Using GDE in Educational Systems

Kees de Koning and Bert Bredeweg
Department of SWI, University of Amsterdam
Roetersstraat 15, 1018 WB Amsterdam, the Netherlands
{kees,bert }@swi.psy.uva.nl

Abstract

In intelligent educational systems, assessment of what
the learner is doing is a prerequisite for proper, knowl-
edgeable guidance of the educational process. We pro-
pose to use existing techniques from the field of model-
based reasoning for this purpose. This paper describes
how a modified version of GDE can be exploited in di-
agnosing a learner’s problem solving behaviour. The
problem solving task for the learner is structured pre-
diction of behaviour. We present models of this prob-
lem solving knowledge that adhere to the represen-
tational requirements of model-based reasoning, and
show how GDE-like diagnostic techniques can be em-
ployed to determine those reasoning steps that the
learner cannot have applied correctly given the obser-
vations. Our approach of diagnosing the learner’s prob-
lem solving behaviour, rather than his or her miscon-
ceptions, induces an educational strategy that focusses
on learning from errors and stimulates the learner’s
‘self-repair’ capabilities.

Introduction

One of the main bottlenecks in individualising educa-
tion is the assessment and interpretation of the learner’s
problem solving behaviour, often referred to as cogni-
tive diagnosis. As observed by Self, theories on model-
based diagnosis aim at providing general frameworks
for diagnosis, and thus “if cognitive diagnosis is indeed
a type of diagnosis ..., it should be covered by these
frameworks” (Self 1992). In this paper, this claim is
investigated by reusing existing ideas and techniques
in the context educational systems. Based on an ex-
plicit model of the subject matter, we apply the GDE
paradigm (de Kleer & Williams 1987) to assess the
learner’s problem solving behaviour.

The problem solving task that the learner has to ac-
quire is qualitative prediction of behaviour. Qualita-
tive reasoning has long been recognised as an impor-
tant aspect of human reasoning, and a preferable way
of inducing understanding of the underlying principles
in physics education (Chi, Feltovich, & Glaser 1981;
Larkin et al. 1980; Elio & Sharf 1990). An addi-
tional advantage of the domain of qualitative reason-
ing is that simulators exist that can perform behaviour
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prediction on the basis of a description of some sys-
tem (e.g., QPE (Forbus 1990), GARP (Bredeweg 1992)).
These simulators can be used to automate the process
of creating diagnostic models.

This paper presents the STAR! framework, with a fo-
cus on its diagnostic component. Two key issues are ad-
dressed with respect to the application of model-based
diagnosis in an educational context. Firstly, in the next
section we exactly define the diagnostic problem that we
want to solve: diagnoses are defined in terms of reason-
ing steps that cannot have been applied correctly by
the learner given the observations. In accordance with
this definition, we specify the models of the learner’s
reasoning behaviour that are needed to facilitate this
diagnostic process, and the mapping of these models
onto the component-connection paradigm used for “de-
vice models”. We discuss how the right grain size of
the reasoning steps is determined, and how the differ-
ent knowledge types can be distinguished in the diag-
nostic models. The models are generated from the out-
put of a qualitative simulator, and hierarchical struc-
ture is added automatically. Secondly, the diagnostic
techniques need adaptation to work in the educational
context. Because of the nature of the diagnostic task,
a different probe selection algorithm is required. An
example of the working of the diagnostic engine is pro-
vided in a prototype system called STARIight

One advantage of our approach lies in the fact that
it puts educational diagnosis on a solid basis, and that
it provides a generic approach for diagnosis of problem
solving behaviour. More importantly, the STAR frame-
work advocates a specific teaching strategy by focussing
on the errors in the behaviour of the learner rather than
on misconceptions in the learner’s knowledge. We dis-
cuss the merits of this focus in detail.

A “Device Model” for Qualitative
Prediction Of Behaviour

In a typical domain such as electronics, consistency-
based diagnosis can be characterised as follows: given a
model of a device in terms of components and connec-
tions between these components, plus a set of observa-
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tions, find those minimal sets of components that can-
not behave according to their specified behaviour given
the observations. In the context of teaching problem
solving, we restate this characterisation as:

Given a model of the problem solving task in terms
of individual reasoning steps and data connections
between these reasoning steps, plus a set of obser-
vations about the learner’s problem solving behav-
jour, find those minimal sets of reasoning steps that
cannot have been applied correctly by the learner
given the observations.

Important to note is that this definition deviates from

the commonly accepted definition of cognitive diagno-

sis, being “the process of inferring a person’s cognitive

gtate from his or her performance” (Ohlsson 1986): we

do not try to determine the ‘internal’ cognitive state of
~ the learner, but instead only diagnose his or her ‘ex-
ternal’ reasoning behaviour. As a result, the diagno-

sis consists of reasoning steps that cannot have been
- performed correctly, i.e. bugs in the learner’s reason-
_ ing process, rather than misconceptions in the learner’s
 knowledge. In other words, diagnoses are defined at
_ the behavioural level, and not at the conceptual level
'~ (¢f. (Dillenbourg & Self 1992)).

" The Mapping
" The first issue to be addressed is how to define a
- model of the problem solving task. This model
- should adhere to the representational requirements of
- model-based reasoning, that is, it should consist of
- context-independent components and connections be-
~ tween these. Because the execution of a problem solving
 task can be seen as performing a set of inference oper-
ations (i.e., reasoning steps) on a data set, we model
each reasoning step as a component. This means that
in the model for a particular prediction, each applica-
fion of an inference is represented as a component. As
an example of such a model, consider the model frag-
Et in Figure 1. For the U-Tube system in Figure 1-I,
. this model represents the derivation of the change in
inequality between the volumes: because the level
higher at the left, the pressure is higher as well, and
erefore a flow exists from left to right, which means
at the left volume is decreasing and the right one is
. Icreasing. As a result the levels will become equal,
e model, this reasoning trace is represented by five
ent components, representing four inference types.
an example, consider the leftmost component of type
uality correspondence that is used to derive that the
sure is higher at the left because the level is higher
as well. Technically speaking, the inference com-
it has two inputs, namely the inequality between
elevels L, > L, and the directed correspondence that
8ts between the level and the pressure dir_corr(L,P).

n Size of the Models In total, 16 different
€nce types are defined for the task of qualitative
ction of behaviour (de Koning 1997). This set

is based on experimental research on how student and
(human) teachers communicate about prediction prob-
lems. From protocols taken of a student and teacher
discussing the behaviour of a physical device, we ex-
tracted the terminology and the individual reasoning
steps that are made. The different types of reason-
ing steps encountered in the protocols formed the basis
for the set of 16 components (de Koning & Bredeweg
1995). The experimental base of the inference types
ensures that the reasoning steps are at the appropriate
grain size of type to support an educational communi-
cation. For instance, the inequality correspondence com-
ponent does not model a simple one-step inference from
a qualitative reasoning point of view. However, the ex-
perimental research showed that this level of inference
is considered primitive by both learners and teachers,
and hence we do not want to model it in more detail.

Retrieval Components The model introduced so
far represents the reasoning steps that make up the
problem solving task. The ‘contents’ of these reasoning
steps, i.e. the support knowledge that is used to make
the inference, is represented as an additional input to
the reasoning component. For instance, the inequality
correspondence component has two inputs: the inequality
Ly > L, and the relation dir_corr(L,P). However, these
inputs are of different nature: the first one is a given,
something that the learner is supposed to see or read on
the screen, and hence it can be assumed to be known by
the learner. The second input dir_corr(L,P) embodies
knowledge that the learner may not (yet) master. From
a diagnostic point of view, this difference is important:
in model-based diagnosis, all inputs are assumed to be
correct, and a diagnosis can only be in terms of defi-
cient components. Hence, no diagnosis can be found
that expresses the fact that the learner does not know
the relation between level and pressure, although it may
express that the learner does not know how to apply the
relation in this situation. We therefore introduce an
additional component type called retrieval. Retrieval
components have one input and one output, and the
output is equal to the input if the component is func-
tioning correctly. A “faulty” retrieval component hence
represents the situation in which the learner does not
know (cannot reproduce or “retrieve”) an expression
like dir_corr(L,P).

Base Model Generation

A “device model” as introduced above, in the following
referred to as the base model, is specific for one predic-
tion of behaviour: although the component types are
generic for the task, each prediction for a specific sys-
tem such as the U-tube requires a new model to be
generated. This is done on the basis of the output of
a qualitative simulator called GARP (Bredeweg 1992):
the simulator generates a prediction of behaviour, and a
post processor transforms this output into a model rep-
resenting all individual reasoning steps that a learner
should master in order to solve the prediction problem.
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Figure 1: An Example Base Model Part

Adding Hierarchies

The base model contains all reasoning steps that are
necessary for a correct prediction of behaviour, and
hence such models tend to be rather large: a complete
model for the behaviour of a system such as the balance
depicted in Figure 2 consists of 665 components and 612
points. Furthermore, the nature of qualitative reason-
ing results in an incomplete set of behaviour rules, and
hence an incomplete prediction engine, which reduces
the efficiency of algorithms such as GDE (de Kleer &
Williams 1987). As a result, applying GDE directly on
the base model is not feasible in a run-time educational
environment. In the case of electronics, such problems
are usually addressed by focussing techniques such as
hierarchical diagnosis (e.g., (Mozeti¢ 1991)).

The main difference for knowledge models is that
the hierarchical structure is not readily available from
the blue prints, but has to be generated run-time for
each base model. We therefore developed algorithms
that automatically add hierarchical structure to a base
model. Three different types of abstraction are sub-
sequently applied to the model: firstly, the model is
simplified by hiding all reasoning steps (components)
that are not essential (although technically speaking
necessary) to the main behaviour of the system. Sec-
ondly, sequences (chunks) of reasoning steps are col-
lapsed into single components. Finally, a third abstrac-
tion is made that reduces each specification of a behav-
iour state, and every (ransition between two states, into
one single component. For a detailed description of the
hierarchical layers and the algorithms used for produc-
ing them, see (de Koning, Bredeweg, & Breuker 1997;
de Koning 1997).

The process of generating a hierarchical model of the
task of qualitative prediction of behaviour is fully au-
tomated.

Diagnosing Knowledge Models

The hierarchical models adhere to the representational
constraints of model-based diagnosis, and hence tech-
niques such as GDE can in principle be applied without
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modification.

In GDE, the diagnostic process consists of three steps:
conflict recognition, candidate generation, and candi-
date discrimination. Conflict recognition amounts to
finding (minimal) sets of components that, if assumed
to be working correctly, results in behaviour that con-
flicts with the observations. From each of these sets
(called conflicts), at least one component should be
faulty for the overall behaviour to be consistent with
the observations. Candidate generation creates those
sets of components (called candidates) that cover each
conflict. Candidate discrimination is concerned with se-
quential diagnosis: given a set of observations, the set
of possible diagnoses may not be satisfactory, and addi-
tional observations are then necessary to discriminate
between the possible candidate diagnoses.

The first two steps are applied without significant
modification. The third step however is different. The
reason is that the nature of the components is signif-
icantly different in knowledge models and digital cir-
cuits. In a digital circuit, two components of the same
type may behave according to the same rules, but are
still physically distinct instances. In knowledge models,
this is not necessarily the case. One reasoning step ap-
plied correctly in one part of the model is very likely to
behave correctly as well in another part: by their na-
ture, different components of the same type are likely
to fail collectively. A learner that does not know how to
apply an inequality correspondence is likely to exhibit the
same error (faulty inequality correspondence) at several
places in the model. The only exception is formed by
components of the retrieval type: here, different instanti-
ations are indeed independent operations, because they
refer to the retrieval of different knowledge facts. The
error of not correctly ‘retrieving’ the relation between
level and pressure is usually not related to an incorrect
retrieval of the negative influence of the flow rate on
the volume.

This different nature of knowledge models is exploited
by the diagnostic algorithm: the failure probability of
a set of instances of the same component type is de-
fined to be equal to that of a single component. For



example, a candidate diagnosis [IC;,1C2,1Cs,1C4] consist-
ing of four failing inequality correspondence components
has the same probability as a single component candi-
date [IC]. We actually interpret a candidate at the level
of generic inferences, instead of at the level of individ-
pal, instantiated reasoning steps: the first candidate
can be interpreted as “unable to calculate inequality
correspondence”, which is at this level of interpretation
a single fault. This interpretation does not hold for
the single component candidate: this may well be an
incidental instantiation error or slip.

For retrieval components, it is possible to employ an
additional heuristic in candidate discrimination: be-
cause most errors made in the experiment appeared
to be caused by missing or confused domain knowl-
edge, retrieval components can be assumed to have a
higher a priori failure rate than inference components.
Similarly, higher-level, decomposable components have
a higher a priori failure rate than individual base model
components, because these components incorporate a
number of reasoning steps in the base model. Note
that this a priorz failure rate is inspired by a structural
feature of the model, namely the number of inference
components, rather than by the semantics of the infer-
ences themselves.

The STAR Diagnostic Engine

On the basis of the above considerations, we designed a
new algorithm for candidate discrimination. The al-
gorithm is a variant on the half split approach that
can deal with multiple faults and differing a prior: fail-
ure rates. The half split approach aims at finding the
point that optimally splits the set of components that
contributes to a symptom: given the set of compo-
nents CpS that contributes to a symptom, the split-
ting factor for a possible measure point p is defined as
|CpSip —CpSap|, where CpSpp is the subset of CpS con-
tributing to the value of p (“before p”) and CpS,p the
subset CpS not contributing to the value of p (“after
p”). In our case, simply taking the difference in num-
bers of components does not work: components are no
longer synonym with candidates. Hence, we introduce
the wewghted cardinality of a candidate, facilitating the
comparison of candidates. The weighted cardinality of
a candidate expresses its probability in terms of the
number and type of components it consists of.

lThe algorithm for candidate discrimination is given
ow.

L. Collect the set of all possible measure points MPS by
tracing backwards from the set of symptoms (i.e. obser-
vations that do not match the predicted value) through
the model.

2. For each candidate Ca, in the candidate set CaS, calcu-
late its weighted cardinality WCqyq,-
Let R be the number of retrieval components in Ca,;
Let H be the number of decomposable components in Ca;;
Let T be the number of other component types in Ca;;
The weighted cardinality of a candidate is defined as
WCCa, =07+R+05+H+T.

3. Let CpS be the set of components that contribute to the
set of symptoms. Define the unnormalised probability of

a component Cp € CpS tobe ) wé. for all candidates

Ca, containing Cp.

4. For each point p in MPS, let CpS,, (“before p") C CpS
be the set of components that contribute to the value of
p and let CpS,, (“after p”) = CpS\CpS,,.

5. For each point p in MPS, calculate its splitting factor SFj.
Let UPep be the sum of the unnormalised probabilities
of the components in CpS,,, and UP,p the sum of the
unnormalised probabilities of the components in CpS,,.
The splitting factor SF}, of measure point p is defined as
|U Pyp = U Pay.

6. Order the probe points in MPS according to their split-
ting factor SF,: the best probe point is the one with the
smallest value for SF.

The algorithm first determines the possible measure
points (step 1). In step 2, the weighted cardinality
of each candidate is calculated. The definition of a
candidate’s weighted cardinality embodies the differ-
ent aspects discussed above: retrieval and decompos-
able components have a higher a prior: failure rate and
are counted individually. Components of the same type
are counted only once. By its definition, the lower the
weighted cardinality of a candidate, the higher its prob-
ability. Subsequently, we can map these weighted cardi-
nalities on the individual components, yielding the un-
normalised probability of a component (step 3). This
probability expresses the different candidates that a
component is part of: when a component belongs to
more than one candidate, knowing its status will pro-
vide more information. Hence, the higher a compo-
nent’s unnormalised probability, the more important it
is to focus the diagnostic process on this component.
The unnormalised probabilities of the components are
used in calculating the splitting factor for each mea-
sure point (step 4). As defined in step 5, the can-
didate discrimination algorithm does not deliver one
probe point, but a list of possible probe points ordered
to their discriminating power (i.e., their splitting fac-
tor). Although the diagnostic machinery can reason
about the expected results of a certain probe point, it
cannot determine the costs of a specific probe within
the current educational context. As a result, the most
effective probe suggested may be very expensive, in the
sense that it does not fit in with the current dialogue.
In this case, the educational system may select another
probe point from the list.

The discrimination algorithm should be viewed as an
implementation of a number of ‘rules of thumb’. Espe-
cially the definition of the weighted cardinality of a can-
didate includes some numerical interpretations of qual-
itative observations that may prove to be non-optimal.
For example, the fact that a retrieval component is
counted as (.7 is a somewhat arbitrary quantification
of the observation that more errors are made in the do-
main knowledge than in the reasoning knowledge. Due
to the hierarchical structuring of the models, the num-
ber of components that is diagnosed at once is usually
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small. Hence, the impact of such choices will be rela-
tively small.

The sTAR! B Prototype

To illustrate the ideas presented above, a diagnostic ses-
sion is presented from the tests we performed with the

STAR!8It prototype. The prototype fully implements
model generation, hierarchical model aggregation, and
the diagnostic engine as presented in the previous sec-
tions. Furthermore, elementary implementations of a
question generator and an explanation generator are
added to facilitate a simple question-answer dialogue
with a learner about the behaviour of some (physical)

system. A screen dump of the STARIight prototype is
shown in Figure 2. The screen shows a typical question
about the behaviour of a physical system called the bal-
ance system: two containers filled with water are placed
on a balance, and each container has an outlet at the
bottom. The weight of the empty containers is assumed
equal, but their size differs. The task of the learner is
to predict what happens to the water columns and to
the balance once the outlets are opened.

We conducted a small set of test sessions with 9 learn-
ers. To exemplify the diagnostic machinery, we present
a fragment of the interaction between the learner and
the system. The indented phrases in italics are think-
aloud remarks made by the learner. In this example,
the initial behaviour state of the balance (the leftmost
situation depicted in Figure 2) has just been presented
to the learner. The dialogue starts when the learner is
asked to predict the second state (the right situation in
Figure 2), which is at this moment not yet visible to
the student.

1.  What will be the difference between volume left and
volume right in the next state?
Hey, look, the volumes are equal. | didn't take
notice of that.
Yes, | think they stay equal?
b: volume left will be equal to volume right
That's not correct.
Before we go on with the prediction, | would like to
know what you think about the present situation.
Please answer the following question:
What do you know about the difference between the
decrease in volume left and the decrease in volume
right?
9. Volume left decreasing slower than volume
right?
10. No, at the same speed | would say.
11.  b: volume left is decreasing at the same speed as
volume right
12. That's not true.
13. Please answer the following question:
14. What do you know about the difference between out-
flow left and outflow right?
15. Well | would say that the outflow is equal, but
that is now when the pressure [incomprehensi-
ble]

46 QR-98

oosw W

® ~

16. Ah! Is that it? The outflow left is smaller

17.  c: outflow left is smaller than outflow right

18, That's right.

19. Please answer the following question:

20. which quantity causes a change in volume 7

. The outflow, or the pressure, yes the outflow

22. ¢ outflow

23. That's right.

24. | think you don't fully understand the following:

25. the difference between outflow left and outflow right
has a direct influence on the difference between the
decrease in volume left and the decrease in volume
right.

26. This means that because outflow left is smaller than
outflow right volume left is decreasing slower than
volume right.

27. Let's continue with the exercise where we left off.

28. All right, interesting. . .

To explain the diagnostic process underlying this inter-
action, consider Figure 3. The answer given in line 4
supplies the observation V; = V; in the output of the
state transition component ST. ST models the transition
from the first to the second state at the highest hierar-
chical level. In the prototype system, the subject mat-
ter sequencing is simplified to only asking the output
of each subsequent transition component, and not of any
specification component. Hence, a conflict at the highest
level results in a decomposition of two components: the
preceding transition component plus the previous spec-
ification component (for more details, see (de Koning
1997)). Hence, SS and ST are decomposed into the
seven-component model depicted. The first call to the
diagnoser delivers one conflict: (Cll, IT), and hence two
diagnoses [Cll] and [IT]. The combined inequality influence
Cll is a higher-level component that summarises the cal-
culation of a derivative (in this case, the ratio of the de-
creases in volume 8V} > §V;) from an (in)equality (the
ratio of the water levels L; < L,). The inequality termina-
tion IT determines the new inequality between the val-
ues in the next state. The only probe point that yields
information about the candidates [Cl] and [IT] is in be-
tween these components. Hence, a question is asked
about the inequality between the derivatives of the vol-
umes (8V; > 8V;, line 8). The answer given in line 11 is
incorrect, yielding a single-fault diagnosis [CII]. Because
this is a higher-level component, it is decomposed into
a lower-level model as shown in Figure 4. The next di-
agnostic cycle yields one conflict (TIC, Rs, II) and three
candidates [TIC], [Rs], and [Il]. For the two existing mea-
sure points, the splitting factors are determined by the
discrimination algorithm. For the point neg_infi(Fl, V),
the splitting factor is |ﬁ—(ﬁ+%){ = 1.57,for F; < Fr
it is |5 — (75 + 1)| = 043. F < F, has the low-
est value, and thus the highest discriminating power.
Hence, this one is questioned (line 14) and answered
correctly (line 17). This results in the new conflict (Rs,
1) and two candidates [R3] and [ll]. The last probe on
neg_infi(Fl, V) in line 20 delivers the inequality influ-
ence component Il as a final single-fault diagnosis. In
line 24-26, an explanation is generated for this compo-



volume left is equal to volume right
level left is lower than level right
width left is greater than width right

volume left has become greater than volume right
position has changed to right side up

a: water level left will be higher than water level right
b: water level left will be equal to water level right
c: water level left will be lower than water level right

What will be the difference between water level left and water level right in the next state?

) (c) (civemeanint)

Figure 2: The sTAR/ight Prototype

Expr = observation/model input
Expr = unknown (predicted)

B’ = symplom

SS = state specification
ST = state transition
VD = value determination

CDD = combined derivative
datermination

Cll = combined inequality Vi=Vr

influence

QT = quantity

IT = inequality termination 1! ‘é-'
R = retrieval -,

Figure 3: First Diagnostic Cycle

nent.

In the test sessions, a total of nine learners were using
the prototype for about half an hour each. Of these nine
1§arners._ four had some experience in qualitative predic-

- tion of behaviour (the ‘advanced learners'), whereas five
had no relevant foreknowledge (the ‘novices’). In total,

- 707 questions were answered, and there were 30 diag-

~ Dostic sessions. Running on a 200 Mhz Pentium Pro

| Pl_atform under Linux, most diagnoses were calculated

- Within one second, with a maximum of four seconds.

| Tht_e average number of probes needed to determine a
satisfactory diagnosis was 2.7; the longest sequence of
Probes was eight, which occured twice.

Although the experimental setup and the number
of subjects do not allow for drawing firm conclusions,
f-hle overall performance of the diagnoser is satisfactory:
With an average of three probe questions, the diagnoser

E

is capable of identifying one or more ‘faulty compo-
nents’ in the model. These faulty components repre-
sent those inferences that cannot have been performed
correctly by the subject.

The test sessions show a difference in competence for
advanced learners and novices. The system performs
very well in ‘fine tuning’ the learner’s reasoning pro-
cess. When the learner has some understanding of the
prediction task, but lacks the necessary domain facts or
the subtleties of the reasoning process, the diagnoses are
adequate and helpful. On average, only a few probes are
needed to pin down a unique diagnosis. Furthermore,
the probe questions are often helpful in learning because
they trigger self-repair. In such cases, the final expla-
nation does not indicate an existing error, but serves
as a confirmation of the self-repair. When the learner
does not have any initial knowledge about structured
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Expr = observation/input
Expr = unknown (predicted)

Expr
Ewgt = symptom

Cil = combined inequality influence
TIC = transitive inequality

correspondence b

Il = inequality influence
R = retrieval

neg_infI(F1, V)
Fl<Fr

Figure 4: Second Diagnostic Cycle

behaviour prediction, the performance is less optimal:
the probe questions, the explanation following the fi-
nal diagnosis is not always helpful (although correct).
To some extent, this result can be ascribed to the lim-
ited capabilities of the STARIBA system with respect
to phrasing questions and explanations. More impor-
tantly, novices are not always able to understand the
detailed explanations of the system because they miss
the necessary ‘surrounding’ knowledge: their problem
solving behaviour may be as yet too unstructured to
be discussed in terms of individual reasoning steps. In
addition, novices may benefit from a more gradual in-
troduction of the subject matter in terms of different
increasingly complex models, as is for instance conjec-
tured by the theory of causal model progression (White
& Frederiksen 1990).

Discussion

People learn from their errors. The value of learning
from errors has been recognised in influential educa-
tional philosophies such as Socratic tutoring (Collins &
Stevens 1982) and LOGO (Papert 1980). The principle
also plays an important role in contemporary discov-
ery or explorative learning environments (cf. (van der
Hulst 1996)). By means of exploration and experimen-
tation, a learner can develop models of the subject mat-
ter knowledge involved. Errors can be a valuable aid
in adjusting and refining the models developed by the
learner. Knowledgeable support of the learner’s trial-
and-error behaviour can help the learner to learn from
his or her errors in an effective and efficient way.

An emphasis on learning from errors requires a view
on education that is not commonly practised by human
teachers: they appear to rely mainly on pattern recogni-
tion on the basis of known misconceptions, rather than
on detailed diagnostic search (cf. (Breuker 1990)).On
the one hand, this is influenced by traditional educa-
tional views on errors: “School teaches that errors are
bad; the last thing one wants to do is to pore over them,
dwell on them, or think about them.” (Papert 1980).
And, maybe even more important, detailed structured
diagnosis is often computationally infeasible for human
teachers.

Compared to model-based diagnosis of reasoning be-
haviour, diagnosis on the basis of bug catalogues is not

48  QR98

merely another technique to arrive at the same result.
Instead, the use of pre-stored bugs involves a signifi-
cantly different approach to educational guidance: in
this case, the diagnostic activity is aimed at match-
ing known misconceptions that may explain the errors
made. As a result, diagnosis is often heuristic and shal-
low, and does therefore not play a decisive role in the
teaching process. A focus on learning from errors as.
supported by the STAR framework yields a different
teaching style: instead of directly mapping errors on
misconceptions to be remediated, zooming in on the
specific bug that causes the error guides the learner in
discovering this error and maybe self-repairing it.

Summarising, the way in which the STAR framework
provides support is one that is generally difficult or
even impossible for human teachers. In the STAR ap-
proach, every error in the learner’s problem solving
process can be traced back to a reasoning step that
cannot have been applied correctly given the observa-
tions. The probing mechanism accounts for a struc-
tured sequence of questions that, as a side effect, will
stimulate the learner’s self-repair behaviour. The ed-
ucational methodology following from this approach is
difficult or even impossible to realise with other means
than knowledge-based educational systems. The diag-
nostic task as it is defined in the STAR framework is
too complex to be feasible for human teachers. More-
over, even if they would be capable of (learning) to di-
agnose problem solving behaviour in a structured and
detailed way, the actual application in educational prac-
tice will never be cost-effective. The STAR framework
allows for close monitoring and detailed diagnosis of the
learner’s reasoning behaviour, showing the large poten-
tial of knowledge-based systems in education. In par-
ticular, the framework shows that the transfer of exist-
ing, solid techniques like model-based diagnosis can be
successfully employed to alleviate long-standing bottle-
necks in educational systems.

Conclusions

The task of cognitive diagnosis is often considered to
be too complex to be cost-effective. The STAR frame-
work counters this view by providing a generic and au-
tomated approach to diagnosing the problem solving
behaviour of the learner. By exactly scoping the task



of diagnosis within education, and by defining “device
models” for the learner’s problem solving task, it be-
comes possible to reuse techniques from the field of
model-based diagnosis. We defined educational diagno-
sis as the identification of (necessary) reasoning steps
that have not been performed correctly. For the task
-~ of qualitative prediction of behaviour, we designed and
'~ jmplemented techniques to automatically generate the
' necessary “device models” from the output of a quali-
~ tative simulator. Using a hierarchical variant of GDE,
~ we showed that model-based diagnosis can be used to
~ identify a learner’s errors made in individual reason-
- ing steps. This focus on errors in the learner’s problem
- solving behaviour strongly influences the educational
approach of the system. People learn from their errors,
and the diagnostic probes can help the learner in de-
 tecting these errors. This view on education is different
~ from the one underlying most diagnostic approaches.
~ Instead of focussing on tracing misconceptions in the
~ learner’s knowledge that can be remediated, our ap-
' proach can help the learner in detecting errors. These
~ errors result in an explanation by the system, but also
~ often stimulate the learner in self-repairing them.
i Further development of the STAR framework can be
. pursued in various directions. The current framework
~ is based on qualitative prediction of behaviour, which
~ is applicable to reasoning about many types of systems
- such as physical devices, ecological systems, and eco-
|-. nomical systems. Within the context of qualitative rea-
- soning, the scope of the framework can be enlarged to
incorporate other problem solving tasks such as moni-
. toring, design, or diagnosis.
A second interesting direction for extension is the de-
- velopment of other generic educational functions based
- on the mode] representations. Sophisticated techniques
for subject matter sequencing and discourse planning
. are envisaged that take advantage of the hierarchical
3 models of problem solving knowledge as defined and
- generated within the STAR framework.
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