
Safety Verification Proofs for Physical Systems

Tony Loeser, Yumi Iwasaki, Richard Fikes
Knowledge Systems Laboratory

Stanford University
Stanford, CA 94305

Abstract

While much progress has been made on veri-
fication of discrete systems such as computer
programs, work on formal verification of con-
tinuous, physical systems has been limited .
We present a technique for verification of
safety properties of such systems . Our algo-
rithm treats safety as a reachability problem,
and attempts to prove that a system cannot
evolve from an abstract initial state into a
state in which the safety condition does not
hold . This approach is inspired by qualitative
simulation techniques and makes use of trajec-
tories comprised of a sequence of qualitative
states and state transitions . The applicabil-
ity of the technique, however . is not limited
to qualitative problems, as we can use any
amount of quantitative mathematics in the
system description . This paper describes the
technique, presents example problems, and
discusses its limitations as well as potential
for use in device engineering .

Introduction
Computer simulation is a. common tool for eval-
uating designs of physical systems . Simulations
are used to discover a device's behavior ; and
more specifically, to verify that it meets cer-
tain criteria . Ideally, the designer would like
to obtain a guarantee of some aspects of the
expected behavior and do so as efficiently as
possible .

For the most part, behavior simulation,, are
computed by numeric integration . While ob-
viously powerful, this approach does not al-
ways satisfy the engineer's needs . In partic-
ular, when the starting conditions represent a,
region in state space: rather than a point, nu-
meric simulations will not provide a guarantee
that any safety condition is true throughout all
possible behaviors of the device . Numeric sim-
ulation can be used to find and describe unsafe
behavior trajectories (Neller 1998), but since
one cannot generate all behavior trajectories
from a region in state space numerically, the

validity of safety conditions cannot in general
be verified using only numeric simulation .

In addition, numeric simulations will always
contain precision errors . While such errors can
be bounded by analysis or decreased through
more detailed computations, situations will oc-
cur in which precise guarantees are hidden by
that, error .
A more abstract approach to simulation is

that of qualitative physics (Kuipers 1994) . In
qualitative mathematics, variable domains are
divided by discrete, ordered landmarks, and
the variables assume values that are either
landmarks or intervals between there . An ics-
signment to some state vector will define a
qualitative state that corresponds to a range of
quantitative states . To describe physics, the re-
lationships between the variables are expressed
by qualitative constraints, which are then used
to determine whether or not, states are mathe-
rnatically consistent . Simulations are produced
under the assumption that the physical vari-
ables and their first derivatives remain contin-
uous . Given a system of qualitative constraints
and a starting state, the simulation will pro-
duce qualitative state trajectories . In general,
there is much branching on the trajectories be-
cause state transitions are limited only by vari-
able continuity and consistency of the target
state .

To perform qualitative safet,v verification .
the simplest aproach would be to build an en-
visionment, or graph of all consistent states,
with directed edges representing possible tran-
sitions . Since each state variable has a finite
number of landmarks in its value space . the
envisionment graph is finite but exponentially
large . Given this graph, safety verification is
straightforward, one simply marks all of the
states which satisfy the initial condition, and
then marks all of the states which violate the
safety condition . If one cannot then find a path
from one set of states to the other, then one has
proved the safety property ; the system cannot

evolve into an unsafe state .
An improvement would be to use an attain-

able envisionment, or behavior tree . In this
case, the envisionment is built incrementally ;
from some starting state . States are added as
needed for the targets of the transition arrows ;
in the end, the graph contains only attainable
states by construction . If any state in the graph
violates the safety condition, then the behav-
ior is unsafe . This is the approach taken by
Shults et al . (Shults & Kuipers 1997) ; in this
work they formalize the verification of tempo-
ral logic formulae on attainable envisionments .

The qualitative model of a physical system
is abstract ; but it provides an important kind
of upward solution property . Namely, if a tra-
jectory is a solution of the quantitative equa-
tions, then the abstracted trajectory is a solu-
tion of the corresponding qualitative system .
This property was proved in the context of
the qualitative simulator QSIll1 by Kuipers et
al . (Kuipers 1994) . The envisionment is there-
fore useful in our case because if it shows that a
qualitative trajectory is invalid, then we know
that there is no corresponding exact trajectory,
either .
We present a technique that attempts formal

verification of safety problems, but that tries to
avoid paying the cost of a complete envision-
ment . As in qualitative simulation, our tech-
nique relies on tracking continuous variables,
and abstracts their values to landmarks and
intervals . In addition, we are not limited to
qualitative mathematics ; we can use as many
quantitative values and mathematical sophisti-
cations as are available .
More specifically, given a physical system,

its initial conditions, and a safety condition,
we will try to produce a proof that the safety
condition holds in every reachable state, given
those initial conditions . The physical system is
represented by a set of variables of state, and
equations that describe their interactions and
evolution through time . The conditions are re-
lations (equalities or inequalities) over the vari-
able set ; the initial conditions define the start-
ing state of the system, and the safety condition
defines the safety property. Viewed as a ques-
tion of reachability, we have an abstract initial
state Si which includes those states in which
the initial conditions are true, and we have an
abstract goal state S9 in which the safety con-
dition is false . We attempt to prove that S9 is
unreachable .
Our algorithm incrementally builds an ab-

stract trajectory and attempts at each step to
prove safety . Thus ; although our algorithm will
eventually build a trajectory that is similar in
size to a full envisionment, it can complete a

proof at any stage in the trajectory building
process and thereby avoid building a complete
envisionment . When the algorithm succeeds
the system will have the stated safety proper-
ties, to the extent, that the mathematical model
represents the true physical system .

Abstract T~rajectories
Our approach is to keep as abstract a descrip-
tion of the system's behavior as is possible,
gradually increasing the level of detail but at-
tempting the proof at each level . Our basic
unit of information is the abstract state, a par-
tially specified qualitative state . The state is
abstract because neither all of the variable val-
ues nor the exact time need be specified . For
example, consider a system with variables x, y .
and z . An abstract state may be defined just b 'y
x = (xl az), representing all states in which x
has that assignment . A more specific substate
might be the first time that x takes that value .
Another substate might be the predecessor of
x = xz . Not the only predecessor of the latter
state ; but, one of the possibilities . In the course
of reasoning the state trajectory will be refined
and extended, but the idea is to do so only as
necessary .

VVe will assert an abstract trajectory that the
system must follow in order to evolve from Si to
S9 , and then reason about the trajectory's va-
lidity . After asserting the trajectory endpoints,
the intermediate states are filled in by applica-
tion of the rules of continuity and the interme-
diate value theorem . We simply need to find
a continuous variable which has different val-
ues at the endpoints of the trajectory . Each of
these states on the trajectory is defined by an
assignment of that variable to an intermediate
value . For example, consider the continuous
variable x . If x < 3 in Si and x > 5 in S 9 ; then
we know that, there is a state in between for
which x = 4 . In addition, we know- that there
was an intermediate state in which x was in-
creasing . After deducing these features of the
system's trajectory purely from the property
of continuity, we then use the domain knowl-
edge contained in the equations of state to rea-
son about the trajectory. Perhaps the model's
equations show us that it is inconsistent for x to
be increasing, or that the system cannot reach
x = 4 . In these cases, we can conclude that
the system will not reach S9 , and the safety
condition x <_ 5 holds .

For a more complete example, consider a ball
thrown upwards into the air (fig . 1) . Take for
a safety condition that the ball is always above
the ground, h > 0 . In the initial state, the
ball has height h = ho , and h is increasing .
For our goal state, use h = 0, when the ball

Loeser

90 QR-98

Figure 1 : Two possible trajectories for a ball thrown up in the air . The one on the left seems most
reasonable, but the abstract trajectory does not rule out the one on the right . The circles indicate
points which correspond to state S5 .

hits the ground . We will name the highest
--1

	

f

	

1 .

	

I.

	

11

	

1-aiuC vi ii '101ax, but all we know" is that, ii:
is]t�lnx >]t o . For the system (the ball) to
evolve from the start to the goal state, it must
pass through some trajectory . What can we
say about the system's evolution? Of course,
we could use our knowledge of physics to say
that, barring any unexpected collisions (or very
strong winds, etc .), the ball will rise, be still
for an instant, and fall past ho until it hits the
ground . Instead, our algorithm will produce an
abstract trajectory which relies on continuity,
not domain knowledge . The knowledge will be
useful later for deducing properties of the tra-
jectory and its states .

Given the start and end points of the trajec-
tory, and given that the height of the ball h
is a . continuous variable, we know that h will
pass through the following seven intermediate
states :

Si : It = ho, increasing
S.2 : h E (ho h,L(,,), increasing
S3 : h =]t,1L«X, steady
S., : It E (ho

	

decreasing
S5 : Ft = ho, not increasing
S6 : It E (0 /t o), decreasing
S7 : h =]to

Each of these states is abstract, correspond-
ing to every specific state in which the variable
h has the given qualitative value . When and
how often each state occurs is unspecified ; for
example in fig . 1, one trajectory passes through
S5 once, while the other visits that state three
times . Continuity simply requires that the sys-
tem pass through that state at least once . Si

is a more specific version of Si ; it is the first
time (in this siriulation) that It = hU and iS
increasing . Similarly, S9 is the first occurence
of S7 .
We have a couple of useful facts about this

trajectory . First, the states must occur in or-
der . From any continuous trajectory, we can
pick out a set of seven states Si to S7, tem-
porally ordered by subscript, which are single
occurences of the abstract states S, to S7 . Sec-
ond, we know that each pair of consecutive
states (S, and S2, S2 and S3, etc .) must. corre-
spond to temporally consecutive states some-
where in the actual trajectory . So, there are
states S'1' and Sz which elaborate S, and S2 re-
spectively, such that S' and Sz are each other's
predecessor and successor . So, there may be
inany actual states corresponding to S5, with
all sorts of successors . At least once, though,
there must occur in temporal succession actual
states corresponding to S5 and S6 .

Note that, in S;, the direction of change isn't
"decreasing", but rather it is "not increasing" .
This is because there are two ways for a con-
tinuous variable to pass from above to below
a landmark : the way y = -x passes through
zero, and the way y = -x3 does . Since we are
not using any domain knowledge in the con-
struction of the trajectory, we must account for
both possibilities .

Also note that, all of the states mentioned
above are ones through which the system must
pass . This is important when we try to show
that the trajectory is invalid, or can not be
followed . Still, we may have cause to reason
about, states which do not have this property .
For example, there are a couple of possibilities
for the predecessor of S4 . The system must

pass through one or the other, but not nec-
essarily both . (The other one is defined by
h. E (ho h�, Q ~,) and steady .) Unless stated oth-
erwise, when we refer to a state on the trajec-
tory we mean one through which the system
must pass .

NVe call the construction of this abstract tra-
jectory the expansion for h. between the speci-
fied endpoint states . After we expand for h be-
tween Si and S9 , the verification task becomes
one of showing that this trajectory is somehow
invalid, so the system can not, actually follow
it . We search for a block, a state or transition
on the trajectory which is inconsistent . In the
thrown ball example, we do not have any infor-
mation which implies a block .
While the abstract trajectory is asserted us-

ing variable continuity between different states,
the block will be found by considering the equa-
tions of state that govern the system . If a
state from the abstract trajectory turns out to
be mathematically inconsistent, then we know
tha t. the sysie.rn

	

..ill not evolve into . . �

	

con-

crete realization of that state . In turn, this
proves that the system can not follow the tra-
jectory from beginning to end . Since the trajec-
tory was constructed to be one through which
the system must evolve in order to reach S9 ,
this is a proof that the system cannot reach
S9 , and thereby verifies our safety property .
The block does not have to be an inconsis-

tent state . For example, we could infer from
the system's equations that some state is qui-
escent, i .e . that the systein will cease to evolve
after reaching that state . In this case, the tran-
sition out of that state is disallowed . Another
simple blocking transition would be an asymp-
totic one, in which the predecessor state can
never push a variable quite far enough to enter
the successor state . (This case should be rare
in real world examples.)

Algorithm
The procedure thus far is to pick a variable
which differs in Si and S9 , expand an ab-
stract trajectory for that variable, and check
for blocks on that trajectory. If no block is
found, then there are a couple of ways to con-
tinue . One is to choose a different variable,
expand its abstract trajectory, and look there
for a block . The other is to refine the exist-
ing trajectory. While the abstract trajectory
defines its states with constraints on only one
variable, the system's equations may allow us
to infer constraints on others . If one of the
other variables is constrained to different val-
ues on the first trajectory's intermediate val-
ues, then this other variable can be expanded
between those states, producing a refinement

on the original trajectory . 'Trajectories can be
repeatedly refined in this way, in principle un-
til every variable has been expanded between
every value, producing a structure with expo-
nential size similar to the qualitative envision-
ment . Every step of the way ; the new states are
checked for blocks, and the algorithm finishes
as soon as one is found .

If the safety condition cannot be proved in
this manner, then the algorithm must eventu-
ally give up . The most obvious time is when
there are no new opportunities for expand-
ing a trajectory for some variable between two
states . This point will eventually be reached,
once the set of trajectories has been refined for
every variable between all of its possible values .
There is, of course, the possibility that, heuris-
tics and other reasoning techniques can guide
the search for the block, possibly considering
more promising expansions first,, possibly stop-
ping the search when success is not possible .
This is currently an area of investigation .

T ._

	

1_

	

-

	

1__,_ti C '

	

1 .
iii uidcr that the search he nep~, iillitc=, i,iic=

variable values must, be expressed as landmarks
and intervals . This form is given in the case
where one is using qualitative mathematics,
but needs to be derived for variables with quan-
titative information . We envision a simple set
of heuristics similar to those already in use
for the dynamic identification of landmarks in
qualitative mathematics (Kuipers 1994) . The
idea is to assert landmarks which correspond to
other variables' landmarks, or inflection points
and transitions . The value does not have to be
known even for a quantitative variable's land-
mark ; for example, the ball we tossed earlier
reached a maximum height h,, nn ,,, a landmark
which is asserted along with the trajectory, and
then assigned a definite value later if necessary.
Note that in creating new landmarks, one must,
take care to keep each variable's value space
finite, so that if the algorithm fails to find a
proof, it will be sure to terminate .
To be more precise, the algorithmi as it

stands in our initial implementation is listed
in figure 2 . First, we identify the endpoints
Si and S9 of the reachability problem, called
start and end in the listing . The function
build-state simply returns an abstract state
based on the assignments and constraints given
as inputs . The trajectory initially has just
those two states . The algorithm then goes into
a loop, refining or adding to the trajectory until
a block is found or it gives up . In this imple-
mentation, there is one trajectory, with only
a partial ordering over its intermediate states .
For example, the trajectory can contain the ex-
pansion for, say, :c between start and end, as
well as the expansion for y between the same

Loeser

function FIND-BLOCK (equations,
initial- conditions,
verification-condition)

start := build-state(initial-conditions)
end := build-state(not(verification-condition))
trajectory :_ f start, end }
loop until (contains-block(trajectory, equations)

give-up(trajectory))
trajectory := expand-trajectory(trajectory, equations)

Figure 2 : Listing of main algorithm - FIND-BLOCK . The inputs are equations which describe
some physical system, initial conditions that, describe the starting state of that system, and a safety
condition which defines the safety query.

two states .
Iteration will stop when one of

tions returns true . The first of these
contains-block examines the new
states in trajectory, and using the system's
equations, returns true if it can find a block .
Current tests include, for the state consistency,
a simple check that. the equations allow the as-
serted variable values . When variables are at
a landmark, we check to make sure there is a
legal predecessor and successor . We also fil-
ter for quiescent states . This sort of reason-
ing can become arbitrarily complex, possibly
involving more than one state at a time to try
and prove that some state or transition is in-
valid . The second check to cease iteration is
give-up, which currently returns true if there
are no more trajectory expansions available, or
oil user prompt .

Not shown explicitly in the listing is a global
set of mathematical facts that contains-block
uses to save information from one call to the
next . While it may not be possible to prove
that a certain state is inconsistent, assuming
that it is consistent may lead to a constraint
oil some constant variables, or to some other
math fact . These facts are then stored and
used when checking the other states and tran-
sitions . This is a way to check the trajectory
for self-consistency, in addition to simple con-
sistency with the system's equation set . Note
that assertion of a new math fact may neces-
sitate checking old states and transitions for
blocks .
On each iteration, expand-trajectory will

add to the trajectory by expanding a variable
between two states as described above . As-
suming a given set of landmark values for a
variable, a trajectory is quite easy to gener-
ate ; simple templates encode how a variable
moves front one value to another, and possi-
bly turns around . Currently, the user identifies
which variable to expand next . Another ob-
vious strategy is to do all possible expansions .

QR-98

two furic-
functions,
or refined

or

Again, here is more room for elaboration of the
algorithm .

If a block is found, then the algorithm
returns successfully, having proved that the
safety condition will always hold, given the
starting conditions . If there is no block, then
there is no negative answer either ; the system
may be safe or unsafe .

Examples
For art example, consider the problem of the
filling bathtub shown in figure 3 . Tile batlitub
holds water ; water flows in through the faucet
and out through the drain . The variables that
describe this system are L , ', the volume of water
in the tub, Fin , the flow in through the faucet,
Fouc , the flow out through the drain, arid k, a
constant describing the drain size . Four equa-
tions serve to describe the behavior of this sys-
tem : first, the statement: that water volume is
always positive ; as is the drain size ; then, the
rate of change of the volume is the difference
in the flows ; finally, a very simple minded ap-
proximation of the flow out. through the drain .
namely that the flow is proportional to L' .
In the initial conditions . V is greater than

zero and increasing . We also state that, Fin is a
constant, or alternatively that its time deriva-
tive is always zero . The safety condition is that
there is water in the tub . Our algorithm will
try to disprove the reachability problem, i .e .
show that the system can not evolve from the
initial state into one with V = 0 .
We start by creating the abstract. start and

end states . Si is defined simply by V = 1/o and
increasing, where Lo is a label for the initial
value . S9 is defined by 1' = 0 . The initial tra-
jectory is 1Si S,) . As it turns out, this proof
is quick because there is already a block in tire
trajectory ; S9 does not have a legal predeces-
sor, and since it is not the start state, we will
show that this is an inconsistency. From eqn .
4, we derive that F, tic = 0 . Since the initial
conditions ensure that Fi,, is always positive ;

F-in

V

F-out

eqn . 3 now tells us that V is increasing . So, we
know that in S9 , V is increasing . Now continu-
ity of V tells us that the predecessor to S9 has
V < 0, which contradicts eqn . 1 . So a block is
found, and the function FIND-BLOCK returns
successfully .
For argument's sake, assume this block is not

found, or is ignored . The next step would be to
expand a trajectory for some variable, between
the two state endpoints . We will then continue
searching for blocks, as there are examples of
several kinds in this problem . (Of course, in
practice a proof requires only one block.) For
the expansion, V is an obvious choice ; to keep
things simple, we will assume that the bathtub
does not overflow, i .e . V <_ Vfu,t . The abstract
trajectory becomes :
Sl : V = Lo, increasing (corresponds to Si)
S2 : V E (Vo Vftitt), increasing
S3: V E (Vo Vf,,11], steady
S4 : V E (Vo Vfutt), decreasing
S5 : V = Vo, not increasing
S6 : V E (0 Vo), decreasing
S7 : V = 0, not increasing (corresponds to S.)
We now search for blocks in the expanded

trajectory. Sl is not necessarily inconsistent, so
we assume that it is definitely consistent, and
continue . That assumption produces a relation
on the constants, kVo < F� . The next block

Variables :
V, F-in, F-out, k

Equations :
1 . V >= 0
2. k>=0
3 . d/dt V = F-in
4. F-out = kV

Initial Conditions :
F-in constant
V>0
d/dt V > 0

Safety Condition :
V>0

Figure 3 : The bathtub example .

F-out

is difficult to find automatically ; the transition
from S2 to S3 is asymptotic, meaning that the
system will never actually reach S3 . An easier
block is the transition out of S3, as that state
is quiescent . All derivatives go to zero in S3,
so the system stops evolving . Pushing forward
to find a third block, we can show that S .5 is
inconsistent . '.More specifically. Sl and S5 can-
not both be consistent ; when we assumed that
Sr was not a block, we got a relation over the
constants which in turn shows that V must be
increasing in S5, a contradiction with the qual-
itative value of V . Now that it has provided us
with many different examples of blocks, we can
be quite sure that the bathtub will not become
empty in this scenario .

To show a more complex form of block, we
will alter the example somewhat . First, a quick
repair to eqn . 4 ; to keep the transition from
S6 to S7 from being asymptotic, we use a. low
water level aproximation Fo,,t = kV . This
time, the initial conditions are that Fi,, = 0
and is constant, and V = Vf,.« and is decreas-
ing . Again, ask if the tub will ever be empty .
Clearly it will, until we add one more modifica-
tion : at time t = t1 (t = 0 in the initial state),
we change the value of k to zero as the drain is
closed . (Admittedly, the bathtub is now a hy-
brid system, but this change is not important.
for the blocking example .) Now, it is a simple
race between the drain and the clock ; this fits

Loeser 93

94 QR-98

in a generalized way into our formalism . The
trajectory eventually will be :
Sr : V = Vfucl, decreasing
S2 : V E (0 Vftiac), decreasing
S3 : V = 0, decreasing
Since all three states are consistent, we are

checking the transitions ; the transition from S2
to S3 may be a block . To be precise, there are
substates SZ and S3 of S2 and S3 respectively,
such that SZ is the predecessor of S3 . We ana-
lyze the transition between these two states . To
show that the transition in question is blocking,
we attempt to show that V cannot evolve from
its initial value in S .; to its value at the transi-
tion between Sz and Ss, V = 0 . The basic idea
is that. we can place a constraint on how some
variables change in the state, namely time, and
might propagate that constraint to other vari-
~i,lng

First, we need to find the initial value of V
in S2 . We can get information about this value
from the predecessors of Sl . Lump them into
an abstract state and call them S4 . Due to con-
tinuity of V, the possible values of V in S4 are
V E (0 feill) and steady, and V = Vfu ll and
decreasing . Because F� = 0, the substate de-
fined by the former value is inconsistent . So in
S 4 , V = Lf utc and decreasing .

	

(S,, is an elab-
oration of SI) From S4 we see that the initial
value for V in Sz is V = Vfutt and decreasing .
To show that the transition in question is

blocking . we need to show that V cannot move
from Vfc,1c to 0 in the duration of Sz . With our
current algorithm, we do not know the duration
of an abstract state right away ; we may pass in
and out. of S2 ten times before the tub is empty .
We do know, however, that the duration is less
than t 1 , and this leads us to the obvious test .
If the drain is big enough or t, is small enough,
the transition becomes blocking .
The method for transition analysis demon-

strated in the preceding paragraph is not very
strong ; there are plenty of examples that a hu-
man can solve but where the algorithm fails
to find a proof. However, one could devise a
more complete procedure for checking the tran-
sition . Our general approach is to assert the
abstract trajectory through which the system
must pass, and then look for blocks on that tra-
jectory . This general approach will still be a
framework for the reachability proof when the
procedures to assert and check the trajectory
become more sophisticated .

Discussion
We have described a procedure for addressing
safety queries in continuous, physical systems,

using algebra rather than numeric integration .
Instead of producing a simulation, a successful
run of the algorithm gives a formal proof that
the safety condition will be valid in all trajec-
tories . For example, in the bathtub problem,
we can extract a formal proof that the tub will
never be empty, given those initial conditions .
The uncertainties of the verification are then
limited to the those associated with the un-
derlying mathematical model, the equations of
state .
Our approach also supports the analysis of

partially specified designs and behaviors . Since
the underlying technique uses landmarks and
intervals in the manner as qualitative mathe-
matics ; it can handle qualitative specifications,
and mixtures of qualitative and quantitative
mathematics . One expects to have better suc-
cess generating proofs when the landmarks are
known, or tightly constrained, as will be the
case more often with quantitatively valued vari-
ables . Still, the ability to reason with varying
amounts of ambiguity in the specification is an
important one .
We have shown that the algorithm is sound,

but it is not complete . In this case, we take
completeness to mean that the algorithm will
prove the safety condition whenever it is true .
It is riot the mathematics which are lacking ;
any mathematical proof of unreachability will
boil down to an inconsistency supported by this
method . Rather, it is the search for this in-
consistency in the trajectory which is difficult .
If a human is guiding the variable expansions,
for example . then the human needs to make
the right choices . This is similar to many- auto-
mated theorem provers, in which the user must
specify the methods used at. many steps on or-
der to achieve success . Even if completely au-
tornatic, this is not an algorithm for searching
all of "mathematical proof space" .
There are a couple of ways in which this

search is difficult . One is the problem of too
much abstraction . (This is shared in part, with
envisionment proofs .) There may be an incon-
sistent state through which the system must
pass, but there are not sufficient landmarks to
isolate it . Or in evolving from x = 3 to :r = 5 .
the system may need to visit x = 0 for compli-
cated reasgns ; this state may be inconsistent .
but it will riot even be represented on just a
simple expansion for x . Another problem is
with the elaboration path . The inconsistency
may involve values of many variables, without,
being obvious in a way which guides the system
to generate a trajectory through that state .
Although incomplete, our algorithm has

been useful on the practical examples we have
tried so far . In our limited experience, the

proof tends not. to be all that complicated . Per-
haps this is biased by the examples we choose .
Also, it may be a characteristic of good design .
If an engineer needs to produce a design with
certain safety properties, it is perhaps better
practice to make the mechanisms that guaran-
tee the safety simple rather than convoluted .
The automatically generated proof then acts
as both a sanity check and valuable documen-
tation for the design .

It is useful to consider the possible role of this
verification tool in engineering design, with the
idea that rigorous verification may be a useful
part of the device design process . We envision
this sort of automated assistance as playing a
role in a design cycle of refinement. and testing .
A candidate device design is given to the verifi-
cation tool in an attempt to guarantee certain
properties . If the proof is not possible, then
the design can be modified . If there is a proof,
then the engineer has confidence that the com-
ponent will have the desired properties . In the
end, the design is accompanied by a theoreti-
cal guarantee that the device will meet certain
specifications . The cycle can be one of chang-
ing the design and the parameter values, or just
as easily can be one of changing or narrowing
the range in which some values are constrained
to lie . If the tool can, through acceptance of
qualitative specifications, allow the finished de-
sign to be more abstract, then it has helped to
produce a more versatile design .
There is also the opportunity to use feed-

back from the algorithm to assist the design
process . First, there is the simple possibility
that looking at, descriptions of some states that
the system must pass through before violating
the safety condition may trigger design ideas .
In a similar way, some basic failure analysis for
the proof procedure may be helpful . We could,
for example, give lists of constraints over the
variables which, if they were true, would allow
the algorithm to show that some state or tran-
sition in the trajectory was a block . Most of the
constraints would not lead to feasible design re-
firlements, but the list may contain something
useful or inspire a good idea .

In a more sophisticated way, we can gener-
ate constraints on unspecified variables . Say,
for example, exogenous parameter x were un-
specified in some design . At each blocking
test, we try to generate conditions on x which
would create a block . At the end, output
the least restrictive such conditions as possi-
ble ways to guarantee safety. There has been
work on this sort of parameter setting before,
using causal ordering to find the right param-
eter settings (Hibler & Biswas 1993), but this
was for the case of static equations . We have

a framework in which to generalize this to dy-
namic behaviors .
While the proof procedure will have expo-

nential complexity if carried to completion on
a problem for which it fails, there are also prob-
lems which it will solve quickly . These simple
problems may be more frequent in actual eil-
gineering designs, as properties in straightfor-
ward designs tend to be caused directly, rather
than from details far upstream in the behavior .
If we are automatically searching for variables
upon which to expand, a likely aid would be
the causal ordering tree for the variable(s) rrlen-
tioned in the query . In practice, the behavior
features that validate the safety property may
involve variables which are close to the root of
that tree . When designing a device, one wants
to achieve the required behavior in as simple
a manner as possible, rather than relying on
more indirect. effects . This in turn would tend
to produce designs which our algorithm could
handle efficiently.

In general, we have built a simple framework
upon which to build verification techniques for
reasoning with physical systems . Future work
will involve building algorithms to deal with
more complicated and practical example prob-
lems .

References
Hibler, D., and Biswas . G . 1993 . Restric-
tion of qualitative models to ensure more spe-
cific behavior . Intelligent Systenes Engineer-

ing 2:133-44 .
Kuipers, B . 1994 . Qualitative Reasoning .
Cambridge, Massachusetts : The MIT Press .
Neller, T . 1998 . Information based optimiza-
tion approaches to dynamical system safety
verification . In Proceedings of Hybrid Systems
VI (HS98) . Springer Verlag .
Shults, B ., and Kuipers, B . 1997 . Proving
properties of continuous systems ; qualitative
simulation and temporal logic . AI Journal
92:91- 129 .

Loeser 9 5

il

