
Abstract

After a brief overview of the work on causality in
the area of qualitative reasoning, this paper proposes
an algorithm for causally ordering the variables
appearing in a set of equations. The main originality
of the algorithm compared to existing work is that it
copes with systems that have several operating
modes and performs the causal ordering in an
incremental way. The algorithm is implemented in
the software module CAUSALITO written in C.

1 . - Introduction

The work presented in this paper results from a
problem encountered in the framework of the Esprit
project TIGER. This project aimed at integrating
several artificial intelligence technologies, including
qualitative model-based reasoning to perform
condition monitoring of gas turbines . It resulted in
the TIGER system which has been installed on
several gas turbines in the UK to date (1996) (Trave-
Massuyes and Milne, 1996). The TIGER diagnostic
mechanism uses three independent systems, among
which the qualitative model-based diagnosis system
Ca-En (Bousson et al., 1994). Ca-En includes a
general diagnosis engine plus a knowledge
representation language associated with a simulation
engine (Trave-Massuyes and Milne, 1996 ; Bousson
and Trave-Massuyes, 1994).
A Ca--En model is defined as a set of causal

relations (influences) among the variables of the
physical system and a set of equations (analytical
expressions) relating the variables. These constitute
the so called causal level and global constraint level .
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Both levels cope with imprecise knowledge by
allowing parameter interval values . The causal level
is supported by a directed graph in which the nodes
stand for the variables and the edges stand for the
influences . Influences describe dynamic
relationships ; they are implemented by a predicate
1+(X Yc,KTd,Tr) (or 1-) in which Y is the variable
influenced by X, c is an activation condition, K is the
gain of the influence (ratio between the variation
amplitude of Ywith respect to that of X), Td is the
delay (time taken by Y to react to X) and Tr is the
response time (time needed by Y to reach a new
equilibrium value after being perturbed by A~. The
Ca-En prediction (simulation) and diagnosis
procedures are both driven by the causal level, the
global level being only used in the prediction
procedure (Bousson and Trave-Massuyes, 1994). In
consequence, whereas the global level may only
represent part of the knowledge available about a
physical system, all the knowledge must be
represented at the causal level .

The Ca-En model of a physical device can be
built from deep knowledge (analytical expression)
and/or empirical knowledge (influence relationship
known by the experts) .

Implementing deep knowledge at the causal level
requires to explicitly set the causal structure
underlying the set of equations . We are hence faced
with the problem of causal ordering, and we want to
automate this step . Our objective differs however
from other works in that the causal order is not only
to be used for explanatory purposes (when used by
the diagnosis mechanism) but also for prediction
purposes (when used by the simulation mechanism) .



2. - Causal ordering

The problem of causal ordering has been
approached by several authors in the qualitative
reasoning context, generally for providing an
explanation of why a device produces the behaviour
it does . Since the behaviour is generally obtained
from an equational model, the problem can be set as
the one of deriving a causal pattern from a set of
equations which may be algebraic or differential
ones . The causal pattern obviously depends on the
context in which the device operates, which is
determined by the set of exogenous variables, i.e .
variables which are controlled by factors external to
the system currently modelled . We can refer in
particular to the following approaches

" the mythical causality approach of de Kleer and
Brown (1986)

" the causal ordering of Iwasaki and Simon
(1986, 1994)

" the QUAFI causal graph generation algorithm
of Rose and Kramer (1991)

" the bond graphs approach (Top and
Akkermans, 1991)(Lucas, 1994)

The QUAF and the bond graph approach only
provide partial solutions. The QUAF method
requires the user to change algebraic equations into
differential equations from the knowledge of the
temporal scales of the different mechanisms,
meaning that the problem is really solved by hand .
The bond graph approach defines a preferred
causality for every component from which it builds
up the whole causal pattern . Unfortunately,
inconsistencies may occur at some point and the
algorithm must backtrack.

The solution proposed by Iwasaki and Simon
derive the causal ordering from a structural analysis
of the equations. Their approach does not require
equation solving. It differs from the de Kleer and
Brown (1986) process for finding mythical causality
which performs a runtime computation for
determining the propagation paths followed by
disturbances given as input signals. We agree with
Iwasaki and Simon's that finding a causal structure
can be viewed as a more general problem than
determining the effect of a disturbance for which
standard qualitative techniques can be used once the
causal structure is obtained . This being so, both
approaches are consistent and they provide the same
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causal order when no feedback loops are involved .
When a feedback loop is present, then mythical
causality determines all the interpretations, each one
specifying a possible causal order around the loop .
Unlikely, Iwasaki and Simon do not specify any
causal ordering, such an order being pointless for
them .

3. - The requirements of our problem

We do agree with the main ideas of Iwasaki and
Simon causal ordering . However, their approach is
still limited for our problem .

First, it is not convenient for prediction problems .
Indeed when the causal structure is to be used for
predicting the values of unmeasured variables by
propagating through the values of measured ones, it
is impossible to abstract existing feedback loops.
Any variable must be reachable from exogenous
variables . The prediction engine needs a full causal
structure and requires to determine at least one
possible interpretation around the loops. Notice that
all possible interpretations around the loops are
equivalent for prediction purposes .

Iwasaki and Simon's approach just provides no
causal order in these cases. In the TIGER project,
the APU fuel system (cf. section 6) was a good
example of a strongly connected system in which all
the 18 unknown variables of the assembled model
are in a loop .

Second, we want to address an important
problem. It is the very common problem of systems
which have several operating modes. In hydraulic
circuits for example, switch valves are very
common. These valves are either fully open or fully
closed, adding or retracting new branches to the
circuit . The equational models of such systems have
conditions associated to some of the equations . A
brute force approach would consist in generating a
new causal structure for every different mode. This
can be significantly optimised by performing an
incremental generation of the causal structure .

Before presenting our algorithm, we recall the
main lines of Iwasaki and Simon approach on which
we have built our own contribution .

4. - The causal ordering of Iwasaki and
Simon (1986, 1994)

4. 1. - Static systems



Static systems are composed of algebraic
equations relating the values of the variables at
anytime.

Self-containment A (qualitative) static system of
n algebraic equations with n variables is self-
contained if every subset of k (k<n) equations
contains at least k variables .

Minimal Complete Subsystem (MCS) Given a
self-contained system S, a proper subset s of S that is
also self-contained and does not contain a proper
self-contained subset is called a MCS.

Causal Ordering Given a self-contained system
S, let So be the union of all its MCS, called of zero
order. Since So is self-contained, the variables in So,
can be determined by solving the equations in Sp .
Substitute these values for all the occurrences of
these variables in the equations of (S-SO) . A new
self-contained system is obtained, called the derived
structure offirst order. Let Sl be the union of all its
MCS, called of first order. The above procedure is
repeated until the lastly derived self-contained
system contains no proper subsystem that is self-
contained .

For each equation ei of S, let Vi denote the set of
variables appearing in ei and Wi the subset of Vi
containing the variables belonging to the MCS of
highest order in Vi . Then, the variables in Wi are
defined as causally dependent on the variables in (Vi
- Wi) .

Determining causal ordering is therefore
equivalent to computing the MCSs of the successive
derived structures .

Remark A loop corresponds to the existence of
an MCS with more than one variable, all the
variables of such MCS being mutually dependent .
One can then notice that, as mentioned before, this
causal ordering does not provide a causal order for
the variables in a loop .

Implementation within a graph theoretic
framework The problem of computing the causal
ordering is closely related_ to the one of finding a
perfect matching in a bipartite graph as shown by
(Porte et al ., 1986). This result is presented below.

Given a self-contained system S = (E X) formed
by a set of n equations E in n variables X and the
context of the system given by the set of exogenous
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variables . The problem of causal ordering is the one
of determining the dependency paths among
variables which would indicate in which order every
equation should be used to solve successively for the
n unknown variables. The system being self-
contained, this comes back to the problem of
associating one variable to one equation .

If we define G=(E u X, A) as the labelled
bipartite graph associated to S in which every
equation of S is represented by a node labelled by ei
(equation-node), each variable of S by a node
labelled by xj (variable-node) and there exists a non-
oriented edge ay, i) between the node xj and the node
ei if xj appears in ei, then the problem of associating
one variable to one equation is the well-known
problem of finding a perfect matching in the
bipartite graph G=(E u X, A) .

Proposition 1 (Porte et al ., 1986) : The bipartite
graph G=(Eu X, A) associated with a self-contained
system has a perfect matching .

Once a perfect matching C has been found. every
equation ei can be interpreted as a mechanism which
determines the value of its matched variable xi as a
function of the other variables appearing in the
equation. xi is hence viewed as causally dependent
from the other variables in the equation ei . A causal
graph, Gc =(V, Ac), can be derived from G by
orienting the edges ofA from xi towards ej if a(ij) cc
C and from ej towards xi if a(ij) E C. then fusion in
a local manner the matched variable and equation
nodes. Gc hence provides a full causal ordering
among the variables, exhibiting one possible
interpretation around the loops.

Let us now relate Gc to Iwasaki and Simon's
causal ordering . Gc by itself does not show the
MCSs explicitly .

Proposition 2 (Porte et al ., 1986) : Every MCS
corresponds to a maximal bipartite elementary
subgraph in G=(E u X, A) .

Proposition 3 (Porte et al ., 1986) : Every
maximal bipartite elementary subgraph of order
more than 2 in G=(E v X, A), corresponds to a

2 - Every exogenous variable is accounted for by an
exogenous equation which artificially sets the value of :he
exogenous variable to a constant value parameter.



strongly connected component (SCC) in the directed
bipartite graph G '=(E vX, A ).

Proposition 4 : There is a one to one
correspondence between the SCCs in G' and the
SCCs in Gc.

The proof is trivial from the construction of G'
and Gc. The above propositions show that the SCCs
in Gc correspond to the MCSs of S. Consequently, if
a graph Gco is built from Gc by aggregating all the
nodes within the SCCs ofGc into a single node, then
Gco provides the causal ordering proposed by
Iwasaki and Simon (1986) . The variables belonging
to the same SCC in Gc, i.e . the same MCS of S, are
all mutually dependent. Contrary to the causal
ordering directly obtained from Gc, this causal
ordering does not assign any ordering among them .

Example Consider the system composed by a
voltage generator U� feeding two resistors in series
R2 and R3 (this example will also be used in section
5 .2) . The equations are

U

x j=U

x2=Ul

x3=U2

x4=1

------------
X1T~ x3

	

I
I
I

	

I
I / __:~! x411

4.2 - Dynamic systems

e, U=Uo
e,

	

U=U, +U,
e3	U,= R,1
e4	U,= R3I

x4
I
I

Bipartite graph G'

	

Oriented graph G'

	

J
SCC

r
X={x2,x3,x4 )

Causal order of
Iwasaki and Simon
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Dynamic systems are modelled by differential
equations. It is commonly accepted that they have a
natural causal interpretation . Any differential
equation can be brought back to a set of differential
equations in canonical form, i.e. there is only one
derivative in every equation and the derivative is the
only term appearing on the left hand side
dXildt =f(XI,

	

. . ., Xi, . ..,Xn,

	

t).

	

Every differential
equation in canonical form can then be interpreted as
a mechanism which determines the value of a
derivative as a function of the variables which
appearing in the right-hand side of the equation .

Self-containment A (qualitative) dynamic system
of n first order differential equations (in canonical
form) is said to be self-contained if every subset of k
(V<_ n) equations contains at least the first
derivatives of k variables .

Causal ordering Iwasaki and Simon distinguish
two kinds of causal relations in dynamic systems
differential causality and integral causality . Integral
causality means that each variable depends on its
derivative (V t, X(t) = X(t-dt) + cLYldt), and
differential causality notifies the dependence of each
derivative in relation to all the variables occurring in
its expression .

The causal ordering of a self-contained dynamic
system in canonical form is given by, for each
equation

I - the integral link between the derivative and its
primitive .

2 - the differential links between the derivative
and the other variables ofthe equation .

4.3 - Mixedsystems

Mixed structures are composed of differential
and algebraic equations.

Mixedsystem instanciation Since dt, X(t) = X(t-
dt) + dXldt, Iwasaki and Simon consider X(t-dt) as
an exogenous variable for the system instanciation at
time t. Hence, the causal ordering of a mixed system
M at time t is obtained from a new system Inst(M)
including all the equations of M apd, for each
derivative dYildt occurring in M, one constant
equation Xi = c to represent the fact that Xi is
exogenous in Inst(M) .

Self-containment A mixed system is self-
contained iff



I - M contains 0 or more first-order differential
equations, the rest being algebraic equations .

2 - Inst(M) verifies the self-containment criteria
of static self-contained systems when the variables
and their derivative are treated as distinct variables .

Causal ordering Causal ordering of a mixed
system is determined by

I - The application of static systems ordering
rules to Inst(M).

2 - The addition of the integral links between
each derivative and its primitive .

5 - Causal ordering for CA-EN

Our problem is to generate automatically the
causal structure of the Ca-En models when the
original knowledge is in the form of an equational
model . This section presents the algorithm that we
have devised and implemented in the software
module Causalito . Let us recall the requirements of
our problem

I- The causal structure must account for all the
causal links (influences) acting within the system, in
particular feedback phenomena must be explicitly
accounted for, i .e . the causal structure must provide
one possible interpretation around the loop(s) . This
is because Ca-En needs a full causal structure in its
prediction mechanism which is based on
propagating the variables values through the causal
graph (any internal variable must be reachable from
the exogenous variables) .

2- The causal structure must be generated for
systems which have several operating modes as
well .

5.1 . - One single operating mode systems

5.1.1.- Static systems

Let us consider the self-contained system
S = (E X) and the bipartite graph G=(E u X, A) as
defined in §4.1 . Then we have the following
interesting results which help understand the causal
ordering problem

Proposition 5 : The bipartite graph G=(E u X, A)
contains no bipartite elementary subgraph (S
contains no MCS with multiple variables) iff G=(E
uX, A) has a unique perfect matching.
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Proof : This result is easily proved by reasoning
about the occurrence matrix Mof S. The rows of M
correspond to the equations Eand the columns to the
variables X and the entry mif is non null iff the
variable xf occurs in the equation ei . This matrix is
also the non null submatrix of the adjacency matrix
of G. Hence every my_0 corresponds to an edge of
.A . A perfect matching associates one variable to one
equation and it can therefore be represented on the
occurrence matrix by the selection of n entries with
the property that there is one and only one selected
entry per row and one and only one selected entry
per column . It is a well-known result that the
adjacency matrix of a graph with no cycles can be
put in diagonal form after a permutation of its rows
and its columns. Therefore there is a unique perfect
matching which corresponds to the selection of the
entries on the diagonal .

Proposition 6 : If the bipartite graph G=(E u X,
A) has a unique perfect matching C, the derived
causal graph Gc is acyclic and so is the causal
dependence path linking all the variables.

The proof is trivial from the construction of Gc
from G.

In other words, only the MCSs with multiple
variables give rise to several possible perfect
matchings, each of which provides a possible causal
order around the loops.

Corollary 7 : Consider that all the possible
perfect matchings of the bipartite graph G=(E u X,
A) are C1, . . ., Cn and that they include a common
submatching, then the common submatching induces
the same acyclic causal subgraph in any Gci,
i=l, . . .,n . The non common parts of the perfect
matchings Cl, . . ., Cn, induce strongly connected
subgraphs in Gcl, . . ., Gcn, respectively (they hence
correspond to MCSs with multiple variables) .

Proof : Corollary 7 comes directly from
proposition 5 .

Remark Given that the causal ordering of
Iwasaki and Simon is given by Gco which is
obtained from Gc by aggregating all the nodes
corresponding to SCCs, it comes from the above
propositions and corollary that their causal ordering



is unique and independent of the perfect matching it
has been derived from .

In order to fulfil requirement 1 and given that all
possible interpretations around the loops are
equivalent for prediction purposes, our problem
reduces to the one of finding one (any) perfect
matching in G and deriving the causal graph Gc. In
other word, we do not need to exhibit the MCSs.

In terms of mechanisms and influences, the
perfect matching associates one variable to one
equation, defining which variable is to be
determined from which equation . Every equation ei
can then be interpreted as a mechanism which
determines the value of its matched variable xi as a
function of the other variables appearing in the
equation . In other words, the matched variable xi is
viewed as causally dependent from (influenced by)
the other variables in the equation ei .

The algorithm that we have devised, Causalito,
provides

The assignment variable-equation (xi , ei)
for i=l, . . .,n (perfect matching problem) ;

" The list of influences acting within the
system (with associated delay times and
activation conditions if any) ;

" The correspondence between equations
and influences .

For determining the perfect matching, we use the
Ford and Fulkerson (1956) algorithm which finds a
maximal flow through a weighted oriented graph.

5.1.2- Dynamic systems

Ca-En accepts equivalently differential equations
or recurrent equations, so does the Causalito
algorithm. The system must be self-contained and as
in §4.2, it must be put in canonical forma.

Canonical recurrent equations If some variable
appears p times in the equation with different
temporal labels, it is considered as p different
variables . Following the intuition, the causal links
are generated consistently with the chronological

'- Similarly to continuous time differential equations,
a recurrent equation of any order can be put in the form of
a set of first order recurrent equations, i.e . there is only
one variable with temporal label (t+1), the other variables
having a temporal label z t, and this variable is the only
term appearing on the left hand side ofthe equation .
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order imposed by the temporal labels . They are
hence drawn from the variables appearing on the
right hand side of the equation to the variable on the
left hand side, which appears as the one whose value
is determined by this mechanism. The causal links
are then labelled by a delay (delay of the
corresponding Ca-En influence) equal to the
difference of the temporal labels of the variables that
they relate .

Canonical differential equations As opposed to
Iwasaki and Simon approach, we do not distinguish
a variable from its derivative . The differential causal
links are drawn from the variables on the right hand
side of the equation towards the primitive variable of
the derivative of the equation, which appears as the
one whose value is determined by this mechanism.
When the primitive variable of the derivative
appears explicitly in the equation, this results in a
causal link which loops around the primitive
variable. These loop links are then labelled by a
delay time equal to 1 .

5.1.3 Mixed systems

Given a mixed structure in which both the
dynamic part and the static part are self-contained,
the causal ordering is simply obtained by applying
the causal ordering for dynamic structures to the
dynamic part and the one for static structures to the
static part . From the implementation point of view,
this is obtained by applying the whole model
structure to the Ford & Fulkerson algorithm, after
having forced the entries corresponding the
matching for the dynamic part (the variable to be
matched to a differential equation is the primitive
variable of the derivative of the equation ; idem for
recurrent equations) . Exogenous variables are
accounted for in the static part by as many
exogenous equations .

The model structure is given by the occurrence
matrix M of the system in which some non null
entries can be_marqued as explained below

1

	

ifvariable i occurs in equationj
ifvariable i occurs in equationj
and must be forced

0 otherwise
The algorithm returns the table after having

modified some of the entries according to the perfect
matching found

m



1

	

if variablej is matched to equation i
by the perfect matching

*

	

if variablej has been forced to
mo =

	

equation i
2

	

if variablej simply occurs in
equation i

0 otherwise
From the returned table M', Causalito produces

the causal structure and precises which influences
(causal links) correspond to every equation . Delays
are generated as explained in 5.1 .2 .

5.2. - Multiple operating mode systems

Most of the real systems have several operating
modes for they include automatic switches and/or
processes that have a different behaviour depending
on the operating range. Surprisingly, the problem of
causal ordering for such problems has never been
discussed so far in the literature . The equational
model of such systems is formed of a set of
equations among which some have associated
conditions defining their operation range. The global
causal order associated to such systems hence
includes some causal links with associated
conditions as well .

This section proposes a formalisation of the
problem of generating the causal structure associated
to multiple mode systems and provide an algorithm
for generating the causal structure in an
incremental way, taking sequentially into account
the different circuit configurations in a local manner .
This allow us to optimise the procedure in the sense
that, for every operating mode, only the minimal
causal sub-graph is re-evaluated . This is obviously
much more efficient than a brute force approach
which would consist of generating a new graph for
every different mode .

Consistent operating mode An operating mode is
said to be consistent iff it is logically and physically
consistent, i.e . the set of logical conditions defining
the operating mode are consistent and they are
simultaneously realisable (from a physical point of
view).

Self-containment A multiple-mode mixed S
system is self-contained iff its static part and its
dynamic part are self-contained in every consistent
operating mode.
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Incremental causal ordering Our algorithm takes
as input the equational model structure of S plus a
condition vector

"

	

The model structure is given by the
occurrence matrix Mas in 5 .1 .3 .

"

	

Thecondition vector Vhas as many
components as equations

t

	

if equation i has no condition
C

	

if equation i is submitted to
condition C

~C

	

if equation i is submitted to
condition C

Working hypothesis The conditions defining the
different modes of some physical component
(represented by one or several equations) must
define a partition of the parameter subspace spanned
by the parameters appearing in these conditions. i.e .
they must be mutually exclusive and cover the
whole subspace . In logical terms, (Ci n Cj) is false

vi

for

	

any i and j, and V Ci

	

is true . If the above

hypothesis would not hold, this would indicate that
the whole model has a domain validity restricted to a
subspace .

The number of different operating modes for the
system can be obtained by multiplying the number
of different modes for every physical component.
However, one must be careful that among these
modes, some may not be consistent . We define a
consistent operating mode as a configuration .

The general scheme of the algorithm is as
follows: beginning with an initial configuration
Confo= (CI C2 . . . Cn) and following the method
presented in §5 .1 .3 . Causalito generates a first causal
graph GO in the form of Ca-En influences plus their
associated activation conditions (the influences
corresponding to equations submitted to some
condition C have the activation condition C) .
Causalito then switches to another condition and
determines the minimal causal sub-graph which
needs to be re-evaluated and the new sub-graph to
be added. Go is updated and so on until all the
configurations have been considered .

Algorithm Assume that the system S in a given
configuration - assumed to be the initial
configuration without loss of generality - consists
of n equations E0 and n variables VO and consider a
configuration change, defined by the fact that a set
on conditions change truth values . Let's define the
"macro-conditions" C and C~ as the union of the



condition which change truth value from 1 to 0, and
from 0 to 1 respectively . Note that this comes back
to replacing the equations conditioned by conditions
in C by conditions in C~, and that, since the system
is self-contained, the occurrence matrix
variables/equations is always a square matrix.

Consider the following notations
EO

	

set of equations in the initial
configuration ;

VO

	

set of variables occurring in E ;
C and C~ macro-condition determining the next

configuration change ;
perfect matching for the initial
configuration (condition C true) ;
causal structure (graph) of S in the initial
configuration (derived from CO) ;

EC

	

set of equations conditioned by C ;
VC

	

set of variables matched to EC by CO ;
Ec.

	

set of equations conditioned by C* ;
VC.

	

set of variables occurring in Ec. ;
VN

	

set of variables occurring in Ec. and not
occurring in VO ;

Co

GCO

Ec

	

set of equations neither submitted to C
nor to C* ;

Vc	setofvariables occurring in E(. ;
E

	

set of equations in the next configuration
(E= EC + Ec.) ;

V

	

set of variables occurring in E.

Define

	

V'c=VnVc and G'CO as the subgraph
obtained from GCO by deleting the edges entering
the variable-nodes of VC and the nodes
corresponding to (VC - V'c) ; i .e . G'CO is the
subgraph which remains after discarding EC. Then
we have the following result

Proposition 8 : The maximal subgraph of
GCO that needs to be re-evaluated is the subgraph
spanned by (f(V~)uV~), where r(Vc) is the set
of successors of the variable-nodes of in G'CO , and
the sub-graph to be added is obtained from a perfect
matching between (V~ v r"(V~)u VA,) and
(E( .. v Er) , where Er is the subset of equations in
EC which include variables of (1"(V~)v V~) .

Proof : This result is easily proved by reasoning
about the occurrence matrix M of S in the initial

21 0

configuration. A perfect matching, in particular Co
associates one variable to one equation and it can
therefore be represented on the occurrence matrix by
the selection of n entries with the property that there
is one and only one selected entry per row and one
and only one selected entry per column. Then, every
non selected entry mil corresponds to an edge of the
causal graph GCO drawn from variable xf towards the
variable matched to the equation ei.

We change C into C* . The new perfect matching
C can be decomposed in a first submatching Sub-C I
common to CO and a second submatching Sub-C2
which is new. We want to determine the minimal set
of variables and equations to be rematched (the one
which must be considered for finding Sub-C-)),
guarantying at the same time that a perfect matching
exists among them .

When changing configuration C into C~, the rows
of M corresponding to the equations in EC are
replaced by the rows corresponding to the equations
in Ec.. Let's reason with respect to the variables,
knowing that a dual reasoning could be done with
respect to the equations . In the new occurrence
matrix, the entries which remain selected (matches)
correspond to the variables in the set (V-(Vc~_) V,`)),
where VN is the set of variables newly introduced by
Ec..

Therefore, the variables which are not matched
are (V~V,,) .

Matching VN : As the variables in VN only occur
in Ec., they can only be matched to equations in Ec. .
Hence these matches do not require to modify any of
the existing matches.

Matching VC: The variables of VC may occur in
equations of Ec (and eventually in equations of
Ec.) . Ifxj E Vc but does not appear in Ec i .e . it only .
appears in Ec., then we are in the same case as for
variables in VN. Ifxj E VC and occurs in the equation
e; E E(., then the entry my is candidate to be
selected for matching xj. But ei already has a
matched variable xk, given by the selected entry in
the row i. Hence xk would in its turn need to be
matched elsewhere . The entries in column k, msk_0,
s i, are other candidates for matching xk . But the
corresponding equations es already have matched
variables, and so on until no other candidates are
found. In GCo , xk is the successor of xj by the edge



corresponding to mlj and the edges corresponding to
the msk bring to the successors of xk, etc . This is
illustrated in the figure below .

Therefore, the maximal sub-graph of GCo which
needs to be re-evaluated is given by (f(V~)uV~)
and the new sub-matching Sub-C2 must be searched

for between the variables in (V~ u f(V~) u V,, )

and the equations in (Ec. u Er) , where Er is the

subset of equations of

	

Ec which include variables
of (f(VC')UV~) .

The algorithm is as follows

1 - Choose the initial configuration
vector . Find a perfect matching
CO for S in this configuration .
Derive the corresponding causal
graph GCO and put the delay labels
to the causal links .

2 - Change configuration by taking
the negation of one condition C .

2 .1 - IF (V~r,vc =0)VV~=0
THEN

Label the arcs entering the
variables of VC with macro
condition C and find a perfect
matching between (V'CUVN) and EC* .

ELSE
a - Find in G'CO the set F(VC) of
all the variables which are
successors of variables of VIC
and label the arcs entering the
variables of (r(VC)uVC ) with
condition C .
b- Determine Er , the set of

equations of EC which contain

variables of (r(VC) v VC) .

	

-
c- Find a perfect matching between
the variables of (V&, v r(VC) v VN )

and the equations of (EC, v Er ) .
2 .2 - Update GCO by adding the arcs

corresponding to the perfect
matching found and label them with
macro condition C* . Goto 2 .

The final labelled causal graph is a super-graph
which includes all the causal graphs of S in the
different configurations 4 .

4 - This can be directly used by Ca--En .

Example Consider the very simple illustrative
multiple-mode static system presented in section 4.1
and assume that the switch is connected to R2 if a
given condition C is true and to RI otherwise . The
equations are the following

e,
e,
e3
a

Name the variables x 1 =U, x2=U1, xj=U2 and
x4=1. Let's define C as the initial configuration .
Then the occurrence matrix concerns el , ej, e4, es
and x,, x2, x3, x4 . A possible - this system includes
a cycle - perfect matching Co is indicated by the
selected entries and provides the following causal
structure GCo (see section 4 .1 ) .

x, xZ x3 x,_®

x x

Iii ® x
x

Let's now change C into C* = -IC. We have EC =
{e3, e4, e5), VC = (x2, x3, x4), Ec- = (e2}, Vc . =

(XI , x4), Ec = {el), V( . = (xl), E = (el, e2), V =
(xl, x4) and V'0 = (x4) . We are hence in the THEN
case of 2 .1 . Therefore, we must find a perfect
matching between (x4) and (e2), which is trivial .

The final causal graph is :

Although this is not really computationally
significant in the case of this simple system, the
benefit of the incremental approach appears clearly
as the new perfect matching had to be found
between one variable and one equation instead of
between two variables and two equations .

el U = Uo
e2 U = R1 . I if __1C

e3 U=U1 +U2 if C
e4 Ul = R2 1. if C
e5 U2 =Rj . 1 if C



Note that the resulting causal structure would
have been exactly the same if we had defined by the
initial configuration --,C and that the same branch of
the algorithm would have been followed .

The next section presents the results obtained
with CAUSALITO on the APU application .

6 - Application of Causalito to the APU
gas turbine fuel system

6.1 . - Presentation oftheAPUfuel system

The APU is a little turbine used as an auxiliary
power supply in aircrafts . The one that we
considered was designed by the company Micro
Turbo for Dassault Aviation and used in Rafale
fighter . Like all turbine systems, it is made of an air
supply, a compressor, a combustion chamber, a
turbine and an exhaust pipe . It is used on the ground
or during flight time to produce electric or
pneumatic energy . Our study focused on the APU
fuel system which feeds and regulates the APU,
providing the fuel from the aeroplane tanks to the
injectors with the right pressure and flow, depending
on the shaft speed and the aeroplane operating mode .

The APU fuel system is made of the following
components (see appendix 1) :

- an inlet fuel filter eliminates impurities (dust,
ice-crystals, etc.) ;

- a fuel shut-off valve opens or closes the fuel
system ;

- a check-valve enables to fill the circuit with fuel
at the start ;

- a pump provides desired flow and pressure ;
- a secondfilter protects thefuel control valve ;
- afuel control valve regulates the fuel flow as a

function of the APU operating mode and of the
running speed set point ;

- a differential pressure control valve maintains
constant pressure between the fuel control valve
input and output

- two injector rings spray fuel in the combustion
chamber ;

- a dividing valve feeds the second injector ring
under some pressure condition ;

- a drainage system empties the fuel out of the
system when stopping .

The APU fuel system global model includes 22
equations for 18 internal variables and 4 exogenous
ones . The variables appear in the figure presented in
appendix 1 . Three pressure conditions define the
operating modes of this system
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(CI)

	

PZ - P3 < 0
(C2)

	

PCP - P Z > 0
(C3)

	

PCI - PAZ < T

Three component models have been chosen as
examples. For more information the reader can refer
to (Trave-Massuyes and Escobet. 1995).

First inletfuelfilter
Equation (1)

	

Q, = k,S,

	

P~m- P

whereQ1 is the fuel flow through the filter, S1 is
the pipe section, Pgav and PI are pressures and kl is
an intrinsic parameter .

Pump
Equation (3)
QP=[k3N(1 - k4(N - ks))]- (k6P3' .s(I-k,))

if (C I)
Equation (3')

	

QP = 0

	

if (--,C 1)

where Qp is a flow, N is the rotating speed, k3 k.1
k5 k6 and k7 are intrinsic parameters and PI is a
pressure . The condition C 1 (P2 - P3 < 0) is true
when the pump is functioning and false when the
circuit is being filled (the check valve is opened).

Dividing valve
Equation (14)
Equation (14')

Qr2 = 0

	

if (C3)
Pcl - Pct = k22

	

if(-C3)

where Qr2 is the flow through the dividing valve,
and Pcl and Pct are the pressure in the first and
second injector ring . The condition C3 is true when
Pcl- Pct>T and it means that only the first injector
ring is functioning (T is the boundary pressure value
for the opening of the dividing valve) . When C3 is
false, the two injectors
simultaneously .

Although none of the 8 possible operating modes
are logically inconsistent, an analysis of the physical
system shows that -,Cl implies C3. We then have
only six consistent operating modes
(configurations) .

6.2 - CA USALITO results

rings are functioning



Input The input of the CAUSALITO module is a
file containing the list of the variables, the list of
equations, the occurrence matrix and the conditions
associated with the equations . The model of the

as follows (all theAPU fuel system is hence given
equations are not represented)

We can easily identify the equations (1), (3), (3'),
(14) and (14') as described before .

7. - Conclusion

influences :

Output The output of the CAUSALITO module is
the following ('apu' is the name of the file containing
the model)
Reading file apu : 22 variables,
26 equations, (4 exogenous equations are added)
3 conditions,e operating modes .
Processing perfect matching for each
configuration :

Generating causal
results)
Equation
Equation
Equation
Equation
Equation
Equation
Equation
Equation
Equation
Equation

Generating causal
2 for the causal graph)

(partial

(1) : Q1 Pgav --> P1
(3) : P3 N --> Qp

	

if
(3') :
(5) : Pcp Q3 --> P3
(11) :P2 Pcp-->Qpil if C2
(11')
(12) : Qrl PC --> Pcl
(14)
(14') : Pcl--> Pc2 if C3
(22)

graph : (see appendix

C1 true

true

false
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This paper presents the algorithm that has been
developed for generating the causal structure of a
Ca-En model from the available knowledge in form
of a set of equations . The main originality of our
algorithm compared to existing work is that it copes
with systems that have several operating modes . To
do so, it performs the generation of the causal
graph in an incremental way.

The benefits of the incremental approach are
clearly shown by the presented example. Indeed, if
we consider that at each step corresponding to a
configuration change the computational effort is
proportional to the dimension of the perfect
matching to be found, we successively evaluate
gains of 12.5% (dimension 14 instead of 16)`, 93 .7%
(dimension 1 instead of 16), 18.7% (dimension 13
instead of 16), 6.25% (dimension 15 instead of 16)
and 31 .25% (dimension 5 instead of 16) . This
indicates an average gain of 32.5%, which is
significantly interesting .

However, there are still open questions that we
are currently investigating. Is there an impact of the
order in which the configurations of the system are
considered on the resulting causal structure ? Which
specific order would then result in a minimal causal
structure (in terms of the number of causal links)?
Moreover, we perceive that there might be some
conditions about the connexity of the system and/or
the dependency properties of the conditions defining
the different configurations under which it would
not be necessary to go through all the configurations
to obtain the full global causal structure . The work is
hence going on .
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