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Abstract
In the stochastic qualitative reasoning, which we
have proposed, the probabilistic process is used
for state transitions based on the stochastic qual-
itative model . States with relatively small ex-
istence probabilities are eliminated in order to
suppress the number of generated states under
computable order . The determination of stochas-
tic parameters is the most difficult task in model
construction, however, because this model many
parameters and therefore the information needed
to construct it cannot be obtained .
This paper proposes a automatic model genera-
tion method in order to solve this problem . First,
propagation rules and functions are formalized
with a few characteristic parameters . As a re-
sult, the variable elements of the model can be
reduced to less than five percent . Next, a rea-
sonable qualitative model will be generated with
measured field data by using the characteristic
parameter tuning method .
This method will be applied to an actual air con-
ditioning system in a building . A desired qual-
itative model can be generated in 2.5 lours, it
took 8 hours when using the usual method . In
addition, institute parameters can be reduced to
25 from 3905.

Introduction
Qualitative reasoning is a key technology for model
based fault detection, in which a section in failure
can be identified by comparing the results of reason-
ing with the real measured values(Kuipers & Berleant
1992)(Lackinger & : Nejdl 1993)(Lackinger & Obreja
1991) . However, the possible behavior patterns of the
model tend to increase enormously because of the am-
biguity of the qualitative model .

In order to solve this problem we have proposed
the stochastic qualitative reasoning(Mihara et al .
1994)(Arimoto et al . 1995) . In this method, the

probabilistic process is used for state transitions based
on the stochastic qualitative model, and states with
relatively small existence probabilities are eliminated
in order to suppress the number of generated states
under computable order . The effectiveness of this
method has been shown through simulation experi-
ments for building air conditioning systems(Yumoto
at el . 1996a) . However, the model generation of
a target system is one of the most difficult problem
for qualitative reasoning, because a model has many
stochastic parameters and, therefore, the information
needed to determine these parameters from the target
system instrumentation diagram cannot be obtained .
In addition, generated models can be only validated
by human intuition .

This paper proposes an approach to automatic
model generation in order to solve this prob-
lem(Yumoto at el . 1996b) . First, propagation rules
and functions in a model were formalized with sev-
eral characteristic parameters from the perspective of
regular relation among stochastic parameters . Next,
a sensitive analysis for the characteristic parameters
was performed on an arc and a function for parameter
tuning .

Finally, we will propose a scheme for automatic
model generation as follows : (1) construct a template
of the qualitative model from the target system instru-
mentation diagram, (2) establish characteristic pa-
rameters for the propagation rules on the arc and the
functions in the model based on the qualitative knowl-
edge that we have inputted, (3) adjust and determine
the values of these parameters based on the measured
data by using a steepest ascent based method .

This method was applied to a real air conditioning
system in a building . We demonstrated the effective-
ness of the automatic model generation of a stochastic
qualitative model which expresses the normal condi-
tion of the target system .
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Figure 1 : An example of a `1 room' model

Qualitative model of a building air
conditioning system

A building air conditioning system maintains the tem-
perature of a given rooms at a set value by supplying
cooled air . The temperature of the air that is supplied
is appropriately controlled based on the set value and
the measured values at sensors in the room, the duct,
etc .
We have introduced a qualitative model with prob-

abilities in order to model a building air conditioning
system . The qualitative model is constructed from
nodes, directed arcs, propagation rules, and functions .
Figure 1 illustrates an example of a qualitative model
of an air conditioning system in an building .
The nodes correspond to the elements of a target

system such as the real value of the supplied air tem-
perature, the measured value of the supplied air tem-
perature and heat resources as a disturbance, among
others . Each node is characterized with some of the
qualitative values as seen in Table l .
An arc connects two nodes . The direction of an arc

shows the direction of the propagation of influence .
The propagation rules are attached to an arc . The five
types of propagation rules are shown in Table 2 . More
than one propagation rule is often attached to an arc .
In this case, each rule has a choosing probability which
indicates the probability of the rule being applied .

In Figure 1, for example, arc (2) has three propaga-
tion rules, (std),(+1)and(+2) . Their choosing prob-
abilities are 0 .2, 0 .4, and 0 .4, respectively . If the
qualitative value of the source node of the arc, in
other words, "real return air temp .", changes in this
model, the qualitative value of the destination node,
"measured return air temp .", does not change for a
probability of 0 .2 or changes in the same manner as
the source node for a probability of 0.4, otherwise, it
changes two time units later .

If a qualitative value of a destination node is in-
fluenced not by changes to the source node but by
the qualitative values, this type of causal relation is
expressed with a function . A function receives quali-
tative values of nodes as inputs, and gives the change
directions and their probabilities as output . Three
types of change directions on a function are shown in
Table 3 . Table 4 shows an example of a definition of

set room
temp.

Heat
resource

measured
room temp.

real room
temp.

measured
return air temp.

real return
air temp.

Are (0)
1 + 1) 50%
+ 2) 50%

Are (1)
(+ 1) 100%

Arc (2)

h .2 : two-argument
control function

std) 20%
+1)40%
+ 2)40%

g_1 : one-argument
disturbance function

f_3 :three argument heat
propagation function

of an air condition system in a building .

a function . Each change direction of the source node
is determined according to the table .

Table l : Qualitative value of temperature .

Table 2 : Types of propagation rules .

+2 -2~he source node of the arc changes,
the destination node changes in the same
(opposite) manner of the source node two
time units later .

+1(-1)

	

If the source node of the arc changes,
the destination node changes in the same
(opposite) manner as the source node one
time unit later .

std

	

If the source node of the arc changes,
the destination node is still unchanged .

Table 3 : Types of change direction in a function .
Up

	

The destination-no ed-value
increases .

Down

	

The destination node value
decreases .

Const .

	

The destination node value
is unchanged

Table 4 : An example of a definition of a function .

Qualitative
value

Interpretation De ration

A extremely hot 24'C
B hot 2337, -24

normal 22 - 2-357-
D co 21 - 22
E extremely cold - 210C

Input Output
Set Prob . o

temp . p onst . Down
A 0 60 40
B 0 80 20
C 10 80 to
D 20 80 0
E 40 60 0



Concept

Characteristic Parameters

Table 6 shows the number of stochastic parameters,
choosing probabilities, on a propagation rule and a
function . The total number of stochastic parameters
on the qualitative model as shown in Figure 1 is 535 .
Since a qualitative model has an extreme number of
parameters, it is difficult to create the model accord-
ing to a target system .

In reality, however, stochastic parameters in a prop-
agation rule or a function are not determined at ran-
dom but with great regularity. By corresponding to
these kinds of regulations, i .e . the representation of
the propagation rules and functions with a few pa-
rameters, which are called characteristic parameters,
contribute to ease in handling the models .

Table 5 : Choosing rule probabilities .
Typeof rule -Choosing probability

+2

	

max(p,, 0) x Pd
+1

	

max(p� 0) x (1 - Pd)
std

	

1 - 1p, I
-1

	

max(-p� 0) x (1 - Pd)
-2

	

max(-p,, 0) x Pd

(1) Propagation rule

Two properties, the sign of influence and the delay,
can formalize a propagation rule on an arc . We will
here introduce the following two parameters in order
to specify the choosing probability of the rule in ques-
t ion .

" Sign p, (-1 .0 < p, < 1 .0)
p, determines the destination of influence from
the source node. If p, = 1, the destination
node value always increases when the value of the
source node increases . If p, = -1, the value of
the destination node always decreases' when the
value of the source node increases . If p, = 0, the
value of the destination node is never changed
irrespective of the value of the source node .

" Delay Pd (0 .0 < Pd < 1 .0)

Pd determines how long the change of the quali-
tative value in the source node of the arc affects
the destination . If Pd = 0, the change in the value
always occurs after one time unit . If Pd = 0 .5, the
change occurs after one time unit at a probability
of 0.5 and two time units at the other probability
of 0.5 .

The choosing probability of each type of rules is
calculated for each arc using these two parameters,
according to Table 5 . Figure 2 shows examples of
formalized propagation rules .

Table 6 : The number of stochastic parameters in a
propagation rule and functions

component

	

number of parameters
propagation rue

	

5
1 argument function

	

3 x 5 = 15
2 argument function

	

3 x 52 = 125
3 argument function

	

3 x 53 = 375

Ps

Figure 2 : Examples of formalized propagation rules .

(2) One-argument function

a: Ps = +0.5, Pd = +0.5

-> std : 0.50
+1 : 0.25
+2 : 0.25

b : Ps = -1 .0, Pd = 0.0

A function expresses the causal relation among the
nodes in a model . The stochastic probabilities of the
function are not independently determined but are de-
termined according to the following three factors :
" latitude in output

A function does not always have only an out-
put for a input . Generally, a function has some
choices with their choosing probabilities as for the
output that corresponds to an input . In Table 4,
for example, (Up, Const, Down) = (0.2, 0.8, 0 .2)
for input `C' . The latitude in output, which ex-
presses the vagueness of the selection in the out-
put, has a fixed size in a function .

" reference input
A reference input is the one in which the qualita-
tive value in the destination node sustained the
most stable amount of change . For example, the
reference input is `C' in Table 4 .

" change rate
This rate shows the change rate of the stochas-
tic parameters that corresponds to the input . If
this rate is zero, the stochastic parameters do not
change according to the input in question . If
this rate has a certain value, the parameters of
(Up, Const, Down) will be determined as in Ta-
ble 4 .

Based on these three factors, the following three
characteristic parameters are introduced here in or-
der to specify the stochastic parameters of the one-
argument function .



o Sensitivity f, (0.0 < f, < 1 .0)

f, expresses latitude in output . If f, = 0 . there
is no latitude and the stochastic parameters have
the probability of 1 .0 in an output . For example,
if f, = 0 occurred under conditions in which both
f, and argument x are zero, the probability of
`Const' is only `100%' .

. Center f, (-2.0 < fe < 2.0)

f,. expresses the reference input where the quali-
tative value in the destination node sustained the
most stable amount of change . If f, = 2, for ex-
ample, input qualitative value `A' provides the
most stationary amount of change .

" Variance f (-1 .0 < f < 1 .0)

f, expresses the change rate of the stochastic pa-
rameters that correspond to input . If f, = 0,
output has no change . If f, < 0, the probability
of `Up' increases when the input value increases,
and, if f, > 0, the probability of `Down' in-
creases . If volume If, I is large, the rate of change
is high in the function .

For a function with one-argument x, the choosing
probability of each change direction can be specified
by using these three parameters according to Table 7 .

In this definition, if the value of r is `A', it is treated
as '-2', if the value of x is `B', it is treated as `-1',
etc . Figure 3 illustrates the intuitive meaning of the
definition and examples of functions that are defined
by these parameters . The function shown in Table 4
can be simply redefined as (f,, fo, f,) = (0 .1, 0 .0, 0.1) .

Table 7 : Choosing probabilities offunction return val-
ues .

Return value

	

Choosing probability
Up*	=min.(( . (fc +x

	

f,

	

-

	

, , 0.5
+min(((f, + x)IAI + f,), 0.5)

(TLI~ < fd+x)
min(((f, + x)IA, I '}" f,), 0.5)

Down`

(- f,~T < fd + x < 1~,-j )
0

	

(fd + x < -1)

0

	

(~tv

	

< fd + x)
min(-((f,- + x)I f I - f,), 0.5)

(-

	

< fd+x < ffL-T )
min(-((f, + x)IA, I - f,), 0 .5)
-{-min(-((f, + x) If I + f,), 0 .5)

(fd + x < -T11-,T)
Const

	

= 1.0- (Prob . o¬ Up)
- (Prob . of Down)

If f, < 0, the up an

	

own probabilities swap .

Up

Const.

Down

(fs,fc,fv)=

	

(fs,fc,iv)s:
(0.0,0.0,0.0)

	

t8.1,0.0,02)

A

	

B

	

C

	

D - E

	

I A

	

B

	

C

	

D

	

E

Up I

	

Up I

	

0 .1 0.4 0 .8
Const . 1 .4 1 .0 1 .0 1 .0 1 .0

	

Const 0.2 0 .6 0.8 0.6 0 .2
Down

	

Down 0.8 0 .4 0.1

Figure 3 : Examples of functions with parameters .

(3) More than one argument function
A function with more than one argument is defined as
a linear combination between one-argument functions .
Each one-argument function is the function of each of
the arguments of the two-argument function . Figure
4 illustrates the construction of a two-argument func-
tion in which the arguments in question are `set room
temp.' and `measured room temp.'

Figure 4 (a), (b) shows the one-argument function
for `set room temp.' and `measured room temp .' re-
spectively . The two-argument function in Figure 4
(c) has the stochastic parameters of these two one-
argument functions . The function in Figure 4 (c) can
be constructed by shifting the parameters fc of the
one-argument function in Figure 4 (b) .
The following parameter will be introduced in order

to express this phenomenon .

setMea-
sured Up Const Down

Figure 4 : Construction of a two-argument function .



Figure

(fs, fc, fv, gapl )=
(0 .1 :0 :0,0_2,1-0)

(ps, pd)
=(1..0'°.0)

(fs, fc, fv, gapl gap2)
=(0.2,0 .0,0:1,-1 .0 ,-2 .0)~

5 : An example of a model representation with

Characteristic parameters of
ment function
ured room temp.'

fc, fv )

2.0,0.2)

1 .0,0.2)

0.0,02)

-2 .0, 0.2

Figure 6 : Two-argument function `control' .

. Gap for correlation gapl (-5.0 < gapl < 5 .0)
gapl express the correlation between arguments 1
and 2 . If gapl = 0, the fc is not changed accord-
ing to argument 2 . If gap2 = 1, the fc is changed
according to argument 2 in the same way as the
change for argument 1 .

The left side of Figure 6 defines the two-argument
function `control' in Figure 1 . In this definition, f =
0,1j, = 0 .0j, = 0 .2 and gap = -1.0 . The right
side of Figure 6 illustrates the change for (f� f, f,),

measured
return air temp.

Are (2)

realreturn
air temp .

(ps, Pd)
=(0.8 ,05)

(fs, fc, fv)

	

Arc (1)

	

(Ps, pd)
=(0.1,0 .0,0.1) -."=L1 .0,0 .0)~.̂ ...._-___.... .._

g_1 : one-argument
disturbance function

characteristic parameters .

which are established in the one-argument function
in Figure 4 (b) . From this figure, gapl changes these
three parameters according to argument 2 . gap2, gap3
are defined in a similar situation in a three or four
argument function .

Model representation
Figure 5 illustrates an example of the application
of characteristic parameters to the qualitative model
representation in Figure l . This representation con-
tributes to the easy handling of qualitative models .

Table 8 : The effectiveness of characteristic parameters
on the qualitative model in Figure 1 .

Table 8 shows the effectiveness of the representa-
tion of the characteristic parameters on the qualitative
model in Figure 1 . The number of stochastic param-
eters is 535 . In a representation with characteristic
parameters, the number of parameters can be reduced
to 22 . Through research until now, we demonstrated
that the variable elements of the models can be re-
duced to less than five percent .

Sensitivity Analysis
Stochastic qualitative reasoning is excused by a series
of recursive state transitions in the qualitative model .
The state of a system in the qualitative model is de-
fined as one definite set of the qualitative values of all
the nodes in the model.
The procedures for stochastic qualitative reasoning

can be summarized as follows :

Step 1 . Generation of the states

Set room
temp.

Measured
room temp . Up Const Down one arg

f

A 10 80 10

r'meas(

fs,

B 40 60 0
A C 60 40 0 (0.1

D 80 20 0
E 100 0 0
A 0 60 40
B 10 80 10

B C 40 60 0 (0.1
D 60 40 0
E 80 20 0

A 0 40 60
B 0 60 40

C C 10 80 10 (0.1
D 40 60 0
E 60 40 0

gap1= -1 .0
A 0 20 80
B 0 40 60

D C 0 60 40 ( 0.1,
D 10 80 10
E 40 60 0

A 0 0 100
B 0 20 80

E C 0 40 60 ( 0.1
D 0 60 40
E 10 80 10

component. stochastic
parameters

c aracteristic
parameters

propagation rule 20 8
1 argument function 15 3
2 argument function 125 4

0.2 ) 3 argument function 375 5



Step 2 . Elimination of states with the small exis-
tence probability

Step 3 . Discarding of the states that is not in agree-
ment with the measured values

Step 4 . Normalization of existence probability

In reasoning step 3, the states which are not in
agreement with the measurements are discarded . If
most of the new states are discarded, the state tran-
sition does not accurately reflect the real behavior of
the target . On the other hand, if most of the states
survive, the state transition does accurately reflects
the real behavior . We have introduced an evaluation
parameter that can estimate the degree of agreement
of the simulation result with the measured behavior,
the agreement rate, based on this idea(Yumoto at el .
1r996a) .

It is important to analyze the sensitivity of the
agreement rate for the fluctuation of parameters, in
order to develop a model generation based on an au-
tomatic parameter tuning .

Analysis of an are

The model that was used for sensitivity analysis was
the same one shown in Figure 1 .

Figure 7 indicates the value of the agreement rate
for the parameter pd in the rule with the arc (0),
when p, is fixed . This diagram shows that the agree-
ment rate values changed smoothly . In addition, these
curves formed convex forms when pd was fixed . When
p., = 1 .0, the agreement rate changed at the highest
order because the propagation rule had no probability
in 'std' . Then this phenomenon is proper under nor-
mal conditions because the propagation of influence
was completely performed .

0

Agreement rate

0.310--

0 .30

0 .30

0 .29

0 .29

0 .28

0 .28

0 .27

0 .27

0 .26 1;
0 .0 0 .2 0 .4 0 .6 0 .8

Ps = 1 .0

Ps = 0 .8
Ps = 0 .6

Ps - = 0 .4

Pd

Figure 7 : Result of sensitivity analysis for the param-
eters of the propagation rule on the arc (0) in Figure
1 .

Analysis of a function

Figure 8 sketches a counter map of the agreement rate
when parameters f, and fv of function `control' in
Figure 1 were changed and fr = -1 .0, 0 .0, 1 .0, and
2.0 . In this figure, the agreement rate values changed
smoothly .

However, the rate is zero when f� < 0.0 at f~
-1.0,0.0 . In addition, the shapes of the contour
lines at f, = -1 .0, 1.0 are different from the ones at
f, = 1.0, 2.0 . The highest agreement rate could not be
obtained by adjusting the parameters unless we gave
initial values at f, and the sign of f� .

fc= -1 .0

0.0 0.1 0.2 c.3 w O.5 CA

	

u.o a1 0s 0.3 0.4 0.5 0.6

0.0 0.1 0s 0.3 Ow 0.5 0.6

	

0.o a1 02 0.3 0.a as 0.6

" measurement data

0w

0.3

0.2

0.1

fV 0.0

-0.1

-0 .3

-0.4

0.5

0.4

0.3

fc= 0.0

0A

0-3

0 .2

0.1

fv 0.0

.0.1

-01

-0.3

-0.4

fc= 2.0

0.2

0.1

Automatic Model Generation

. target system instrumentation diagram

0.0

Figure 8 : Result ofsensitivity analysis for the function
`control' parameters in Figure 1 (f, is fixed) .

In regards to the qualitative model generation of an
air conditioning system in a building we can make use
of the following information :

This diagram shows how the temperature is con-
trolled, where sensors are set up, and so on .

This data is collected from sensors at the target
system . In air conditioning systems in buildings,
we can measure room temp., supplid air temp.,
air volume, water volume, as well as other factors .

Figure 9 shows a framework of the method to gen-
erate qualitative models .
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Infomation
about'Node'

(1) Template construction

Template
construction

Model
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Determination of
characteristic
parameters

.- .. ... ..__.-.__-__ ........ ......
Causal relation

	

Tentativeamong nodes

	

`U7model
Parameter
tuning

.

	

s

Desired model

Figure 9 : A framework of a method that can generate
qualitative models .

The component that is related to the behavior of the
target system is extracted as the `node' of the qual-
itative model from a target system instrumentation
diagram. In an air conditioning system, for exam-
ple, these components are `set room temp.', `measured
supplid air temp .' as well as other factors . Next, the
relation amongst the nodes is defined as `arc' or 'func-
tion' according to the type of influence propagation .
In an air conditioning system, the sensor is defined
as an `arc', and `control', and `heat propagation' and
'disturbance' are defined as functions.
By using the above procedures, a template of a qual-

itative model was constructed.
(2) Determination of characteristic
parameters
From sensibility analysis results, it is necessary to give
initial values at the fo and the sign of f� in order
to obtain the highest agreement rate in regards to
characteristic parameter tuning . These-initial values
can be defined as qualitative knowledge to obtain from
the target system instrumentation diagram.

Tables 9 and 10 show the qualitative knowledge
needed to define the propagation rule on an arc and a
one-argument function . The qualitative knowledge for
the propagation rule is `sign' and `delay', and for the
one-argument function it is `stable input' and `change
direction' . Each item has more than one input which
corresponds to' a characteristic parameter .

Qualitative knowledge for a more than two argu-
ment function can be expressed by a linear combina-
tion of the knowledge of the one-argument functions
for .each argument .

This tentative model does not, completely represent
the target air conditioning system because qualitative

knowledge can only inexactly determines the stochas-
tic parameters . Next, we will propose an automatic
parameter tuning method with measured data .

Figure 10 conceptually illustrates these processes .
The basic procedures of parameter tuning are as fol-
lows : 0 establish an initial set of parameters from
qualitative knowledge, © calculate the agreement
rates at the initial set and the surrounding ones,
decide the change direction of the parameters if the
gap between the agreement rates is over a predefined
value by calculating tan 0, © change the parameters
along the direction, and select the next initial set of
parameters where the agreement rate is the highest.
In ©, if the gap between the agreement rates is under
a predefined value, the reference set of parameters is
the desired set and the procedure is finished .

Table 9: Qualitative knowledge choices that is neces-
sary to define the propagation rule on an arc .

Table 10 : The qualitative knowledge that is necessary
to define one-argument function .

Changing parameters slightly
along the direction.

Figure 10 : Parameter tuning by the steepest ascent
based method .

item sign delay
relational

characteristic Ps Pd
parameter
option direct, short,

normal,for input inverse long
corresponding

value of +, - 0 .0, 0.5,1 .0
parameter

item stability chang
epoint direction

relational
characteristic fc fU sign
parameter
option ntgn,

normal, direct,
for input inverse

corresponding
parameter 2,0,-2 +, -

value

Time . Room
temp.

Supplied
air temp .

1.4:00 12.0 15 .0

14 :10 12 .0 15.0

14 :20 12 .0 15 .0



Real
supplied
air temp .

Measured
supplied
ai r temp.

a

Set supplied
air temp.

Cold water
controller

Air volume
controller

..... . . . . . . . . . . .

is
0

Supplied
air temp .
sensor

Measured
supplied
air volume

Air
volume
sensor

., ..... . . .... . . .... .. . . .. . . ..

Set room
temp.

Measured
room air
volume

Arc (1)

Real room
air volume

Heat
resource

Measured
room temp.

Arc (2)

Real room
temp .

g_t : one-argument

	

v_4: four-argument room air
disturbance function

	

volume control function

h_2 : two-argument supplied

	

1_4 : four-argument heat
air temp. control function

	

propagation function

Figure 12 : The template of a qualitative model for the
VAV system .

Practical application of model
generation

We performed an experiment in regards to the model
generation of an air conditioning system, the VAV
(Variable Air Volume) system. Figure 11 shows the
diagram of the VAV system, which controls the tem-
perature and the volume of the supplied air in the
refrigerator and in the VAV valves for the air condi-
tioning . The components and their relations to model
construction can be observed from this figure . Figure
12 illustrates a template of the qualitative model for
the VAV system.
The qualitative knowledge needed to establish the

initial values of the characteristic parameters for the
model is shown in Table 11 . By using the knowledge
and the templates we can construct a tentative model
which can inexactly express the behavior of the VAV
system .

0

. . . . ... . . .... . . .. .... . . . ... . . . . ... . . . ... . . . .... .

1 [1]
.. . . ... . . ... . . . . .... . . . .... . . . ... .. . . .. .. . . ..... . .... . . ... .. .. ... . ..

Room temp . sensor

Figure 11 : VAV system instrumentation diagram.

VAV valve

Table 11 : Qualitative knowledge for characteristic pa-
rameters .

Based on the above model, the desired qualitative
model can be generated by using' measured field data
with characteristic parameter tuning . Table 12 sum-
marizes the transition of characteristic parameters in
parameter tuning .

Evaluation

In Table 13, the automatically generated model is
evaluated by comparing it with model generation by
means of human intuition . In our proposed method,
it is necessary to determine only 25 characteristic pa-

unc- input stability change
tion point direction
g_1 eat normal inverseresource

v_4 set supplied normal inverseair temp .
measured
supplied normal direct
air temp .

v_4 set room normal inversetemp .
supplied
air volume normal direct
measure normal directroom temp .
room air normal inversevolume

f_4 eat normal directresource
supplied normal directair temp .
room air
volume normal inverse
room normal inversetemp.



Table 12 : Transition of characteristic parameters .

Table 13 : Evaluation of automatic model generation .

rameters, and the agreement rate is as high that for
the normal method and can be determined in a shorter
time and by using fewer parameter§ . The above
demonstrates the effectiveness of automatic model
generation .

Conclusion
In this paper, we proposed a method for generating
qualitative models that is based on automatic param-
eter tuning . A tentative model was constructed with
characteristic parameters and qualitative knowledge
and then these parameters were optimized by auto-
matic parameter tuning that used the steepest ascent
method .

This method will be -applied to an actual building
air conditioning system . A desired qualitative model
can be generated,in 2.5 hours, it took 8 hours when
using the usual method . In addition, institute param-
eters can be reduced to 25 from 3905 .

References
Kuipers, B ., and Berleant, D. 1992 . Qualitative-
numeric simulation with Q3 . Recent Advances in
Qualitative Physics, The MTT Press . : 3-16
Lackinger, F ., and Nejdl, W. 1993 . Diamon : A
model-based troubleshooter based on qualitative rea-
soning . IEEE Expert, vol.8, no.1:33-40
Lackinger, F., Obreja, I . 1991 . Model-based trou-
bleshooting of complex technical systems using inte-
grated qualitative techniques . In Proc . of AI, Simula-
tion and Planning in High Autonomy System : 122-129
Mihara, K., Aono, Y., Ohkawa, T., Komoda, N .,
Miyasaka, F . 1994 Stochastic qualitative reasoning
and its application to diagnosis of air conditioning sys-
tem . In Proc . of the IEEE Industrial Conference on
Industrial Electronics, Control and Instrumentation
'94 : 1401-1406
Arimoto, S ., Mihara, K ., Ohkawa, T., Komoda, N .,
Miyasaka, F . 1995 . Real-time stochastic qualitative
simulation of large scale air conditioning system . In
Proc . of IEEE International Symposium on Industrial
Electronics '95 : 902-907

Yumoto . M ., Ohkawa, T., Komoda, N ., Miyasaka, F .
1996a . Practical Application of Stochastic Qualitative
Reasoning to Fault Detection of Building Air Con-
ditioning Systems . In Proc . of Tenth International
Workshop on Qualitative Reasoning : 283-291
Yumoto, M ., Ohkawa, T ., Komoda, N., Mivasaka, F.
1996b . An Approach to Automatic Model Genera-
tion for Stochastic Qualitative Simulation of Building
Air Conditioning Systems . In Proc . of IEEE Interna-
tional Symposium on Industrial Electronics '96 : 1037-
1042

func-
tion

characteristic
parameter II~

'' tentative
parameter - ~

definite
parameter

g_1 0 .20
0 . 0

0 .1
.OV

h2 f, 0.20 L-0.10
l~ 1 11 1 11

1 1
gap 11 11

v_4 , 0.20 0 .03
i 11 1 11 I

t, 1 1 1 1
gap 11 11
gap 11 11
gap 11 11

f_4 fJ 0.20 0.01
111 1 .
0.20 0.01

g p
gap 11 1 1
gapl ®1

human automatic
method intuition model

generation
parameter kind stochastic characteristic

num er I " 1 I
generation time 8 hours 2.57iours
(calculation time) (3hours) 2hours

agreement
0.52 0.49rate

confirmation parameter
of objectivity

_
tuning


