
Distributed Coaching for an Intelligent Learning Environment

Abstract
Several barriers hinder the widespread application of AI-based
educational software . School and student machines are often
underpowered, keeping software and case libraries updated can
be difficult, and customization typically requires AI expertise .
The widespread growth of Internet access, combined with appro-
priate AI technologies, enables the creation of distributed
coaches that can help overcome these barriers . We describe a
distributed coaching system for a deployed intelligent learning
environment in engineering thermodynamics . Part of the coach
resides on the student's computer, with the rest residing in a
server accessed via email . The on-board coach handles common
kinds of contradictions in student's assumptions and makes sug-
gestions about parameter values based on its understanding of the
teleology of the student's design, derived via Bayesian reasoning .
The email coach provides additional analysis help and uses anal-
ogy for design coaching, providing step-by-step advice on how
principles in a web-based library can be applied to a student's
particular design . The distributed coach is currently undergoing
field testing .

1 . Introduction
Artificial Intelligence techniques have already proven
themselves valuable in various types of educational soft-
ware [1,2] . In education and training, there are never
enough instructors to go around . Students often work at
odd hours, on highly variable schedules, and, with the
growing importance of distance learning, increasingly at
remote sites . Computer-based coaches typically are not as
good as the best human instructors, but they can be sur-
prisingly valuable (c .f . [3]), and the ability to make them
widely available at low cost makes them attractive . Typi-
cally such coaches are hard-wired into interactive learning
environments that sit on a student's desktop . This leads to
problems typical of updating and maintaining software .
Worse, sophisticated coaches tend to require more memory
and computational resources than many student and school
computers can provide . For researchers trying to evaluate
new kinds of educational software, the blessing of wide-
spread computers becomes the curse of being unable to
find out what students are actually doing with the software .
Data gathering, even with cooperative instructors, can be
quite difficult, and nearly impossible when a program is
distributed freely via the Web .

Fortunately, the growth of widespread Internet access,
combined with the right AI technologies, supports novel,
distributed educational software systems that can overcome

Kenneth D. Forbus', John O. Everett2 , Leo Ureel',
Mike Brokowski3 , Julie Baher', Sven E. Kuehne'

these problems . This paper describes such a system we
have built for CyclePad, an intelligent learning environ-
ment for engineering thermodynamics . We begin by
briefly reviewing CyclePad, focusing on the mix of AI
technologies that make it work . We then outline the prob-
lems encountered in deploying it, and the distributed
coaching architecture we developed to overcome these
problems . We describe the on-board coaching next . We
then discuss the email-based coaching, and highlight its use
of cognitively-motivated analogical processing to provide
case-based advice . Finally, we discuss experience with the
system to date and plans for future work.

CyclePad is an articulate virtual laboratory (AVL) for
learning engineering thermodynamics by design . Design
tasks are highly motivating, and tie classroom learning to
real-world concerns . Students using CyclePad can design
power plants, refrigerators, engines, cryogenic systems, and
other types of single-substance thermodynamic cycles .
CyclePad's conceptual CAD system supports carrying out
necessary calculations and making modeling assumptions,
including both thermodynamic and economic analyses of a
student's design . AVLs also include coaches that scaffold
students, providing guidance in analysis and design .

CyclePad itself relies on several AI technologies :
Constraint propagation is used to derive the conse-
quences of student assumptions . Whereas conven-
tional analysis software can make it hard for stu-
dents to see how their assumptions are combined
with the laws of thermodynamics to yield results,
CyclePad's constraint propagator is organized to
provide explanations and to reflect expert prefer-
ences in solutions . For example, CyclePad prefers
values from equations over those from property ta-
ble lookups when both are available because of the
relative loss of accuracy with each property table
calculation .
Logic-based truth maintenance provides explana-
tions of how consequences are derived from student
assumptions . CyclePad provides a dynamically
constructed hypertext explanation system based on
the dependency network that highlights critical fac-
tors and suppresses uninformative details . These

' Institute for the Learning Sciences, Northwestern UniversityzXerox Palo Alto Research Center jeverett@parc.xerox.com
'Department of Mechanical Engineering, Northwestern University brokowski@nwu .edu

2 . CyclePad

{forbus ureeljbaher skuehne) @ils.nwu.edu

Forbus 57

explanations help students gain insight into the ap-
plication of thermodynamic laws, and are essential
in tracking down physically inconsistent assump-
tions .
Qualitative representations provide common sense
"reality checks" of student assumptions . For exam-
ple, substances cannot experience a drop in tem-
perature across a heater . Simple ordinal constraints
produce contradictions when student assumptions
violate device models .
Compositional modeling provides explicit repre-
sentations of modeling assumptions . Instructors
find an understanding of which modeling assump-
tions are necessary and correct is a key hurdle in
learning thermodynamics . By explicitly represent-
ing modeling assumptions and their consequences,
CyclePad helps students understand what assump-
tions make sense for particular components and
what consequences they entail .

How these technologies are combined in CyclePad is de-
scribed in [4] .

58 QR-98

3. Why Distributed Coaching?
CyclePad has been deployed experimentally in several uni-
versities for three years, and is currently used by over 180
students per year . Instructor and student feedback has been
sufficiently positive that it is now publicly available for
download on the Web. However, due to our web-based
distribution mechanism, we only have partial knowledge of
who is using it for what . We would like more interaction
with CyclePad end users to better gauge its educational
impact.

Another difficulty arises because we have further devel-
opment plans for CyclePad . Feedback from our users indi-
cates that they would like more coaching facilities . How-
ever, they do not want to see memory requirements rise,
and instructors who rely on it daily are adamant about
keeping it stable .
For our part, we would like to gather more data about

what students and instructors are doing with CyclePad for
formative evaluation . We currently work with instructors
from several remote sites to ensure robustness, but ex-
panding that pool is difficult . For instance, 1997-98 class-
room adoptions that we know about include a power plant
course at Rutgers (New Jersey, USA) and a thermodynam-
ics course in University of Queensland (Brisbane, Austra-
lia) . As the number of sites continues to grow, travel
budgets and time constraints preclude on-site data gather-
ing .

Our usage estimates are based on figures from our collaborators
and random sampling . From September 1997 to January 1998,
for example, we had 568 distinct downloads from 40 countries,
making extensive follow-up impractical .

Our solution to these dilemmas is to make the coaching
in CyclePad distributed . Although some lightweight
coaching facilities are bundled with the software, the com-
putationally-intensive coaching facilities are accessed via
email . Through a simple dialog menu, a student uses Cy-
clePad's integrated email facility to request help . The stu-
dent's request and the associated design are sent to a server
at our site running a coach, the CyclePad Guru . The Guru
processes the student's request, sending a reply via email .
The obvious disadvantages of this approach are that it re-
quires students to have access to email, and that responses
take more time than from an on-board coach . However, it
does solve the problems our users raise : we can add com-
plex new coaching facilities without increasing the memory
footprint on their machines, or indeed, requiring any
changes to their software at all . As a particular piece of
coaching technology becomes solid enough, it can be mi-
grated to the onboard coach as appropriate . It also facili-
tates our data collection : students get help with their work,
in exchange for letting us examine their designs .

4. The Onboard Coach
Quick response to some common problems students en-
counter is important . Therefore we have added lightweight
coaching facilities onboard which give advice for handling
contradictions and for adjusting parameters .

4.1 Help with Contradictions
Students often have difficulty understanding why a set of
assumptions is contradictory. CyclePad's truth-
maintenance system includes a stack of contradiction han-
dlers [5] . Each handler responds to a class of incorrect
student assumptions . For example, the most common
source of problems is choosing parameter values outside
the property tables . The handler for this case presents a
table-boundary diagram and a dot showing the location of
the out-of-bounds value . The handler of last resort simply
provides a hypertext dialog that enables students to explore
the assumptions underlying the contradiction .

4.2 Teleology for Coaching
Many problems with cycle design are not apparent to stu-
dents because their knowledge of cycles is so limited . For
example, an experienced designer will note that low quality
in the working fluid exiting a heat engine's turbine is likely
to cause damage to the turbine blades and therefore attempt
to adjust the system's parameters to increase the exit qual-
ity, or failing that, make a structural alteration to the cycle .
To spot problems like this and understand how to fix them
requires knowledge of how function relates to structure .
For example, low exit quality is only a problem if the cycle
is intended as a heat engine . A Carnot cycle deliberately
disregards the engineering challenges of expanding a satu-

rated fluid through its turbine in order to provide a theo-
retical benchmark for ideal performance, and so by inten-
tion has low exit quality . In contrast, a turbine may also be
used in a cryogenic cycle to cool the working fluid suffi-
ciently to cause precipitation, because a resisted expansion
results in a greater drop in the working fluid temperature
than a throttled expansion, so in this situation we might be
trying to achieve low quality . CyclePad now incorporates
Everett's CARNOT teleological recognition system [6] to
provide advice about values of system parameters based on
its understanding of the intended function of the cycle .
CARNOT originally used dependency-directed search to

infer function from structure. This was far too slow to be
deployed . Also, it often produced a plethora of very simi-
lar solutions that varied only in minor details, making the
principled choice of an interpretation to use for generating
advice problematic . CARNOT now uses evidential rules
and Bayesian inference to suggest plausible functional
roles for each component in a student's cycle [7] .
CARNOT's algorithm is quadratic in the size of the cycle,
analyzing a 49 component cycle (far larger than any student
has attempted, to our knowledge) in about two minutes on a
midrange Pentium . CARNOT achieves broad coverage of
the domain of single-substance, closed thermodynamic
systems with 107 evidential rules .
The notion of role is crucial in CARNOT's construal of

function . Each type of component in thermodynamic cy-
cles can play between one and five functional roles . For
example, a mixer may act as a simple way to join Mows, as
a heat-exchanger, or as a jet-ejector, in which a high-
velocity jet of fluid entrains and compresses another inlet
stream . The evidential rules provide evidence either for or
against a particular role . The ability to suppress the likeli-
hood of a role greatly enhances the expressive power of our
representation . Each piece of evidence has a subjectively
assigned likelihood 5 , which is used to update the prior
probability of each role for each component . The eviden-
tial reasoning is included in CyclePad's explanation sys-
tem, so that students can find out why (and with what cer-
tainty) a particular role is believed and get an explanation
of why other potential roles were rejected .

CyclePad's onboard Analysis Coach combines
CARNOT's teleological inferences with norms to generate
advice for adjusting parameters . A norm is a range for a
component's parameter that is appropriate based on the
component's functional role . For example, the temperature
of the steam leaving a Rankine cycle boiler typically falls
in the range of 300-600°C . Lower temperatures result in
inadequate efficiency whereas higher temperatures require

s Subjective assignment of these values turns out to be
straightforward for a domain expert, and the introduction of sig-
nificant amounts of noise into these estimates does not materially
affect the outcome .

uneconomically expensive materials in the downstream
components . Likewise there is a normal range of pressures .
Our knowledge base currently contains eighteen norms,
between two and six per component depending on the
number of potential roles for that component . When the
Analysis Coach is invoked, CARNOT infers the teleology
of the cycle . The functional roles assigned to each compo-
nent are used to retrieve applicable norms, which are
checked against known parameter values . Any violations
or suggestions are noted using CyclePad's explanation
system, providing explanatory text associated with each
norm . In addition to being used to provide on-board ad-
vice, CARNOT's teleological representations also play a
critical role in design coaching (see Section 5.3) .

Triage

Response
Generator

Case Library

MAC/FAC

Design Coach

Contradiction Coach

Analysis Coach

Student Design Web Site

Figure 1 : Information flow in the CyclePad Guru

5. The CyclePad Guru

Forbus

The CyclePad Guru is part of a RoboTA agent colony [8],
a TA agent that provides help for CyclePad users via email .
The email dialog in CyclePad offers five choices : Students
can turn in an assignment, ask for help with their analysis,
ask for help figuring out a contradiction, ask for help in
improving their design, or report a bug . When requesting
design improvement help, the extra information is filled out
via pull-down menus whose contents are based on the stu-
dent's design (i .e ., <increaseldecrease> the <parameter>
of <device%ycle>) . There is also the ability to add free-
form comments, but these are not used by the Guru . Bug

59

reports are passed on to the developers and turned-in as-
signments are currently ignored (but see Section 7) . For all
other requests, the Guru first does triage by using CyclePad
to analyze the student's design . For example, if the student
requests design help but the analysis is incomplete, the
Guru provides help on finishing the analysis instead . Any
discrepancy between the help requested and that provided
is noted in the reply . The information flow within the Cy-
clePad Guru is illustrated in Figure 1 .

5 .1 Analysis Help
Students analyze their designs by making modeling as-
sumptions and exploring choices for parameter values . The
complexity of even medium-scale cycles often makes it
hard to know what to do next.
The onboard Analysis Coach is the student's first resort,

providing advice linked to the intended purpose of the cy-
cle . The Guru provides complementary assistance with
strategies for analyzing cycles . The Guru has a domain-
specific expert model of how to nudge students, based on
observing our instructor-collaborators . First, it checks to
see if a working fluid has been chosen, and if not, advises
that as a good first step . Second, it examines the design to
see what aspects remain unknown . It then presents a list of
questions that the student should consider in thinking about
the design (i .e ., if not all modeling assumptions have been
made, it suggests doing so) . Since users often miss useful
features in software, the Guru also runs the Analysis Coach
on the student's design to see if it can provide advice, and
if so includes instructions for using it . If none of these
strategies is applicable, it responds with general canned
text 6 .

5.2 Contradiction Help
Since we have already built into CyclePad handlers for all
of the common causes of contradictions that we know
about, the Guru currently responds with a canned text about
strategies for finding contradictions . Our distributed
coaching approach will help us gather data about other
contradictions arising in student use, and we will prototype
handlers for new contradictions by incorporating them into
the Guru first . Once they prove their worth and stability,
such handlers will be moved onboard as appropriate .

5.3 Design Help
For now, we are limiting design help to the specific case of
improving some quantitative aspect of the system . Of
course, engineering design is complex, since it involves
tradeoffs in both thermodynamics and economics that may
require structural as well as numerical decisions . Our goal
in giving design advice is to nudge students in useful di-
rections so that they will learn, rather than to solve the

6 Hence the name "Guru."

60 QR-98

problem for them . Consequently, we provide plausible
specific suggestions, but do not attempt to validate these
suggestions in the students' context. (Understanding why a
suggestion will or will not work in a particular circum-
stance is an important learning experience.) Design
coaching is described in the next section .

5.4 Coaching via Analogy
Advice for design requests is generated by a case-based
coach, using cognitively-motivated analogical processing
techniques [9] . Case-based coaching (c.f. [9,10]) is useful
in educational software because it helps students tie their
work to real-world examples . For that reason, case librar-
ies for education tend to be media-heavy . Such systems
have relied almost exclusively on hand-generated repre-
sentations of cases . Cases often consist solely of user-
interpretable media (e.g ., videos) with the only formal rep-
resentations being feature-based descriptors used for in-
dexing . Cases are typically encoded and woven into a case
library by hand . This lack of rich formal representations
(e.g ., proofs or causal arguments) limits the ability of a
coach to show just how the principles explained in the case
could be applied to a student's situation .

In the CyclePad Guru, we overcome these limitations in
two ways . First, our cases are generated automatically
from instructor input by a case compiler that uses CyclePad
to build the necessary representations . Second, we use
analogical processing techniques, drawn from Cognitive
Science research, that can handle rich, structured repre-
sentations . In particular, we use MAC/FAC, a model of
similarity-based reminding [11] to retrieve cases relevant to
a student's design . We start by describing how we- retrieve
cases and generate advice from them, then summarize how
the case compiler works, and discuss some properties of
our case library .

5.4.1 Retrieving cases and generating advice
MAC/FAC produces remindings in a two-stage process .

The first stage (MAC) is a computationally efficient filter
that selects from a large case memory a handful of cases for
further processing . MAC uses a specialized feature vector
that is automatically constructed from the structured repre-
sentations in a case memory . The dot product of these
vectors is an estimate of the size of match that the second
stage will produce . The second stage uses the Structure-
Mapping Engine (SME) [12], an analogical matcher based
on Gentner's structure-mapping theory [13] . SME com-
pares each case produced by MAC to the student's design
and returns the best structural match, plus one or two oth-
ers, if close, as remindings . When SME compares two
descriptions, it produces one or two mappings that consist
of correspondences linking particular items in the student's
design to the case, and candidate inferences that are state-
ments in the case that may be transferable to the student's

design . These inferences are used to generate specific ad-
vice about how the case can be applied to the student's
design . While SME and MAC/FAC have been tested in a
variety of cognitive simulation studies (c .f. [14,15]) to our
knowledge this is their first application in a system used

Suggestions for <Desc WM of Rankine Cycle :
Suggestion <Use INCREASE-RANKINE-BOILER-T> :

1 step
support= .085 extrapolation = 0 .66
normalized = 0 .45 overlap = .408
combined = .944

<Mapping 153 Candidate
(BOILER htrl)
(CONDENSER clrl)
(IMPLIES (AND (TURBINE turl s2 s3)

(HEATER htrl s1 s21)
(APPLICABLE (:SKOLEM :dsn-tr)))

(TRANSFORMATION-OF (:SKOLEM :dsn-tr)
(STEPS (ASSIGN (T s2) (:SKOLEM :+))))

Suggestion <Use REHEAT-RANKINE-CYCLE> :
16 steps
support=0 .03 extrapolation = .846
normalized = .404 overlap = .134
combined = .567

<Mapping 172 Candidate
(BOILER htrl)
(CONDENSER clrl)
(IMPLIES (AND (TURBINE turl s2 s3)

(COOLER clrl s3 s4))
(APPLICABLE (:SKOLEM :dsn-tr)))

(TRANSFORMATION-OF (:SKOLEM :dsn-tr)
(STEPS (DISCONNECT (OUT turl) (IN clrl) s3)

(INSERT-DEVICE (:SKOLEM heater)
(:SKOLEM htr2))

(CONNECT (OUT turl) (IN (:SKOLEM
(:SKOLEM s5))

(INSERT-DEVICE (:SKOLEM turbine)
(:SKOLEM tur2))

(OUT (:SKOLEM htr2))
(IN (:SKOLEM tur2))
(:SKOLEM s6))
(OUT (:SKOLEM tur2)) (IN clrl)
(:SKOLEM s7))

(INVOKE-ASN (SATURATED (:SKOLEM s5)))
(ASSIGN (DRYNESS (:SKOLEM s5))

(:SKOLEM 1 .0))
(INVOKE-ASN (REHEATER (:SKOLEM htr2)))
(INVOKE-ASN (ISOBARIC (:SKOLEM htr2)))
(INVOKE-ASN (MATERIAL-OF (:SKOLEM htr2)

(:SKOLEM molybdenum)))
(FUEL-OF (:SKOLEM htr2)
(:SKOLEM natural-gas)))
(ISENTROPIC (:SKOLEM tur2)))
(MATERIAL-OF (:SKOLEM tur2)
(:SKOLEM molybdenum)))

(INVOKE-ASN (SATURATED (:SKOLEM s7)))
(ASSIGN (DRYNESS (:SKOLEM s7))

(:SKOLEM 1))))

(CONNECT

(CONNECT

(INVOKE-ASN

(INVOKE-ASN
(INVOKE-ASN

Inferences>

Inferences>

htr2))

Figure 2 : Candidate inferences for the cases retrieved
via MAC/FAC that are turned into suggestions

routinely by a large community .
When the Guru determines that the student's request for

design advice is reasonable (i.e., the analysis has been
completed and the design assumptions are non-
contradictory), it uses the structural and teleological as-
pects of its representation of the student's design as a probe
to MAC/FAC to generate candidate remindings . The nu-

merical aspects of the description are not used for retrieval
because we found that level of information to be basically
irrelevant for this task. A case includes a description of a
design, a problem with that design, and a transformation
that modifies the original design in a way that solves the
original problem . Each case that MAC/FAC is reminded of
has, as part of that reminding, an analogical match between
the student's design and that case. Since SME can generate
multiple construals of a comparison (e.g ., a plan to improve
efficiency by increasing turbine inlet temperature is appli-
cable in three different ways to a design that has three tur-
bines), each reminding can generate several suggestions .
Recall that a candidate inference of a mapping is a state-
ment in the base (here, the case) that is suggested by the
correspondences of the mappings as possibly holding in the
target (here, the student's design) . Candidate inferences
are the source of advice . Figure 2 shows the candidate
inferences when the Guru is reminded of reheat given a
Rankine Cycle .

Suggestions are filtered for relevance in two ways . First,
the candidate inferences must include the case's design
transformation - otherwise, there is no advice to give .
Second, the candidate inferences must include a statement
of the form

(implies <structural/functional
properties of cycle>

(applicable <plan of case>))

Each case is guaranteed to include a statement of this
form (see below), and the antecedents are exactly those
things that must be true for the case's transformation to
make sense . For example, neither of the cases retrieved in
Figure 1 would be relevant for cycles lacking turbines .
Therefore, a suggestion that does not include a candidate
inference of this form, and correspondences for each of the
antecedents of this inference, cannot be applied to the stu-
dent's situation .

Next, the suggestions are prioritized according to the
complexity of the transformation they suggest (with simpler
transformations being preferred) and the structural quality
of the candidate inference [16] . Finally, at most two sug-
gestions are selected to serve as the basis for design advice .
Limiting the advice to two suggestions prevents students
from being overloaded with advice .

Figure 3 shows the advice generated from the candidate
inferences in Figure 2 . The advice generator splits out
structural transformations from other suggestions, keeping
other assumptions separate as advice that may or may not
be relevant to the student's particular situation . (Thinking
about which of these suggestions is relevant is good exer-
cise for the student . For instance, Figure 2 includes a sug-
gestion to specify that certain devices be made of molyb-
denum, which a student should recognize as unusual and

Forbus 61

expensive .) If the advice is purely in terms of parameter
changes, qualitative descriptions of relative change are
used in the plan and to generate advice . The Guru's advice
includes a URL describing the general principles behind
the design transformation, in addition to the specific in-
structions on how to apply it to their situation .

I have 2 suggestions .

Suggestion #1
Your problem reminds me of a method : increasing
boiler temperature in a Rankine cycle . Increas-
ing the boiler temperature increases the effi-
ciency of the cycle .
You can find out more about this at
http ://www .grg .ils .nwu .edu/thermo/design-
library/turank .htm .
Here is how you might apply this to your design :

heats up the working fluid at the turbine
outlet, and the second turbine extracts yet more
work from that . This increases efficiency
because more heat is being added when the steam
is still at a reasonably high temperature .
You can find out more about this at
http ://www .grg .ils .nwu .edu/thermo/design-
library/reheat .htm .

Here is how you might do this with your design :

1 . Disconnect the outlet of TUR1 from the inlet
of CLR1 .
2 . Create a new heater, which we'll call HTR2 .
3 . Connect the outlet of TUR1 to the inlet of
HTR2 . Let's refer to the properties of the
working fluid there as S5 .
4 . Create a new turbine, which we'll call TUR2 .
5 . Connect the outlet of HTR2 to the inlet of
TUR2 . Let's refer to the properties of the
working fluid there as S6 .
6 . Connect the outlet of TUR2 to the inlet of
CLR1 . Let's refer to the properties of the
working fluid there as S7 .

You might find the following assumptions relevant
or useful :

1 . Assume
saturated .
2 . Assume
3 . Assume
4 . Assume
5 . Assume
6 . Assume
7 . Assume
8 . Assume
9 . Assume
saturated .
10 . Assume quality(S7) = 1 .0000[0-1]

62 QR-98

that the working fluid at S5 is

quality(S5) = 1 .0000[o-11
that HTR2 is a reheater .
that HTR2 works isobarically .
that HTR2 is made of molybdenum .
that HTR2 burns natural-gas .
that TUR2 works isentropically .
that TUR2 is made of molybdenum .
that the working fluid at S7 is

Figure 3 : Design advice from the Guru

5.4.2 Automatic compilation of cases
New cases in the Guru's design library are automatically

generated by a case compiler . To add a case, instructors
provide two snapshots of a CyclePad design, one before
and one after their transformation . They also specify the
goals of the transformation, in terms of changes in pa-
rameter values (i .e., what parameters must have increased
or decreased), some strings to be used in templates, and a
URL pointing to a detailed rationale for that case . While
we insist that the web page for the case include an explana-
tion of the case, this explanation is in natural language:
case authors only need to be thermodynamics experts, not
AI experts . The case compiler uses CyclePad to analyze
the before and after design snapshot . It uses a record of
user actions stored internally with each dumped design to
construct the description of the transformation that leads
from one to the other, and augments the case description
with this plan, the problems it is intended to solve, and the
applicability condition described above . (It also checks to
ensure that the transformation actually achieves the claimed
goals, since even experts can make mistakes .) Adding the
new case to the MAC/FAC memory is trivial, since no in-
dexing is required : The structured representations needed
to support reasoning also suffice for retrieval.

5.4.3 The case library
Our case library currently consists of 14 cases, averaging

74 expressions involving 23 entities each . Retrieval and
advice generation is very quick : less than five seconds on
the average, with no more than six seconds at most, on a
200 MHz Pentium Pro . This performance comes from two
factors . First, the MAC stage provides significant filtering,
with only two or three cases proposed for processing by
SME each time. Second, SME now uses a polynomial-time
greedy algorithm in its merge step, making its overall com-
plexity quadratic in the size of descriptions compared [12] .
The potential value of a distributed coach becomes espe-

cially apparent when considering the issue of extending and
maintaining a case library . A large, rich case library with
lots of associated media (e.g ., pictures of the real physical
systems corresponding to the CyclePad design) is probably
best treated as a network resource, rather than installed on
each student machine . Instructors and thermodynamics
experts can author new cases with nothing more than Cy-
clePad plus an HTML editor, since CyclePad and our case
compiler take care of generating the formal representations,
and MAC/FAC handles retrieval . We are forming an edi-
torial board for the web-based design library, to ensure
quality control, and encouraging submissions from Cy-
clePad experts worldwide, much in the manner of the
Eureka community-maintained database of service tips [17]
developed at Xerox PARC.

1 . Increase T(S2) .

Suggestion #2
Your problem reminds me of a method : reheat in a
Rankine cycle . Reheat adds another heater and
another turbine . The second heater, a reheater,

6. Deployment
At this writing (April 1998) RoboTA and the CyclePad
Guru have undergone in-house testing for several weeks
(e .g ., bombardment with large numbers of email requests,
odd requests, etc .) and have been on-line almost continu-
ously for the last four months . The contents of the case
library are evolving and expanding, as we gain experience
with the system, and we expect this process to continue for
some time . However, the system is already robust enough
that we have now made the distributed coaching version of
CyclePad publicly available via the Web on an experi-
mental basis . The CyclePad Guru is fast enough that we
believe our current configuration (200MHz Pentium Pro
for the Guru) will handle the volume of requests from our
collaborators' students and others . If server swamping
becomes a problem, the RoboTA architecture is designed
to support adding additional agents on extra CPUs to han-
dle the load .

7. Discussion
Successful AI applications in education have typically used
on-board tutors and coaches to supply advice and guidance .
We believe that the widespread availability of Internet ac-
cess facilitates the deployment of even more sophisticated
coaching, by allowing the use of distributed coaches . We
have described the distributed coach we have built for Cy-
clePad, adding Bayesian inference and analogical process-
ing to the mix of constraint propagation, qualitative phys-
ics, logic-based truth maintenance, and compositional
modeling that CyclePad already uses .

	

The use of cogni-
tively-motivated analogical techniques in educational soft-
ware systems, rather than the usual feature-based tech-
niques typically employed in case-based coaching, enables
us to directly employ structured representations . This
means that cases can be automatically compiled from Cy-
clePad descriptions and other instructor-supplied materials,
automatically retrieved as appropriate, and used to generate
step-by-step advice on how the principle embodied in a
case can be applied to the student's problem. The distrib-
uted coach enables us to extend and experiment with new
coaching strategies and methods, without increasing mem-
ory requirements or creating instability for our users . It
also enables us to gather the data we need for the educa-
tional component of the research and formative evaluations
of the software
We are also working on an additional incentive for in-

structors to send us data: helping them with grading . We
are nearly ready to deploy a grading support system to the
CyclePad/RoboTA system, designed with extensive input
from our instructor-collaborators . It works like this : in-
structors use CyclePad to author assignments, using an
additional wizard-style interface that enables them to ex-
press constraints on the assignment . Examples of con-

straints include requiring that particular substances be used
as working fluids, establishing minimum and maximum
criteria for cycle parameters, and restricting the kinds of
parameters about which legitimate assumptions can be
made (i .e ., you can't create a cycle of a particular effi-
ciency just by assuming that it has that efficiency) . Stu-
dents will then hand in their assignments by emailing them
to RoboTA, which will use the assignment's constraints to
check the student's work . The results will be provided to
instructors by email or via a private web site, as they
choose. The grading support system will not assign grades
- that is the province of the instructor - but it will ensure
that a student's design is correctly analyzed and determine
how well it meets the specification of the assignment . This
should give instructors more time to focus on providing
students with the higher-level feedback usually made im-
practical by the time-consuming nature of checking nu-
merical accuracy in assignments (e.g ., how elegant and
creative are students designs? Do students repeat the same
mistakes or make more interesting ones?) .
We believe this form of learner support system will be-

come a common pattern for educational practice . By
opening up the architecture, instructors can contribute
cases, assignments, and other materials customized to meet
their needs . Distributed coaches could provide extra en-
couragement for the formation of learning communities, by
providing opportunities for participants to author materials
that are automatically woven into the advice given to stu-
dents . Instead of just browsing, AI techniques could enable
software to help bring participants together, based on
shared interests .

Acknowledgements
This research is supported by the Applications of Ad-
vanced Technology program of the National Science Foun-
dation and by the Cognitive Science and Artificial Intelli-
gence Programs of the Office of Naval Research . We
thank Peter Whalley (University of Oxford), Bob Wu and
Sheila Palmer (United States Naval Academy), and David
Mintzer and Siavash Sohrab (Northwestern University), for
providing thermodynamics expertise, feedback on our
software, and for letting us try things out with them and
their students .

References

l Woolf, B . 1991 . Representing, acquiring, and reasoning
about tutoring knowledge. In J . W . P . C . L . R . H . Burns
(Ed .), Intelligent Tutoring Systems . Hillsdale, NJ : Erl-
baum.

Forbus 63

2 Lesgold, L., Bunzo & Eggan . 1992 . SHERLOCK: A
Coached Practice Environment . In R . W. C . Jill H . Larkin
(Ed .), Computer-Assisted Instruction and Intelligent Tu-
toring Systems : Shared Goals and Complementary Ap-
proaches. Hillsdale, N.J . : Lawrence Erlbaum Associates .
3 Koedinger, K. R., Anderson, J.R ., Hadley, W.H ., &
Mark, M. A. 1997 . Intelligent tutoring goes to school in the
big city . International Journal ofArtificial Intelligence in
Education, 8, 30-43 .
4 Forbus, K . and Whalley, P. 1994 Using qualitative phys-
ics to build articulate software for thermodynamics educa-
tion . Proceedings ofAAAI-94, Seattle .
5 Forbus, K . and de Kleer, J ., 1993 . Building Problem
Solvers, MIT Press .
6 Everett, J . O . 1995 . A Theory of Mapping from Structure
to Function Applied to Engineering Domains . 14th Inter-
national Joint Conference on Artificial Intelligence, Mont-
real, Morgan Kaufmann .
7 Everett, J.O . 1997 . Topological Inference ofTeleology:
Deriving Function from Structure via Evidential Reason-
ing Doctoral Dissertation, Computer Science Department,
Northwestern University .
8 Forbus, K. and Kuehne, S . RoboTA : An agent colony
architecture for supporting education . 1998 . Proceedings
ofAgents 98 .
9 Schank, R . and Cleary, C . 1994 . Enginesfor Education .
Erlbaum .
10 Leake, D . (Ed .) 1996 . Case-Based Reasoning : Experi-
ences, Lessons, and Future Directions, MIT Press .
11 Forbus, K. D., Gentner, D., & Law . 1995 . MAC/FAC :
A model of similarity-based retrieval . Cognitive Science,
19(2), 141-205 .
12 Forbus, K. D., Ferguson, R . W., and Gentner, D . 1994 .
Incremental Structure Mapping . In Proceedings of the
Sixteenth Annual Conference of the Cognitive Science
Society. Hillsdale, NJ : Erlbaum .
13 Gentner, D . 1983 . Structure-mapping : a theoretical
framework for analogy . Cognitive Science, 23, 155-170 .
14 Gentner, D., Falkenhainer, B ., & Skorstad, J . 1987 .
Metaphor : The good, the bad and the ugly . In Proceedings
of the Third Conference on Theoretical Issues in Natural
Language Processing, Las Cruces, New Mexico.
15 Gentner, D., Rattermann, M.J ., Markman, A.B ., & Ko-
tovsky, L . 1995 . Two forces in the development of rela-
tional structure . In T . Simon & G. Halford (Eds) Develop-
ing cognitive competence: New approaches to process
modeling . Hillsdale, NJ : Erlbaum .
16 Forbus, K., Everett, J ., Gentner, D., and Wu, M. 1997 .
Towards a computational model of evaluating and using
analogical inference . Proceedings of CogSci97, Erlbaum .
17 Bell, D.G., Bobrow, D.G., Raiman, O., and Shirley,
M.H ., 1996 . "Dynamic Documents and Situated Processes :

64 QR-98

Building on local knowledge in field service," IPIC'96, The
International Working Conference on Integration of
Enterprise Information and Processes, "Rethinking Docu-
ments", Cambridge, MA.

