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Abstract

High-level understanding of data must involve
the interplay between substantial prior knowledge
with geometric and statistical techniques. Our
approach emphasizes the recovery of basic struc-
tural elements and their interaction patterns in
order to summarize and draw inferences about
the significant features contained in the data.
As a testbed for modeling how scientists analyze
and extract knowledge of structure morphogene-
sis from data, we examine the datasets obtained
from numerical simulation of turbulence. We de-
scribe a program that automatically extracts 3D
structures, classifies them geometrically, and an-
alyzes their spatial and temporal coherence. Our
program is constructed by mixing and matching
the aggregate, classify,"and re-describe operators
of the spatial aggregation language. The research
is a continuation of the effort to investigate the
role of imagistic reasoning in human thinking.

Introduction

An essential survival skill for humans is the ability
to perceive objects, classify them, and predict their
behavior. Much of the neural machinery is devoted to
these tasks. We believe that the machinery that forms
the foundation of intelligence is to be found in the
mechanisms that support, for example, the vision, the
language, and the sensorimotor faculties. Each faculty
has to solve the figure-ground problem: To identify,
interpret, manipulate, and track salient objects.

[t is important to understand how each such modal-
ity contributes to overall intelligence. Each modal-
ity draws on proprietary representations and problem-
solving competences. Each takes inputs from internal
sources as well as from the outside world. For exam-
ple, a linguistically represented problem can require us
to harness the power of our visual system so as to en-
gage the strategies of “imagistic reasoning” or visual
imagination. What appears to be a high-level cogni-
tive ability emerges from cooperative problem-solving
as peripherals work out parts of a problem that have
been reexpressed in terms of peripheral-specific repre-
sentations.

If humans do have and make use of these peripheral
representations, what is the form of these representa-
tions? What are the processes that manipulate them?

In this paper we focus on the development and new
applications of imagistic reasoning. In particular, we
propose a model to reason about spatially distributed,
temporally evolving 3D structures in the domain of
fluid dynamics. Our model aims to capture the pro-
cess by which human scientists interpret numerical
simulation data. Our approach follows the spatial ag-
gregation framework: Programs are implemented by
mixing and matching a few high-level operators such
as aggregate, classify, and redescribe. We report on
our progress in implementing the performance model.

The research is inspired by the practical needs for
analyzing large amount of data and the intellectual
curiosity to understand how humans discover regular-
ities, summarize significant events, and debug concep-
tual models. We use scientific datasets as a testbed in
order to exploit the vast amount of accumulated spe-
cialized knowledge. Scientists' reasoning about fluid
dynamical objects rely on the same intuitive concepts
of objects: cohesiveness and continuity (Spelke et al.,
1995). An object is cohesive if it is internally con-
nected, externally bounded, and moves while main-
taining its connectedness and boundedness. The mo-
tion of an object is not arbitrary; it traces one con-
nected path in space-time and leaves no gaps.

Describing complex fluid phenomena in terms of
such intuitive notions of cohesive objects' and their in-
teraction patterns is useful for qualitative understand-
ing and almost necessary for developing new concep-
tual models of dynamical mechanisms.

Human understanding

The entire theory of incompressible fluid flow is con-
tained in the Navier-Stokes equations. However,
progress in analyzing the equations analytically has
been slow. Much of the understanding of flow mecha-
nisms comes from an interplay between numerical sim-
ulation and experimental data. To see an example of
this kind of understanding that fluid dynamicists ar-
rive at after detailed investigation of simulation data,
let us quote a passage in the concluding section of
(Robinson, 1991):

The main conclusion is that the self-maintaining
cycle of turbulence production in the boundary
layer is driven by the formation or regeneration

'The term “coherent objects” is more commonly used
in the turbulence research community.



of embedded vortical structures... A mature vor-
tical arch gives rise to a trailing quasi-streamwise
vortex... The quasi-streamwise vortex elements
collect and lift low-speed near-wall fluid, leaving
behind a persistent low-speed streak. Relatively
high-speed fluid scrubbing the vortex-lifted low-
speed fluid creates a shear layer which rolls up
into a new vortical arch. The new arch grows
outward by agglomeration and/or self-induction
and circulation lift, and the cycle repeat itself.

See the diagram in Figure. 1 accompanying the ex-
planation.

Figure 1: A conceptual model summarizing the
morphogenesis of vortex structures near a turbulent
boundary layer.

Much can be learned from this explanation. First,
the explanation is conceptual: it does not provide any
new equations. Second, the explanation refers to vari-
ous kinds of structures: vortices ? , streaks, and shear
layer. Third, the spatial character (e.g., arch-shaped,
streamwise, persistent) of the structures are described
and related. And finally the dynamical process is
described in terms of structural morphogenesis: the
growth and agglomeration of structures and their ef-
fect on others (e.g., lifting, rolling up).

The Spatial Aggregation Framework

In recent years, a computational framework, spatial
aggregation, has been developed to unify the descrip-
tion of a class of imagistic problem solvers (Yip and
Zhao, 1996). A program written in this framework
has the following properties. It takes a continuous
field and optional objective functions as input, and
produces high-level descriptions of structure, behav-
ior, or control actions. It computes a multi-layer of in-
termediate representations, called spatial aggregates,
by forming equivalence classes and adjacency rela-
tions. It employs a small set of generic operators such

?Vortex is an intuitive notion denoting some compact
region of swirling fluid motion; it is related to but not
the same as the vector quantity vorticity, the curl of the
velocity, at a flow field point.
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as aggregation, classification, and localization to per-
form bidirectional mapping between the information-
rich field and successively more abstract spatial ag-
gregates. It uses a data structure, the neighborhood
graph, as a common interface to modularize compu-
tations.

Our performance model is implemented in this
style. In the following, we abstract away the details
of the programming issues and focus on the incorpo-
ration of new aggregators and classifiers for manipu:
lating 3D structures.

) Performance Model
Objective and Strategies
The objective of the performance model is:

Given a sampled flow-field, construct a concep-
tual model to summarize the significant events
implicit in the numerical data.

Numerical simulation of turbulent flow generates
massive amount of data. Even a modest sampled
flow-field consists of tens of gigabytes of data describ-
ing quantities such velocity, pressure, and vorticity at
each sampled point. From observing how some scien-
tists work, we propose a 5-step strategy to summarize
data:

1. Isolate and characterize interesting structures.

2. Determine the spatial relationships among struc-

tures.

3. Track the morphogenesis of structures backward

and forward in time.

4. Describe the statistical and dynamical significance

of each structural event.

5. Note correlations among structural events and as-

sign cause-and-effect relationships.

Not all of these steps have been automated. In the
following we describe the pieces that have been imple-
mented.

Aggregating field points

Many categories of structures can be defined as the
isosurface of a scalar field. An isosurface of a scalar
field F is defined as the set of points (x,y,z) such that
F(x,y,z) = c where c is a constant and is often called
the threshold of the isosurface. Some examples are
the low pressure region, the high-speed streak, and
the eigenvalues of the velocity gradient.

A popular method to render isosurface is the march-
ing cube algorithm (Lorensen and Cline, 1987). The
algorithm divides the field into little cubes. The inter-
section of the surface with the cube is determined by a
table-lookup based on the signs of the values F(x,y,z)
- ¢.3 The algorithm is reasonably fast, but does not

3There are 2* ways a cube intersects a surface. The
number can be reduced to 14 distinct configurations using
rotation and reflection symmetries. In our implementa-
tion, we find it more convenient to use the entire table of
2% intersection patterns.



guarantee a topologically consistent surface when ad-
jacent cubes share a face where the vertices on the
two diagonals differ in sign.

Our aggregator extends the basic marching cube
algorithm in four ways:

e Recursive subdivision. The aggregator recursively
subdivides an ambiguous cube into 8 little cubes
until the newly generated cubes are unambiguous.
The subdivision method gives accurate results sub-
ject to the limit in sampling resolution. The val-
ues at the sub-sampled points are determined by
polynomial interpolation using values from adjacent
cubes.

e Multiple isosurfaces. It requires little overhead to
compute surfaces corresponding to different thresh-
olds during a single march over the entire flow field.

e Connecied components. The connectivity of a sur-
face patch intersecting a cube are precomputed and
stored in each cube pattern. The global connected
components of the surface are determined by aggre-
gating individual patches.

e Volume estimate. The volume enclosed by an iso-
surface is computed from the contributions from all
the cubes on and inside the surface. Each cube pat-
tern is pre-partitioned into tetrahedra representing
the volume enclosed by a surface patch.

Other structures are defined by integral curves of a
vector field. For example, a vortex line, the integral
curve of the instantaneous vorticity field, is the basic
building block of a vortex structure. However, it is im-
portant to distinguish vorticity lines (lines everywhere
parallel to the vorticity vector) and vortices (regions
of nearly circular motions in the plane normal to the
core of the vortex observed at the core speed). In par-
ticular, vortices are much more cohesive and less noisy
than vorticity lines. We adopt the following working
definition for vortices:

Definition A coherent vortez is a compact bundle of
adjacent, high-intensity vortex lines that are geomet-
rically similar.

Aggregating vortex lines to form coherent struc-
tures is not straightforward. Previous researchers
(Moin and Kim, 1985; Robinson, 1991) have found
that vortex lines are sensitive to initial conditions.
Nearby vortex lines can diverge rapidly. If the initial
conditions are not chosen carefully, the resulting vor-
tex lines are likely to resemble badly tangled spaghetti
wandering over the whole flow field, making the iden-
tification of organized structure extremely difficult.
This might explain why vortex lines have not been
widely used for structure identification.

Our search algorithm for vortices exploits local ge-
ometric information (e.g., converging or diverging) of
the vorticity lines to decide the direction and step size
of integration. The algorithm has the following steps:

1. Find all grid points that are local extrema of vortic-
ity magnitude and greater than a threshold. These
are the seed points.

2. On the plane normal to the largest vorticity vec-
tor component at the seed point, find an isocontour
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centered at the point. The contour, discretized into
points, represents the initial cross section of the sur-
face.

3. Interleave the advancement of the cross section by
integration and the tiling of the surface.

4. Use the geometry of the tiles to decide shrinking or
expanding the cross section locally.

5. The cross section is periodically adjusted globally
by computing its convex hull, and the diameter and
width of the hull.

6. The forward integration terminates when the circu-
lation on the cross section falls below certain thresh-
old.

7. Reconstruct the surface by integrating the last cross
section backwards until it reaches the initial cross
section. No adjustment to cross section is needed
in this step.

8. Remove the weak vortex lines.

Classifying surfaces

Structures are classified by a bidirectional search
strategy that simultaneously transform stored proto-
type models and raw sampled signals for the purpose
of matching and recognition (Ullman, 1996, Chap 10).
Our shape models include:

e generalized cylinders (Binford, 1990), and

e superquadrics (Barr, 1984; Bajcsy and Solina, 1987;
Gupta and Bajesy, 1993)

A generalized cylinder consists of a spline, a cross-
section, and a sweeping rule. It is useful for rep-
resenting elongated slender structures which bends
and turns (such as a streamwise vortex). The su-
perquadrics are generalizations of the quadratic sur-
faces such as ellipsoids and toroids. They are less
general than the generalized cylinders, but are more
appropriate for blob-like structures (like pressure re-
gions) and structures with holes (like a vortex ring).*

The superquadrics are a relatively coarse shape rep-
resentation characterized by several intrinsic shape
parameters such as the size parameters, the roundness
parameters along the north-south and east-west axes,
the hole parameter, the bent angle, and the taper-
ing parameters. To fit a surface with superquadrics,
one has to recover extrinsic parameters (3 position
and 3 orientation parameters) as well as the intrinsic
parameters. A nonlinear least square minimization
procedure (such as the Levenberg-Marquardt method
(Press et al., 1992)) is commonly used to recover the
superquadrics parameters.

Our experience with the Levenberg-Marquardt method

suggests that the minimization result is quite sensitive
to the estimate of the orientation parameters. Our
strategy is to try multiple estimates of the parame-
ters in parallel. These estimates correspond to rough

4Of course the two representations overlap in the classes
of structures for which they are appropriate. Our classifier
uses both of them. We believe the perceptual mechanisms
uses many different representations.



guesses of the general shape of the object: Is it an
ellipsoid? It is a toroid? Is it slender? Is it bent?

Bottom-up processes that extract features from raw
signals cooperate to narrow down the range of param-
eters for matching. For example, the surface points
are re-centered at the centroid of the points. They
are re-oriented along directions that minimize or max-
imize or average the thickness of the distribution of
points.® These directions provide a few canonical
views to reduce the combinatorics in the number of
model transformations that have to be tried. The
thickness of the distribution along each direction gives
an estimate for the intrinsic size parameters.

The decision for best match is based on a majority
voting scheme. Each process — bottom-up or top-down
- contributes to the overall decision.

Re-describing Surfaces

A classified surface is a compact parametric descrip-
tion of a large number of field points. Like a lambda
abstraction, the re-describe operator encapsulates the
classified surface as a primitive object for further pro-
cessing. For example, the center of mass, volume,
orientation, and inertia tensor of the object are com-
puted. From these quantities we estimate the distribu-
tion of characteristic objects (e.g, streamwise slender
vortices) in interesting regions of the field (e.g., near
the surface of a free surface flow).

Object Cohesiveness

There is a degree of arbitrariness in defining struc-
tures in terms of isosurfaces. The shape of the ob-
Jject depends on the threshold chosen, but it is often
unclear how to set the appropriate thresholds. For
example, what is the threshold for a low pressure re-
gion? Intuitively we prefer structures that are stable
against small changes in the threshold. We compute a
range of thresholds (the lower and upper bound of the
thresholds are typically known) for each scalar field.
Geometric properties of the re-described objects are
plotted as functions of the thresholds. We choose the
mean value in the largest threshold region in which
the structures are stable as the desired threshold.

Object Persistence

Structures typically persist over time. They evolve
for a while and may grow or shrink or collide with
other structures. Unlike structure recovery from 2D
images, the analogous correspondence problem in re-
covery from 3D fields is much easier to solve. For
example, we do not have to deal with occlusions.
Objects smoothly deform and move in connected
paths. There is a lot of redundant information -
size, shape, and relative positions — that carries over
from one time slice to another. We track the largest
structures (currently up to 50) and discard time slices
which do not contain significant changes in the spatial
character or distributions of the tracked structures.

SMathematically the reorientation corresponds to the
rotation of the surface points by the matrix of eigenvectors
of the covariance matrix of the data points.
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Conversely consecutive time slices that yield qualita-
tively different distributions are noted. These time
slices are candidates for restart of numerical simula-
tion to acquire better temporally resolved data.

Future extensions

We have only automated the extraction of kinematics
and statistics of a few turbulence structures (vortices
and pressure regions). Much more remains to be done:

e More structures. Ejection zones, dissipation re-
gions, high stress areas, pockets, large-scale motions
— these are some of the more important structures
that need to be tracked.

Spatial correlations. We need to have efficient ways
to compute pairwise or even triple correlations of
spatial distributions.

Dynamics. A passive catalogue of distributions is
not sufficient to determine a conceptual model that
summarizes important dynamics and causal rela-
tionships among structures. We need to incorpo-
rate qualitative rules of interaction. For example,
a vortex accelerates velocity (lifts) on one side and
slows down on another. A bent vortex exerts a self-
induced motion along its binormal and the effect
is proportional to the curvature of the bent (Arms
and Hama, 1965).

Experiment

As a testbed, we choose a direct numerical simulation
of free surface turbulence generated by a shear flow in
a 1283 rectangular box. The problem is important
for several reasons. First, the mechanism for scalar
transport into turbulent fluids across free-shear inter-
faces is important for the design and control of indus-
trial equipments with free surfaces. Second, interest
in environment and global warming raises the issue of
how to accurately estimate mass transfer rate of CO-
between atmosphere and ocean. Third, recent experi-
ments have found evidence that low-speed streaks oc-
cur near free-slip surface under sufficient high shear.
Visually these streaks resemble those found in wall-
layer streaks. Without the complication of a solid
boundary, studies in the formation of these streaks
near free surface may shed additional light on the phe-
nomenon.

It has been recently proposed that a definition of
vortex in an incompressible flow in terms of the sec-
ond eigenvalues of the symmetric tensor S? and Q?
where S and (2 are respectively the symmetric and an-
tisymmetric parts of the velocity gradient tensor Vu
(Jeong and Hussain, 1995). The symmetric part de-
termines the contribution to local pressure minimum
due to rotational motion alone.

This proposed definition is attractive computation-
ally because it refers to the isosurfaces of a scalar field,
the second eigenvalues of the symmetric tensor. We
compare this definition with our working definition of
vortex in terms of compact bundles of vorticity lines.

6

®A direct simulation proceeds from the Navier-Stokes
equations without extraneous modeling assumptions.



We have examined dozens of structures according
to both definitions. We found surprisingly substan-
tial agreement between two definitions. Figure. 2 is
a typical result. The figure shows a superposition of
the vortex lines recovered by laborious integration and
the surface patches quickly recovered by the extended
marching cube algorithm (using a threshold of -0.35).
Because of results like these, we now routinely use the
scalar isosurfaces as surrogates for vortices to develop
our matching and correlation algorithms.

Figure 2: A superposition of vortex lines obtained by
adaptive integration and the surface patches recovered
by the marching cube algorithm. The agreement is
surprisingly good.

Related Work

Our research shares some of the objectives with the
visualization work in Rutgers (Silver and Zabusky,
1993). The Rutgers group is interested in better in-
teractive tools for helping scientists visualizing the
datasets. Our effort emphasizes more on building a
computational model of the process by which scien-
tists understand those data. We ask questions about
how scientists think visually and how this visual think-
ing is connected to the rather primitive knowledge of
object cohesiveness, persistence, and continuity.

Commonsense reasoning about fluids has been pro-
posed as central problem in naive physics (Hayes,
1985b; Hayes, 1985a). The problem is hard because
fluids do not conveniently divide into discrete pieces
that can be easily combined. Ken Forbus and his
group have extended and partially implemented Pat
Hayes' ideas for representing fluids using both the
contained-liquid and piece-of-stuff ontologies (Forbus,
1984; Collins and Forbus, 1987). The work described
here is closer to the scientific end of the formalization
spectruim.

Our work builds on previous work by several groups
on imagistic reasoning and spatial aggregation (Yip
and Zhao, 1996). These groups have designed prob-
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lem solvers that achieve a high level of performance
in many different domains: control and interpretation
of numerical experiments (Nishida et al., 1991; Zhao,
1994), kinematics analysis of mechanisms (Joskow-
icz and Sacks, 1991), design of controllers (Bradley
and Zhao, 1993), analysis of seismic data (Junker and
Braunschweig, 1995), and reasoning about fluid mo-
tion (Yip, 1995)

Discussion/Conclusion

We have described a framework for understanding
flow fields and progress in implementation. The spe-
cific technical contributions are threefold:

e We show how aggregation algorithms (based on
marching cube and adaptive vortex line tracing)
and classification algorithms (based on recovery
of generalized cylinders and superquadrics) can be
used to extract and characterize interesting 3D fluid
structures.

¢ In collaboration with the programs, we found sub-
stantial agreement between a recently proposed def-
nition for vortex and the more intuitive definition
of vortex as compact bundles.

e We extend the library of spatial aggregation rou-
tines by incorporating new aggregators and new
classifiers.

We believe the current work also sheds light on the
nature of human intelligence. Even in sophisticated
scientific applications, some scientists appear to think
visually and rely on commonsense intuitions of object
cohesiveness, persistence, and continuity — not unlike
those shown in recent cognitive psychology literature.
This shared core of knowledge attests to the impor-
tance of recycling the peripheral machinery (such as
vision) for solving otherwise symbolically-posed prob-
lems. Traditional Al has searched for the secrets of
central intelligence for years. Perhaps the central is
the peripherals.
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