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Abstract

We develop the influence graph mechanism for reason-
ing about and optimizing decentralized controls for dis-
tributed parameter physical systems. Distributed pa-
rameter systems, such as air flow around an airplane
wing, temperature over a semiconductor wafer, and
noise from a photocopy machine, are common physical
phenomena. The influence graph mechanism encodes
the structural dependency information in a distributed
parameter system and exploits the information to (1)
alleviate redundant computation and (2) reduce com-
munication and support cooperation among local con-
trol processes. Using the mechanism, we obtained a
dramatic computational speed-up in optimizing con-
trol design for a distributed temperature field.

Introduction

Reasoning about and optimizing spatially distributed
physical fields such as fluid flow, temperature, and
acoustic waves are challenging for a number of rea-
sons. First, a distributed parameter field is conceptu-
ally harder to reason about and model than a lumped
parameter system such as a circuit. Spatial topology,
metric, material properties, and physical laws all come
into play, in addition to the combinatorial structures.
Second, numerical methods for optimizing distributed
systems are prohibitively expensive for large, irregular
geometric domains and highly non-uniform phenomena.
When a physical realization of control mechanisms em-
ploys a set of distributed sensors and actuators, it is nee-
essary that the reasoning and optimization process be
implemented in a decentralized way to ensure adaptivity
and robustness. The practical impact of such mecha-
nisms is enormous. For instance, the drag on an air-
plane can be reduced by analyzing and controlling the
air flow around the wings. Temperature in a “smart”
building can be regulated to maximize occupant com-
fort while minimizing energy consumption ( Berlin 1994;
Williams & Nayak 1996).

In this paper, we develop the influence graph mech-
anism for synthesizing distributed control schemes for
physical fields. The mechanism finds a feasible control
design for a physical field, specifving control actions
that meet given design objectives. It extends the spatial
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aggregation (SA) framework (Bailey-Kellogg, Zhao, &
Yip 1996; Yip & Zhao 1996) by explicitly encoding and
managing dependencies among spatial objects. This
work has significantly extended the previously devel-
oped mechanisms for control structure design (Bailey-
Kellogg & Zhao 1997) to address distributed optimiza-
tion of controllers.

The SA influence graph mechanism differs from ex-
isting numerical design and optimization methods in
several important ways. Qur objective is to construct
a qualitative physics model for physical fields so that
behaviors of the fields can be inferred using a small
number of operations on a discrete representation and
explained in terms of object interaction and evolution.
In particular, the influence graph serves as a means
for calculating, explaining, and exploiting dependencies
in physical fields. The influence graph makes explicit
how physical knowledge, such as locality and linear su-
perposability of control, can be used to improve de-
sign techniques. Finally, SA encourages a decentralized
mindset, manipulating fields through local interaction
rules rather than through global models.

The remainder of the paper proceeds as follows. First
we introduce the problem of control optimization for
distributed parameter systems. We then develop the
influence graph as a mechanistic device to encapsulate
dependencies in physical fields. We present algorithms
that use influence graphs to help manage the computa-
tional complexity in control optimization. We provide
experimental evidence to demonstrate the effectiveness
of the mechanism. Finally, we discuss related work.

The Problem: Control Optimization

As an example of control optimization for a distributed
parameter system, consider the temperature regulation
problem for a piece of material (Jaluria & Torrance
1986), as shown in Figure 1'. As part of the manufac-
turing process, the temperature distribution over the

YA similar problem arises from temperature control in
semiconductor manufacturing, in which the oven tempera-
ture over a surface of semiconductor wafer must be regulated
by a set of spatially distributed heating lamps to ensure high
vield. This is a challenging control problem in rapid thermal
processing (RTP) of semiconductor wafers because temper-
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Figure 1: Industrial heat treatment of a metal sheet.
The control objective is to achieve a specified temper-
ature profile over the material by applying heat at a
small number of locations, shown as dark circles,

(a) (b)

Figure 2: A field modeled by a network of local spatial
objects: (a) A regular finite difference grid of objects:
(b) A finite element mesh of triangle objects.

sheet must be regulated at some desired profile to min-
imize damage to the material. We consider two types
of control problem: the steady-state problem, where
a particular temperature distribution must be main-
tained over an extended period of time, and the tran-
sient problem, in which a desired temperature profile
must be tracked over time. Control designs depend on
the thermal process in the metal sheet, which in turn
depends on physical laws, geometry, material proper-
ties, and boundary conditions, in addition to control
actions.

Spatial Aggregation (SA) provides a field ontology
for representing distributed parameter physical fields.
For example, the temperature field over the sheet of
metal is described by a network of spatial objects en-
coding geometric location and temperature information
(Figure 2). A neighborhood graph (N-graph) encodes
spatial adjacencies among the objects. For temporal
problems, objects are also indexed by time. Local con-
straints such as those derived from approximations to
field derivatives or laws of conservation govern the evo-
lution of the objects. The field values are determined
by a local relaxation method that iteratively updates
spatial objects using the local constraints. SA also pro-
vides operators for constructing and transforming these
objects across space and over time. The SA framework
serves as a computational substrate upon which the in-
fluence graph mechanism has been developed and im-
plemented.

Given a description of the field to be controlled, the
task is to design a control strategy that effectively steers
the physical process to meet the desired criteria. To de-
termine the parameters of the distributed control, one
Needs to search the large design space subject to struc-
tural and performance constraints:

® Structural constraints: geometry, physical proper-

-
ature non-uniformity often leads to chip defects (Kailath &
others 1996),

Figure 3: Steady-state thermal hills around sources.
The vertical axis represents temperature value. (a) A
single source. (b) Two fairly independent sources. (c)
Two tightly coupled sources.

ties, boundary conditions.

e Performance constraints: desired profile, optimality
conditions on solutions, restriction on control sources
(e.g. maximum heat output).

In the thermal control problem, the control objec-
tive is to establish a particular temperature distribution
over the entire field, using a small set of discrete heat
sources, subject to constraints on the maximum source
output and acceptable temperature fluctuations. This
global control objective can be formulated locally by
constraining each thermal object to have a tempera-
ture within some error tolerance of its desired temper-
ature. The available control authority consists of point
sources. For the transient heat control problem, source
values are discretized over time, so that each source at
a time instant is separately optimized. If desired, ad-
ditional constraints can relate the source value at one
time to the value at the next time.

Previous work (Bailey-Kellogg & Zhao 1997) has ad-
dressed the design of control structure for a distributed
parameter problem; i.e. where to place a set of control
sources. This paper addresses the design of control pa-
rameters; i.e. the rate of heat output from the sources.
In particular, the optimization task is disfributed among
the sources, so that each source attempts to regulate
temperature in a local neighborhood and sources coop-
erate to seek a global optimum. This style of decen-
tralized optimization is necessary to support the appli-
cations discussed in the introduction, such as “smart”
buildings, where vast networks of sensors and actuators
interact with a spatially distributed physical environ-
ment.

Influence Graph

A heat source influences the temperature distribution
in a field through heat propagation. Figure 3(a) shows
that the steady-state influence of a source on a field
forms a “thermal hill”: the temperature decays away
from the source. When multiple sources affect a ther-
mal field, their thermal hills interact, jointly affecting
the temperature distribution. The interaction necessi-
tates sharing of information among sources during con-
trol parameter optimization, depending on the coupling
strength (Figures 3(b) and Figure 3(c)).

We introduce the influence graph to record the depen-
dencies between control sources and spatial objects in
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Figure 4: Iso-contours for an influence hill.

the field. For a design problem with field nodes F and
source nodes S, an influence graph is a triple (V, E, w)
with vertices V = FUS, edges £ = § x F, and edge
weights w : E' — R such that w((s, f)) is the field value
at f given a unit source at s. Hence, the graph edges
record a normalized influence from each source to each
field node; Figure 3(a) can be considered a pictorial rep-
resentation of the edge weights for an influence graph
from one source. An influence graph is constructed by
placing a unit source at each control location one at
a time and evaluating the field values at all the loca-
tions of interest, using an iterative relaxation method.
The graph needs to be constructed only once for a given
control placement and is used repeatedly for later para-
metric optimization processes,

Why is an influence graph useful? In many dis-
tributed physical phenomena, despite nonlinearities in
the spatial variables such as non-uniform conduction
characteristics and irregular geometries, the field is
linearly dependent upon control sources and bound-
ary conditions®. The effects of sources can be com-
bined through a superposition of influence hills. Influ-
ence graphs encode the crucial dependency information,
while hiding other possibly nonlinear effects.

An influence graph is also useful because it explicates
the locality of source effects on a physical field. Thermal
hills decay away from sources; correspondingly, influ-
ence graph edges have weaker links for further away
field nodes. Spatial aggregation extracts structures
such as “iso-influences” that group field objects into
equivalence classes based on roughly equal influence
from a given source. Figure 4 shows iso-contours for
the thermal hill of Figure 3(a); the iso-influence regions
are the contiguous field nodes between the iso-contours,
The applicability of the assumptions that a problem
possesses locality and is linear in control is discussed in
the Discussion section.

Influence graphs also describe dependencies in the
transient heat problem. Transient heat sources have
thermal hills, as shown in Figure 5. Here tempera-
ture values for spatiotemporal thermal points depend
on source values at locations and time instants. Once
again, the temperature values depend linearly on influ-
ences from sources. The locality of source effects applies
in both space and time.

?Boundary conditions can be treated the same as sources,
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Figure 5: Transient thermal hills around sources. The
vertical axis represents temperature value; time flows to
the right; a constant slice through the source location
has been taken in one spatial dimension. (a) A single
source. (b) Two fairly independent sources. (c) Two
tightly coupled sources.

Optimization Using Influence Graph

We will use the problem of thermal field regulation to
develop the influence graph mechanism. To synthe-
size a control strategy for the distributed thermal field,
the design process requires simultaneous optimization
of many parameters (the source values). While algo-
rithms for multi-parameter optimization exist (Press et
al. 1986), they are computationally expensive for large
problems and difficult to parallelize for distributed ap-
plications.

We will show how structural knowledge, in the form
of the influence graph, significantly improves the per-
formance of a basic decentralized optimization algo-
rithm. The basic optimization algorithm repeatedly ad-
just each source’s value in the direction that minimizes
error?. Remember that the optimization processes are
decentralized — in this basic algorithm, each source ad-
justs itself independently, taking a step towards what
it thinks minimizes error. Figure 6 shows the data flow
in this algorithm: each source node tells each field node
a possible heat output, receives from the field node the
resulting error at that node, and updates its heat out-
put to minimize error. In the next three sections, the
influence graph mechanism will be used (1) to avoid
redundant computation during field evaluation, (2) to
reduce communication among sources and field nodes,
and (3) to support cooperation among local optimiza-
tion processes for the sources.

Efficient Field Evaluation

During each step of an iterative optimization process,
the field is evaluated using the relatively expensive, it-
erative relaxation method on the spatial objects. How-
ever, recall that an influence graph caches the depen-
dence of field nodes on normalized sources, and that the
field is determined by a linear superposition of source
effects. Thus the field value for a spatial object can be
calculated by summing together the weights of influ-
ence graph edges coming into the node, scaled by the
control source values. This computation is extremely
fast and results in a drastic speed-up in computation.
The data flow for the modified optimization algorithm

*Control node positions can also be optimized in this
manner,



Figure 6: Data flow in the basic decentralized optimiza-
tion algorithm: sources adjust themselves based on the
error in the field resulting from different heat outputs.

Figure 7: Data flow using efficient field evaluation:
sources inform field nodes of temperature updates based
on influence graph information.

is illustrated in Figure 7. Now to determine the impact
of a different heat output, a source calculates the re-
sulting temperature change for each field node, based
on influence graph edge weights.

The influence graph essentially pre-computes and
caches the inverse of the capacitance matrix of the field.
An important distinction is that it does this in a decen-
tralized fashion, without ever forming a global matrix
for the temperature field or the sources. This represen-
tation is particularly efficient when sources are sparse.

Reduced Communication

At each optimization step, a source must estimate the
error caused by an adjustment to the source value, with
respect to the current state of the temperature field.
The source can consult the entire temperature field for
the current error, and then adjust the values through-
out the field when it changes, but that requires much
communication. Alternatively, it can consider only a

region assigned to it (e.g. by the structure design
algorithm in (Bailey-Kellogg & Zhao 1997)), but that

res the influence on the other regions. Better yet, a
- Source can communicate with those field nodes it most
strongly affects more frequently. If a source only weakly
ts a temperature node, we need not assign it much
Dlame/credit for the error at that node. As shown in

T

Figure 8: Data flow for reduced communication: fre-
quency of source-field communication is modulated by
influence strength. '

Figure 8, the frequency of source-field communication
is a function of the amount of influence. Decreasing
frequency decreases overall communication costs, but
increases the potential for error due to underestimated
source effects.

We have developed several strategies for establish-
ing source node to field node communication. The
most basic method computes communication frequency
as a function of the weight along the influence graph
edge. This requires each source to communicate with
each field node (some more frequently than others).
A more qualitative method forms equivalence classes
of field nodes based on influence (iso-influences) for
each source, and treats the regions equivalently with
respect to communication frequency. Now communica-
tion paths only exist between sources and regions. An
even more qualitative method forms equivalence classes
of field nodes based on which source has the strongest
influence, again treating regions equivalently with re-
spect to communication frequency. With this assign-
ment, each source communicates only with its own re-
gion and with other sources, which pass information on
to their regions.

Joint Optimization

While we want to independently optimize sources, in
reality there is coupling: the heat from one source af-
fects the temperature throughout the entire field and
thus influences the actions taken by other sources (refer
again to Figures 3(b) and (c)). Independent optimiza-
tion of coupled sources might require more iterations
to converge, as the sources make seemingly indepen-
dent choices which they later find to be wrong due to
dependencies. Even worse, sources might converge to
sub-optimal values, where no independent actions help,
but cooperative actions would.

As a particular example of cooperative optimiza-
tion, consider the “ridge problem” faced by optimiza-
tion techniques. An example manifestation of the
ridge problem in the temperature control domain oc-
curs when independently increasing the value of one
source increases the total error and independently de-
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creasing the value of another source also increases the
total error, but jointly increasing the one and decreas-
ing the other decreases the total error®. This is due to
coupling between the areas influenced by the sources:
the joint modification maintains a similar temperature
profile in the overlap area and benefits other areas. By
cooperatively optimizing, the optimizer walks along the
ridge in the error landscape.

The following steps incorporate joint source opti-
mization into our decentralized framework:

1. Establish a neighborhood graph linking a source to
other sources with which it will cooperate. This
neighborhood graph can be based on spatial prox-
imity. Better yet, it can utilize information encoded
in the influence graph: if there is a region strongly
influenced by multiple sources, then those sources are
coupled and can cooperate to optimize that region.

2. Form new sources (“supervisors”) that seek to opti-
mize the distribution of heat between a pair of neigh-
boring sources. The actions available to a supervisor
source are to shift heat from one of the sources to
the other. Influence graph edge weights for the su-
pervisor are set from the influence difference for the
sources it supervises.

3. Add the supervisors to the set of sources being opti-
mized by the decentralized optimization algorithm.

Figure 9 summarizes the data flow for this algorithm:
if two sources are tightly coupled, based on influence
information, then a supervisor is formed for them; the
supervisor is optimized similarly to other sources, but
its actions affect the supervised sources. Supervisors
implement source cooperation and help avoid optimiza-
tion ridges by shifting heat from one source to the other
based on the error profile in the field. This approach
could be extended to group supervisor sources that
shift heat among groups of sources rather than between
pairs. However, our experience has not found that ex-
tension necessary. Note that supervisors only need to
be established between pairs of sources that are tightly
coupled. Further extensions could let supervisors check
for cooperation less frequently or recognize a potential
need for cooperation (for example, too much heat near
one source and not enough near the other) before thor-
oughly testing.

Performance

The design algorithms, when applied to several prob-
lems, result in competitive designs and run-time per-
formance.

For a distributed optimization problem with M
sources and VN field objects, the basic algorithm requires
on the order of kKIM N units of computation, where k
and [ are the numbers of iterations for the optimiza-
tion and relaxation processes respectively. Using the

YGenerally, if jointly adjusting two tightly-coupled

sources in the same direction decreases the error, then so
does independently adjusting one or the other.
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Figure 9: Data flow for joint optimization: supervisor
nodes are formed for tightly-coupled sources; optimiza-
tion of the supervisors shifts heat from one source to
another based on errors in the field.

influence graph to speed up the field evaluation, the al-
gorithm scales as kM N. Exploiting the communication
structure, the cost is reduced to kM Cy for a smaller
C'n, the number of field objects with which each source
communicates, possibly independent of N. By cooper-
ating among the local optimizers, we further reduce the
number of iterations k.

As expected, the influence graph mechanism results
in enormous savings during repeated decentralized field
evaluations. For example, in an implementation using
the C++-based SA library on a 100-MHz Pentium sys-
tem with Linux and gcee, it takes about 49 seconds to it-
eratively solve for the temperature in a field with about
1000 nodes, while it takes less than 0.02 seconds using
the influence graph. Since the field evaluation must be
performed at each iteration, the savings add up quickly.

Influence graphs significantly reduce communica-
tion during source optimization. Table 1 summa-
rizes results for steady-state parametric design on a
regular 20x20 discretized thermal field (transient de-
sign has similar performance). The first two opti-
mizers (Gauss-Newton and Broyden-Fletcher-Golfarb-
Shanno) are Matlab-based implementations of two stan-
dard multi-parameter optimization algorithms (Sim-
plex search optimization was omitted because it failed
to converge within 300 steps on all of these tests.)
Note that the Matlab algorithms are not decentralized.
The SA-based optimizers use an implementation with
default parameters and varying amounts of communi-
cation: SAIl updates each field object based on each
source every iteration, while SA2-5A4 update field ob-
jects with frequency proportional to influence, with dif-
ferent constants of proportionality. The optimizers were
run on three different tests: four sources near the cor-
ners of the grid, four sources near the center of the grid,
and sixteen sources tiled over the grid. Three perfor-
mance results are shown for each test: the number of



T GN BFG:S SAl SA2 SA3 SA4 ]
4-corner
F iler 18 14 21 18 17 19
1.0 7368 1.108 1.0 BO47 1.0
# comm 75624 L3EY 77216 0572 2337 1144
1.0 7368 1.105 4293 0947 | 0465
error 2028 2028 2028 -2037 2781 ;
1.0 1.0 1.0 1.004 1.125 | 1.243
4-center
Fiter 20 14 24 21 18 31
1.0 i, 1.2 1.05 95 1.55
# comm 25020 TET44 31104 Z100% EOED 3 EL]
1.0 ki 1.2 8103 .26393 2002
error 3459 3458 3455 3463 3621 2822 |
1.0 1.0 1.0 1.001 1.047 1.134
16-tiled
Tter 56 213 36 43 46 75
1.0 3804 6429 875 8214 1.339
# comm |[ 2802304 | 1104192 | 1A6624 | 161700 | 50535 | 38061 |
1.0 3,804 6420 5573 .2051 1346
error 1164 1164 1167 1181 BELE] 1347
1.0 1.0 1.003 1,015 1.022 1.157

Table 1: Performance data for communication reduc-
tion in optimization: number of iterations, number of
communications, and resulting error for different opti-
mization methods for representative problems

iterations for convergence, the total source-field node
communication®, and the average squared error across
the thermal field. Actual run-time is roughly propor-
tional to the number of communications. Below the
raw performance numbers are performance relative to
Gauss-Newton (lower is better).

These results show that on representative multi-
parameter optimization problems, the SA structure-
based decentralized optimizers compete well with the
centralized optimization techniques in both speed and
error, while greatly reducing the amount of communi-
cation among distributed optimization processes. Fig-
ure 10 charts the trade-off between communication and
error in the four SA optimizers on these problems. Nat-
urally, error increases as communication decreases, but
there is quite a long flat area where the communica-
tion decreases without serious impact on the error. In
problems with larger domains, there will be even fewer
field nodes strongly influenced by a source (depending
of course on geometry and material properties), provid-
ing even greater potential savings.

Finally, influence graphs also support cooperative
source optimization. Table 2 provides data for three
representative problems with tight coupling among
sources: four steady-state sources tightly packed near
the edge of a 20x20 grid, sixteen steady-state sources
tightly packed near the center of a 20x20 grid, and one
transient source controlling 15 time steps in a 5x5 grid.
The results from the two (centralized) Matlab optimiz-
ers are provided for reference; the first SA optimizer
does not cooperatively optimize, while the second one
places a supervisor between each neighboring pair of
sources. Both SA optimizers find or come very close to
the optimum, but the use of cooperation results in much

“In the Matlab-based routines, essentially each source

communicates with each non-boundary field node each
iteration.

1.25 T T
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Figure 10: Influence graphs support trading optimiza-
tion quality for amount of communication. In the flat
area, amount of communication is greatly reduced with
little impact on error.

[ [ GN [ BFGS [ 5A [ SA-coop |
4-packed
# iter 18 96 78 28
error 6725 6725 6737 BT25
16-packed
# iter 56 207 167 70
error 3357 3357 aan 2357
15-time
# iter 94 226 64 25
error 1188 -1180 1189 1188

Table 2: Performance data for cooperative optimiza-
tion: number of iterations and resulting error for differ-
ent optimization methods for representative problems.

faster convergence. Figure 11 illustrates this point.

Discussion

The influence graph explicitly encodes the structural
dependencies among control sources and spatial fields.
The graph mechanism allows us to explore the de-
sign fradeoffs among computation, communication, and
control quality in a principled way. Additionally, the
causal information encoded in the graph can be used
to automatically generate explanations for why higher-
level control decisions are made.

The influence graph based design techniques rely on
two important pieces of physical knowledge: locality
and linear superposability of control. Locality makes
it possible to decouple a field and separately consider
a source’s effects on strongly-influenced nodes and on
weakly-influenced nodes. We note that certain prob-
lems, such as heat transfer with highly conductive ma-
terials, may not possess strong locality; such problems
are less amenable to a decompositional approach. Many
physical processes (e.g. heat conduction, gravity, elec-
trostatics, and incompressible fluid flow) are linear in
control. This fact makes it possible, for example, to cal-
culate temperature as a sumn of influences from different
heat sources. Influence graphs encapsulate other possi-
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Figure 11: Influence graphs support cooperative opti-
mization: SA-coop uses supervisors for pairs of tightly-
coupled sources and requires far fewer iterations than
does the standard SA optimizer. The centralized Mat-
lab optimizers GN and BFGS are provided for reference,

bly nonlinear irregularities in physical fields, exposing
linear dependence on source values.

While traditional qualitative physics ontologies focus
on lumped parameter models of physical systems (Dek-
leer & Brown 1984; Forbus 1984; Kuipers 1986), the
spatial aggregation based influence graph mechanism
aims at establishing an ontology for reasoning about
distributed parameter physical phenomena that ac-
counts for spatial and physical properties. More re-
cently, Forbus et al. (Forbus, Nielsen, & Faltings 1991)
and Lundell (Lundell 1996) have developed represen-
tational frameworks for distributed parameter physi-
cal fields. SA encodes both qualitative structures and
quantitative dependencies of physical fields and can be
regarded as a more refined mechanism for reasoning
about spatial phenomena.

Unlike control design for lumped parameter linear
systems, few analytic design techniques have been
developed for distributed control of large physical
fields (Sandell Jr. et al. 1978). In practice, the design is
often accomplished by brute-force numerical computa-
tion. Among the recent experimental work in decentral-
ized control. Doumanidis (Doumanidis 1997) addressed
the problem of control parameter optimization for dis-
tributed parameter systems. He introduced a first-order
approximation to local effects of heat sources during the
optimization. However, his approach ignored effects of
geometries and the use of structural knowledge in guid-
ing decentralized optimization.

The influence graph design algorithms essentially de-
compose optimization into decentralized optimizers and
then account for interaction among the distributed
processes. Many other interesting papers have stud-
ied problem decomposition and interaction among sub-
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problems. For instance, the parti-game algorithm de-
composes high-dimensional state-spaces for learning
control strategies (Moore & Atkeson 1995). Similarly,
Bradley and Zhao presented several methods for synthe-
sizing nonlinear control laws in phase spaces (Bradley
& Zhao 1993); their methods partition phase spaces
into manageable subspaces. Bertsekas uses adaptive
aggregation in dynamic programming to group states
and their dependencies into meta-states according to
residual errors (Bertsekas & Castanon 1989). Multi-
grid (Briggs 1987) and domain decomposition (Chan &
Mathew 1994) algorithms support efficient calculation
of field values by exploiting the structure of the global
matrix for a system. Williams and Millar (Williams
& Millar 1996) and Clancy and Kuipers (Clancy &
Kuipers 1997) present two different methods for decom-
posing large models and reasoning about the interac-
tions of sub-components. Our work differs from these in
that it uses structural knowledge of distributed param-
eter fields in the form of influence graphs to guide de-
composition and cooperation among decentralized op-
timization processes.

Conclusions

This paper has developed the powerful influence graph
for reasoning about and optimizing controls for dis-
tributed parameter physical systems.  The influ-
ence graph advances the state-of-the-art in qualitative
physics and spatial reasoning by identifying and encod-
ing structural dependency knowledge in physical fields.
The mechanism has been used in a decentralized op-
timizer to avoid redundant computation, reduce com-
munication needs, and cooperate among local control
processes. It has demonstrated a significant computa-
tional advantage on a problem of decentralized control
optimization for a thermal field.
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