
prescribed matching criteria. In the QPID
architecture, the Candidate Proposer module is
tasked with searching within the finite Parameter
Space to postulate candidate parameter assignments
which will satisfy the matching criteria. The
Predictor module is tasked with evaluating each
candidate model parameter assignment to decide
whether it satisfies the matching criteria.

5.1 The Predictor

The matching criteria used in QPID, as in any other
model identification method, requires comparison of
the candidate model’s predicted behaviour with the
batch of observed process behaviour. The Mycroft
fuzzy qualitative simulator (Coghill, 1996) is used in
the Predictor to generate predicted behaviour from
the fuzzy qualitative process model. Its use of a
Fuzzy Euler Integration step results in fuzzy
qualitative predictions at discrete points in time. This
eases the comparison of qualitative model predictions
to the batch of measured data, which also consists of
values observed at discrete timepoints.

The use of a qualitative model and simulation
algorithm raises interesting issues regarding the
process model’s evaluation against real world data.
In general, models can be considered as being
instantiations of theories, which are open to
refutation or validation with respect to the facts in
their domain of application. In the case of predictive
models, if the model’s predicted behaviour is shown
to be consistent with the facts (i.e. the observations)
then the model is validated. Conversely, if the
behaviour is inconsistent with the observations then
the model is refuted. This is the essence of the
evaluation task of the Predictor - each candidate
model must be refuted or validated with respect to the
observations obtained from the process. However,
due to inherent ambiguities of the model’s qualitative
calculus, the output from the Mycroft simulation
algorithm is an exponentially growing tree of
predicted qualitative behaviours, each branch



representing a possible behaviour of the model. How
do these non-unique predicted behaviours affect the
evaluation of the models ? It follows from the nature
of the evaluation decision described above, that to
refute such a model would require that each and
every branch of the qualitative behaviour tree is
shown to be inconsistent with the observations.
Consequently, it follows that to validate such a model
requires only that one of the predicted behaviours is
shown to be consistent with the observations.
These conditions for refutation and validation have a
major implication for the way in which qualitative
behaviour trees are elicited from candidate models in
the Predictor. Clearly, there is no need to generate
and maintain the entire qualitative behaviour tree of a
candidate model - all that is necessary to facilitate the
evaluation of a candidate qualitative model is that
predicted states which are consistent (matching) with
the observations are maintained in the behaviour tree.
When consistent predicted states can be found along
one behaviour branch up to the last of the sequence
of relevant observations, the model can be validated.
When there are no longer any unexpanded consistent
"states in the tree, the model can be refuted. This
naturally leads to an evaluation algorithm which
interleaves prediction with comparison to the
observations - all predictions which are inconsistent
are eliminated from the behaviour tree, with the result
that only the ‘matching behaviour tree’ is created.
Maintaining only this sub-tree helps to ease the
amount of branching in the qualitative simulation,
although the problem does remain inherently
exponential. Figure 7 gives a schematic illustration of
how the matching behaviour tree is maintained during
evaluation of a candidate model.
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Matching Qualitative Benaviours

Figure 7 Evaluating Models in the Predictor by Matching
Qualitative Behaviours to Process Data
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52 The Candidate Proposer

The Candidate Proposer module uses two domain
independent search heuristics to guide the selection of
the candidate parameter assignment from the
Parameter Space.

The first search heuristic is based on the knowledge
of causality which is present in the fuzzy qualitative
models. The constructive nature of the qualitative
simulation algorithm used requires that the modeller
specifies a model with a definite causal order to the
constraints. From such models it is possible to find
which parameters have a causal influence on which
variables, and what the sign of that influence is,
creating a causal graph. Information from the
Predictor about the discrepancies between predicted
and observed values of variables is then used with the
causal graph to identify those parameters which
could be responsible for the discrepancies. The
qualitative values of the next candidate model’s
parameters are then shifted so as to reduce the
discrepancy.

The second search heuristic is based on the empirical
observation that correct qualitative models tend to
form ‘clusters’ in the Parameter Space. (Due to
inherent ambiguities in qualitative simulation,
generally more than one point in the Parameter Space
will form a cormect candidate model). This
observation is exploited in the Candidate Proposer by
using a heuristic which prefers the neighbouring
values of any previously found correct parameter
assignments.

In summary, performing parameter identification of
qualitative models involves searching in the finite
Parameter Space generated by the quantity spaces of
the model parameters. The goal test of this search is
whether the predicted behaviour of the qualitative
model with the candidate parameter assignment
matches the observed behaviour of the physical
system. The ‘postulate and evaluate’ cycle of
searching for and then testing parameter assignments
is realised by the Candidate Proposer and Predictor
modules respectively, as shown in figure 8.

Posrulare"/""_"—_\\ "Evaluate"
Eﬂﬁw

Predictor
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Figure 8 The Postulate/Evaluate Cycle to Perform
Qualitative Parameter Identification



5.3 The Strategist

The remaining module of QPID, the Strategist, is the
meta-level module tasked with controlling the object-
level such that the user requirements, particularly
time constraints, are satisfied.

Model-based reasoning in general, and qualitative
simulation in particular, is a computationally
expensive task. The repeated use of the fuzzy
qualitative simulation algorithm in the Predictor to
evaluate the various candidate parameter assignments
postulated by the Candidate Proposer means that
QPID's object-level reasoning can indeed require
large amounts of computation. This is problematic
for a time constrained reasoning system such as
QPID. Lesser er al. (1988) address this issue and
describe an Approximate Processing approach to
real-time search-based problem solving. They state
that if a problem solver’s estimate of when the
optimal solution will be formed exceeds the available
time resource, the system should perform
Approximate Processing that trades off the quality of
the final solution against the computation tme
required to derive it (where the dimensions of
solution quality are domain specific).

(Steele and Leitch, 96b) describes how the Strategist
of QPID can vary aspects of both the representation
and the reasoning of the object-level, forming an
Approximate Processing approach which ensures
that a solution is produced within a time constraint.
Briefly, the Strategist uses a hierarchy of multiple
qualitative models of the process of varying
precision - defined in (Leitch and Shen, 94) as the
number of distinctions in the value domains of the
model - and selects the most precise model which will
lead to a solution within the prescribed time
constraint. The Strategist can also, if necessary, vary
the completeness of the qualitative simulation
algorithm i.e. the algorithm can be alfered so as to
generate only a subset of the possible behaviours of
the current model. This reduces the computation time
required 1o evaluate candidate models, but at the
expense of guaranteeing that all correct qualitative
parameter assignments will be identified.

6. Experimentation

This section presents results of performing
qualitative parameter identification on a benchmark
dynamic system. The previous sections have
described how the modelling and reasoning
procedures used in the qualitative approach are
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radically different to those of the conventional
quantitative methods such as linear least squares.
Indeed, it has been argued that the two approaches
could not be considered to be equally applicable to
any given problem - if accurate, precise and certain
domain knowledge exists, then conventional
quantitative approaches would be used. On the other
hand, the proposed qualitative approach would be
used in the case of ill-defined domains, where process
models must represent imprecise and uncertain
knowledge. As such, this section does not give a
direct comparison of the two approaches to model
identification, but rather reports results typical of the
developed qualitative approach.

6.1 Experimental Setup

The dynamic system chosen to demonstrate the
application of QPID is the benchmark three coupled
tanks process, as shown figuratively in figure 9.
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Figure 9 Three Coupled Tanks

To ease the initial testing of QPID, the process is
itself simulated in software using the Runge-Kutta
simulator provided by the SIMULINK toolbox of
MATLAB. This facilitates quick and easy simulation
of different fault scenarios, which are used to
generate batches of process data for qualitative
parameter identification in QPID. A dynamic, third
order, non-linear numerical flow model is used to
provide the behaviour of the tanks process. The
QPID system itself is implemented in LISP, using the
Harlequin LispWorks3.1 environment, running on a
DEC Alpha workstation.

6.2 The Fuzzy Qualitative Model of the Three
Tanks System

Fuzzy qualitative models consist of two parts:
constraints and fuzzy quantity spaces. The process
modeller must provide both of these, appropriate to
the domain knowledge and the task to be performed
(e.g. fault detection).

Constraints

To provide a behavioural model of the process in
terms of qualitative equations relating various
quantities, it is assumed the modeller has some



knowledge of the internal structure of the process, in
particular which quantities are the state variables.
Even in the case of ill-defined domains like chemical
and biological processes, knowledge of the causal
structure still commonly exists. Of course, there may
be great uncertainty and imprecision about the
accurate values of the parameters in this model
structure.

For the three coupled tanks, a third order non-linear
model structure was assumed and used to create the
fuzzy qualitative model given in figure 10.

sub AUX1 V1 V2 )

sgrt AUX2 AUX1 )

mult gl2 parameterl AUX2 )
sub Vl-dash gi qgl2 )

— e ——

sub AUX3 V2 V3 )

sgrt AUX4 AUX3 )

mult g23 parameter2 AUX4)
sub V2-dash gl2 g23 )

—— e~ —

( sgrt AUXS V3 )
( mult go parameter3 AUXS )
( sub V3-dash g23 go )

Figure 10 Fuzzy Qualitative Model Equations for Three
Tanks Example

The equations are structured such that there are three
qualitative parameters in the model (parameterl,
parameter2, parameter3), one in each pipe
flow equation. QPID will identify the qualitative
values of these parameters. These lumped parameters
are coefficients whose value can be directly related to
physical characteristics of the plant such as the
effective cross sectional area of the outflow pipes and
the pipe discharge coefficient, which is necessary for
the particular task of fault diagnosis. A different
model structure, with a different parameterisation,
may be appropriate for other model-based reasoning
tasks.

Fuzzy Quantity Spaces

The modeller must then specify the subjectively
important qualitative values which each model
parameter and variable can take. The required
precision of the parameters’ quantity spaces depends
on the task which the identified parameters will be
used in. For example, in the case where QPID is
coupled to a diagnostic agent, the quantity spaces
should only be as precise as necessary to produce a
fault diagnosis. There is little point in specifying a
quantity space consisting of, say, one hundred
qualitative values, as this is likely to be overly
detailed and reduces the cognitive efficiency of
QPID.
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From the physical dimensions of the plant, it is
known that the parameter values of interest would
span the numerical range from 0.00 (representing full
pipe blockage) to around 2.30 (clear pipe cross
section, maximum discharge coefficient). In this
example, 8 qualitative values were defined for this
most precise quantity space of the parameters. This
arbitrary number of qualitative values was
appropriate to describe the varying degrees of pipe
blockage for a fault diagnosis application. Each
qualitative value has an associated linguistic label,
p_1 through p_8. The variables of the model were
each given quantity spaces consisting of 16
qualitative values. Figure 11 graphically shows the
fuzzy quantity spaces defined for the three
parameters (parameterl, parameter2,
parameter3), the volume variable (V), volume
rate-of-change (V-dash) and the flow variables
(gi, gl2, g23, go).
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Figure 11 Fuzzy Quantity Spaces for Three Coupled
Tanks Model

QPID can now be used to identify the parameters of
the above fuzzy qualitative model, by searching
within the Parameter Space of the model for those
parameter assignments which are validated as correct
against a batch of process data. Figure 12 shows the
Parameter Space of this model - as each of the three
parameters can take 8 possible qualitative values, the
Parameter Space consists of 8x8x8=512 elements.

Parameter2 Parameter3
F 9
p_8
p_8
p_1 11 p 1 s
P-1 P-8 pParameteri

Figure 12 The Parameter Space of the Three Coupled
Tanks Model



6.3 Results from QPID

A batch of process data describing the faulty
behaviour of the plant with a large blockage in the
second pipe was used in this first experiment. QPID
was used to identify the parameter values of the
above fuzzy qualitative model from this batch of
data. The results of this qualitative parameter
identification are presented graphically in figure 13.
The elements of the Parameter Space which were
identified as correct parameter assignments are
shown shaded. The elements corresponding to
incorrect parameter assignments are left blank.

Nominal or
‘Fault-Free'
Parameter
Values
parameter2
I QPID Output
i.e. Correct
p_823s Qualitative
a pafameter3 Parameter
Values
p_8
p_1 p_1 _
°p_1 P ] parameter1

Figure 13 Identified Qualitative Parameter Values

Obviously, solutions obtained from QPID are not
unique i.e. more than one set of parameter values
results in a correct qualitative model. In this example,
8 of 512 elements of the model’s Parameter Space
were evaluated as correct. This is due to the well
known ambiguities of qualitative simulation - more
than one candidate qualitative model may produce a
behaviour tree which contains a behavieur which
matches the batch of observations of the process.
This ambiguity in the identified parameter values has
to be accepted as part of the paradigm shift from
quantitative to qualitative methods. For some process
supervision tasks, it is not a significant problem. For
example, consider the task of fault detection, where
the process operator knows. that the fault-free process
has nominal parameters which take the maximum
qualitative values (no blockages, thus maximum
cross-sectional areas of pipes). The correct values
identified from QPID in this experiment are clearly
all very different from the nominal values. In
particular, the value of parameter2 has decreased
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significantly, indicating that a large blockage has
occurred in the second pipe. Thus, even though the
identified parameters are ambiguous, there is
sufficient information to detect a fault and to identify
the approximate size of the blockage. Certainly, the
large number of elements in the Parameter Space
evaluated as incorrect parameter assignments could
be sufficient to reassure the process operator that the
process has not entered a safety critical operating
region.

6.4 QPID Using Multiple Models of Varying
Precision

Section 5.3 outlined how the Strategist of QPID can
vary the representation of the model used at the
object-level of QPID to ensure that a solution is
available within the prescribed time constraint. In
particular, the Strategist selects from multiple models
of the process the one of the highest precision which
will lead to a solution in the available time.
Reasoning about the selection of the most
appropriate model precision for the current time
constraint requires that the multiple models of the
process be related and ordered in some formal way.
In QPID, the models are stored in a hierarchical
scheme, with each level of the Precision Hierarchy
consisting of a fuzzy qualitative model of a certain
precision, as shown in figure 14.
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Figure 14 The Precision Hierarchy of Multiple Models
Used in QPID

The highest precision, or reference, model is that
which encapsulates the best knowledge of the
modeller i.e. the most precise and least uncertain
model. The less precise models at the upper levels of
the hierarchy are generated by applying an
abstraction operator. This operation involves
collapsing together certain neighbouring qualitative
values (fuzzy numbers) in the quantity spaces of the
precise models to form the qualitative values at the
lower levels of precision. (Note that the constraints of



the qualitative models remain unchanged across the
levels of the Precision Hierarchy - only the value
domains change).

From the definition of the three tanks reference model
used in the previous experiment, the abstraction
operator can then be applied to create the models at
the other levels of the Precision Hierarchy. Figure 15
shows the results of applying the abstraction operator
to quantity spaces of the reference model (for brevity,
only the parameter and volume quantity spaces are
shown). Also shown are the corresponding Parameter
Spaces generated by the models at each level of the
hierarchy. Importantly, the size of each Parameter
Space varies polynomially with the precision of the
model - thus, it requires far less computational effort
for QPID to identify the qualitative parameters of a
low precision model.

LOW PRECISION MODEL

O . A 1
MED PRECISION MODEL ﬁ Abstraction: Spensior

HIGH PRECISION IIODEL? Abseacion Cpensir

volume parameter %

Figure 15 Precision Hierarchy and Parameter Spaces for
Three Tanks Example

To demonstrate the use of QPID with multiple
models of varying precision, the first experiment was
repeated with each model from the above Precision
Hierarchy. The results are shown in the same
graphical format in figure 16, and table 1 contains
the computation times (in CPU seconds) required to
perform exhaustive parameter identification of the
three models.
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Figure 16 Identified Qualitative Parameter Values

Level of Hierarchy Computation Time

(CPU secs)
Low Precision 4.2
Med Precision 29.1
High Precision 53.0

Table | Computation Times at Each Level of Hierarchy

These results show that the ambiguity in the results
are more problematic when using less precise models
e.g. using the least precise qualitative model, 4 out of
8 elements in the Parameter Space were evaluated as
correct parameter assignments, including the
maximum qualitative assignment corresponding (o
the nominal process parameter values. Thus, in a
fault detection task, the process operator would not
be aware of the presence of the blockage fault from
these imprecise results alone. However, they could be
assured that the process had not entered the operating
region of the parameters which were identified as
incorrect. The medium precision model has 6 out of
64 correct parameter assignments, providing better
information to the operator, and clearly shows that
parameter2 has shifted from its nominal value.
Finally, as before, the high precision model isolates



an even smaller correct subspace, indicating a
substantial blockage in the second pipe.

As expected, the computation times required to
perform exhaustive parameter identification of each
model at the three levels of the Precision Hierarchy
are significantly different. This is primarily due to the
polynomial increase in the size of the Parameter
Spaces generated by the models of the Precision
Hierarchy, as shown in figure 15. (N.B. Incorrect
models are evaluated more quickly than correct
models, as less matching qualitative behaviours have
to be maintained - this is why there is less of a
computation time increase between the med and high
levels of precision). These results demonstrate how
an aspect of solution quality (i.e. precision) can be
traded-off for computation time. (Steele and Leitch,
96b) gives more detail on how this can be used in
QPID as the basis for time constrained model-based
diagnosis.

7. Conclusions

The QPID system uses fuzzy qualitative modelling
and simulation techniques to form the basis of a
novel approach to parameter identification of
dynamic systems. The use of these qualitative
methods
* is more appropriate for modelling and reasoning
about ill-defined processes
e leads to a state-space search approach to
parameter identification
o allows multiple models of varying precision to be
used as the basis of a time constrained reasoning
system.
It has been argued that the limitations and heuristic
tuning associated with conventional quantitative
parameter estimation methods arise due to the use of
a real-valued model to represent the incompletely
known real process. Fuzzy qualitative models obviate
these problems by explicitly representing uncertain
and imprecise process knowledge in the model. The
difficulty in reasoning with these models, however, is
that the qualitative calculus leads to multiple
predicted behaviours and ambiguous results.
Multiple models of varying precision can be used to
control the computation time required, but at the
expense of increased ambiguity and imprecision in
the results.
The qualitative parameter identification method
presented here is essentially a simple concept - search
within the finite space of model variations for all
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models which are consistent with process
observations. However, this identification method
requires a significant paradigm shift from the
analytic method of calculating the parameters of a
real-valued model which minimise some error
function. This paper has exposed some of the issues
and problems associated with the use of qualitative
methods. Armed with such knowledge, the analyst is
better placed to know when it is appropriate to make
this shift from quantitative to qualitative techniques
for model identification.
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