
Using Qualitative Reasoning to Solve Dynamic Problems

Abstract
A significant amount of research has been done in solving
static engineering problems . Dynamic problems, where at
least one of the parameters of the system is changing, pose a
larger challenge that has only been addressed in part by
previous work . We describe two new qualitative reasoning
techniques that we use to solve additional problems . In the
first technique, we use qualitative reasoning to determine
when parameters stay constant between states, which allows
us to eliminate variables from equations . This is useful in
solving problems that have partial information and require
information to be shared between different states in order to
simplify equations . In the second technique, we use a
guided attainable envisionment to determine which
equations are applicable in a particular state and to guide
calculations using these equations . This technique helps to
solve problems that require the use of different equations in
different states . In some situations, the envisionment also
allows us to conclude some simplifying modeling
assumptions . We also describe how to use quantitative
information from the problem solver to focus this
envisionment and prevent state explosion .
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Introduction

Most earlier problem solvers had some forms of dynamic
problem solving mechanisms . De Kleer (de Kleer 1975)
was the first to argue that qualitative reasoning is needed
for problem solving . His system, NEWTON, solved
roller coaster problems by using attainable envisionment .
Since the envisionment constraints were hard coded, the.
system could only solve more problems of the same type .
Another solver, MECHO (Bundy 1978 ; Bundy 1983), used
schemata and a strategy called "hypothesize and test"
involving envisionment and numerical testing . MECHO
solved some static problems, such as pulley systems, and
some roller coaster problems . CASCADE (VanLehn,
Jones, & Chi 1991) reasoned about some dynamic physics
problems by using similar solved examples as a starting
point. The lack of a general mechanism for directly
reasoning about changes limited CASCADE to problems
that had analogues in its database.

Engineers reason about how different devices interact
with each other by selecting device models appropriate for
a particular task. These models provide the framework for
deciding which equations are applicable. Instead of
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focusing on model selection though, engineering textbooks
focus on teaching quantitative reasoning with emphasis on
solving problems (Bhaskar & Simon 1977) . Students
develop expertise in selecting models through solving
problems . Qualitative reasoning provides a framework for
organizing the knowledge necessary for model selection .
Because model selection is critical for many tasks, a large
amount of research in qualitative reasoning has
concentrated on how to select models (Falkenhainer &
Forbus 1991 ; Iwasaki & Levy 1994) .

Recently, qualitative reasoning has been used
successfully for analyzing complex systems (Sacks &
Joskowicz 1993 ; Yip 1991), designing a chemical
separation system (Sgouros 1993) and designing controllers
(Kuipers & Shults 1994) . In SCHISM (Skorstad & Forbus
1990), qualitative reasoning was used to formulate the
equations describing steady-state systems, such as a closed
refrigeration cycle, and then to calculate the desired
parameter . Although these systems focused on modelling
or controlling the behavior of a system rather than problem
solving, these successful applications demonstrate the
superior technologies that are available for performing
qualitative envisionment now .
We take advantage of the advances in qualitative

reasoning theory and technology to solve additional
problems in two subclasses of dynamic problems . The
ideas described here have been implemented as a part of a
thermodynamics problem solver (TPS) system (Pisan
1996) . First, we argue why we want to solve dynamic
problems, and why qualitative reasoning is needed to solve
them . Then, we describe the use of qualitative reasoning in
determining which parameters remain constant between
states and how this knowledge is applied to simplify
equations . We describe the situations when hidden states
arise and present a technique for discovering them . Next,
we give two examples of how these ideas are used when
solving problems . Finally, we discuss our conclusions .

Qualitative Reasoning and
Engineering Problems

f__T

In most engineering domains, education is based on
problem solving . Discussions with a domain expert (Dr .
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Peter B . Whalley, University of Oxford, personal
communication) suggest that textbook problems are
reasonable approximations for engineering analyses
performed in industry, because they incorporate practical
applications with basic engineering knowledge to derive
quantitative solutions .
Dynamic problems, where at least one of the parameters

of the system is changing, comprise a large number of
engineering problems . In physics, textbooks cover
kinematics, dynamics, projectile motion, gravity, waves,
and a number of other dynamic phenomena.
Thermodynamics textbooks use static problems as a part of
the introduction to the domain and then build up to dynamic
problems involving multiple states as students develop
expertise in the domain .

	

`
Limiting a problem solver to static problems sacrifices

the ability of the problem solver to examine interesting
behavior . In a sense, the problem solver is reduced to
examining photographs of our usual everyday experience .
It is not a surprise that previous work has examined static
problems . This limitation often makes for much simpler
solutions . For example, in thermodynamics, a typical static
problem, such as determining the value of a parameter of a
gas given other parameters of the gas, will often require
only one equation . Still, the great majority of problems are
not static problems . These include more interesting
problems where the system is changing, such as real world
examples .
To solve these more interesting and complex problems,

we must incorporate a mechanism for reasoning about
change into our problem solver . Qualitative reasoning
provides this mechanism .
We use the qualitative reasoning technique of modeling

change by using histories which are extended through time
and spatially bounded (Hayes 1979) . This approach allows
us to create world models that do not require complete
knowledge and also greatly reduces the state explosion
problem by specifying that only objects in the same
location can interact with each other . Qualitative Process
Theory (Forbus 1984) introduces processes as the agents of
change and describes a framework for reasoning with
multiple models . Heat transfer between objects,
acceleration due to forces (such as gravity) and the effects
of friction forces are examples of processes that have been
used in qualitative physics . One common and significant
problem with qualitative analysis is that ambiguity can
cause too many states to be generated . In our case,
however, numbers and ordinal relations given in the
problem. enable us to constrain the qualitative analysis so
that we can avoid this problem.

Qualitative reasoning provides the framework we need
for reasoning about change in the problem solving context .
In the next section, we describe how the information from
qualitative reasoning about a parameter being constant is
exploited to simplify problem solving .

Finding and Using Constant Parameters
When solving problems, students struggle with how to

combine equations to eliminate unknown parameters . In
domains like thermodynamics where there can be over one
hundred applicable equations, this presents a formidable
challenge for students . Problems with multiple states
further complicate matters by introducing the concern of
how equations that are applicable to different states should
be combined . To reduce these equations, it is necessary to
know what parameters stay constant between states .
Knowing the parameters that are constant lets us simplify
and combine equations and solve problems despite
incomplete state information . Using Qualitative Process
Theory we can determine what parameters are constant by
verifying that there are no active processes influencing
those parameters . Knowing that these parameters are
constant allows us to share information between the states .
This can help us to simplify and combine equations .

For example, a typical problem in thermodynamics is to
consider the consequences of heating a body of a given
substance . In the simplest case, where an ideal gas is
heated, the ideal gas law (Equation 1) applies to both the
initial and final states . Because there are no active
processes influencing the mass of the gas (m), a problem
solver can conclude that m remains constant when the gas
is heated. Domain knowledge asserts that the gas constant
(R) is constant . This knowledge allows combining the
initial state ideal gas law with the final state ideal gas law
to create a simpler equation . In cases where the mass of the
gas or the gas constant is not known, this simplification is
necessary for the problem solver to be able to solve this
problem . If the initial and final state of the substance being
heated is known to be saturated, the problem solver can
derive that the process is isobaric and isothermal . These
findings serve as modeling assumptions to introduce more
equations into the analysis and simplify existing equations .

Performing this kind of analysis is also necessary for
simplifying equations that involve parameters from two
states, such as the first law of thermodynamics (Equation
2) . When applying the first law of thermodynamics,
modeling assumptions and knowledge of what parameters
remain constant between the states must be used to simplify
the equation . For example, when applying the steady-state
modeling assumption to a device such as a turbine, the

Ideal Gas Law applied to initial state:
PInItialV,niGa, - mInitialRlnitialTinitial

Ideal Gas Law applied to final state :
PPinaIVFnaI - mFinalRFinalTFina1

Results of qualitative analysis :
R and m are constant .
(R,,.,= R,,, and

	

m3nal)
Ideal Gas Law combined:

PAifiaNINfia1' TInllial PFnalVPina1"Fnal

Equation 1 : Combining Ideal Gas Law Applications



modeling assumption implies that the parameters of the
substance inside the turbine are constant . This implies that
all variables for substance in the initial state (subscript 1)
and the final state (subscript 2) are equal, and cancel each
other in the equation . We use modelling assumptions for
the turbine that eliminate kinetic energy and potential
energy, since their effects are often negligible .
Alternatively, these modelling assumptions could be made
automatically by using order of magnitude reasoning
techniques, such as decompositional modelling (Williams
& Raiman 1994) . Eliminating all of these variables reduces
Equation 2 to a version of first law that is typically used for
turbines (Equation 3) .

In both of these cases, qualitative reasoning determined
which parameters were constant and allowed the problem
solver to combine equations and eliminate variables . It also
allowed the problem solver to make a domain modeling
assumption that allowed it to further conclude the future
behavior of a system . Next, we will look at using a form of
envisionment to help describe the behavior of systems in
problems .

Discovering Hidden States
We have discussed problems that have an initial state and a
final state, but the behavior of a system for a complex
problem can have any number of states . Some of these
states may be mentioned in the problem . We refer to the
other states that are not mentioned in the problem as
"hidden states" . To generate the states for the behavior of a
system defined by a problem, we perform problem guided
envisionment . This requires a qualitative domain theory for
the area covered by the problem .
A well-defined domain theory identifies important

ordinal relations in the domain . These ordinal relations

Q_ + Em;(h; + V;2 /2 + gZ;) = Em
'
(h ' + V~2/2 + gZ,) +

[m, (h, + V= Z/2 + gZZ) - m,(h, +V,'/2 + gZ,) ) + W_

Equation 2 : The First Law of Thermodynamics

Q_+m,h,=m,h,+W_

Equation 3 : A simplified version of the first law
that is typically used for turbines

Table 1 : Explanation for Equation 2 and Equation 3

may involve a constant and one parameter of one object,
such as determining that a liquid is totally saturated, or
many parameters from multiple objects, such as a spatial
configuration change . The changing of these ordinal
relations is used to define state transitions . For example,
we call a spring compressed, relaxed, or stretched
depending on the relationship between length of spring and
the rest length of spring . In thermodynamics, the
comparison between temperature and saturation
temperature is one of the ordinal relations used in
identifying the state of a substance .

In addition to identifying important ordinal relations in a
domain, a well-defined domain theory also defines what
equations are applicable when certain ordinal relations are
true . For example, when a liquid is heated it will go
through liquid, saturated, and gas phases . Each of these
phases has a different qualitative state with corresponding
modeling assumptions and applicable equations . Since
these states require different equations, it is important to
differentiate between them . Identifying the relevant
assumptions and equations requires envisionment.
The most basic of envisionments is a total envisionment .

A total envisionment involves generating all possible
behaviors for a system using all possible initial conditions .
Even for small examples, a total envisionment can produce
a large number of states, making it infeasible for most
applications . Instead of generating all behaviors from the
set of all possible starting states, an attainable qualitative
envisionment examines all possible following behaviors
from a set of states satisfying a set of given initial
conditions .

	

Although the number of states produced in an
attainable envisionment is significantly less than total
envisionment, an attainable envisionment still does more
work than what a problem solver needs .

Hence, we use problem guided envisionment . Problem
guided envisionment uses the approach we lay out in Figure
1 to limit state generation . We begin performing a typical
attainable envisionment . However, we stop exploring a
path when a state is found to be contradictory with the
problem statement . Also, we stop the envisionment when a
state is found that satisfies the final conditions given in the

Step 1 : Using the initial conditions in the problem,
generate a set of qualitative states .

Step 2 : On each state, perform limit analysis to find
the set of states that could follow that state.

Step 3 : Examine the new states for pruning . If any of
the states have ordinal relations that are
contradictory to the values in the problem
statement, discard those states .

Step 4 : Examine the remaining states to determine if
they match the final state as given in the problem
statement . If there is no match go to Step 2 with
the remaining states .

Figure 1 : Problem Guided Attainable
Envisionment
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Legend for Variables Subscripts Used
m mass c.v . control volume
h enthalpy i parameter at inlet
V velocity e parameter at exit
g gravity 1 parameter for the
Z height initial state
Q heat 2 parameter for the
W work final state
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Example One

problem statement .
In all cases, the problem guided envisionment produces a

subset of the attainable envisionment . In the worst case,
the set of states generated is equal to those in an attainable
envisionment . If no satisfactory final state was present,
then the problem was malformed, since it requires that an
impossible state be reached . Usually, the problem guided
envisionment produced is a strict subset of the attainable
envisionment, since problems rarely concern themselves
with all possible outcomes from a given state .

It is possible that the problem guided envisionment could
produce multiple qualitative states that could qualify as
final states . In these cases, the envisionment finds only the
first matching qualitative state . Since problem solving is a
relatively constrained activity, finding the first qualitative
matching state is sufficient for analysis . As support for this
statement, consider a problem that generates multiple final
states, in which calculations will yield different answers for
the problem posed . In order for this to occur, the initial
problem state would have to be underspecified . We
currently do not handle underspecified problems .
Once we have found a hidden state, we can ensure that

the proper equation will be used for it . For example, when
analyzing an oscillating spring where the initial state
specifies the compressed length and the final state specifies
the partially stretched length of the spring, the
envisionment will identify when the spring is relaxed . This
state is important, because it represents the division
between the two behaviors of compression and stretching,
for which the direction of the force is opposite . Similarly,
the envisionment for a thermodynamics problem in which
liquid water is heated in a closed container needs to identify
the saturated phase where the temperature and pressure of
the substance will be constant . Then the system can use the
appropriate equations for calculating the relationships
between pressure, temperature, and volume for each state
(liquid, saturated, gas) .
The problem guided envisionment enables the problem

solver to find hidden states in the piston example, which
allowed the problem solver to use the proper equations for
work .

In Figure 2, we show a typical problem involving a piston
and a spring taken from an introductory thermodynamics
textbook (Wylen & Sonntag 1985) .
When the problem solver performs the problem guided

envisionment, it determines that two different models of
work are required . The first model is applicable to the
piston rising before hitting the spring, and the second model
is applicable to the piston when it is pushing against the
spring . This problem needs to be broken down to a
minimum of three states : piston resting, piston rising, and
piston compressing the spring . Doing the envisionment, we
find there are five different qualitative states . The relevant
qualitative relations and the corresponding work equation
are given in Equation 4 .

A frictionless piston having
cross-sectional area of 0.06m'
rests on stops on the cylinder
walls such that the contained
volume is 30L . The piston
mass is such that 300kPa
pressure is required to raise
the piston against ambient
pressure outside . When the
piston has moved to the point
where the contained volume is
75L, the piston encounters a linear spring that requires
360kN to deflect it lm . Initially the cylinder contains
4kg of saturated (liquid + vapor) water at 35C. If this
system is heated until the final pressure inside is 7MPa,
determine the work done during this process .

Figure 2 : Problem 4.21

Adiabatic Expansion :
W = Pressure (Volume,;�, - Volume,,;,,,)

Work against Spring :
W = Pressure,,;,,+ Pressure,;.,/2

x (Volumes�,- Volume,, ;,,,,)

Equation 4 : Different Applicable Work Equations

Table 2: States generated by constrained
envisionment for Problem 4.21

Description Qualitative State Information
1 . The piston pressure(atmosphere) > pressure(gas)

is resting on pressure(gas) is constant .
the stops . volume(gas) is constant .

W=O, no change in volume .
2 . The piston pressure(atmosphere) = pressure(gas)

is just pressure(gas) is constant .
touching volume(gas) is constant .
the stops . W=O, no change in volume .

3 . The piston pressure(atmosphere) = pressure(gas)
is rising . pressure(gas) is constant .

volume(gas) is increasing .
W = pressure(volume ;�, - volume,,;,,)

4 . The piston pressure(atmosphere) < pressure(gas)
is just pressure(gas) is constant .
touching volume(gas) is increasing .
the spring. W = pressure(volume,;�, - volume,,,.,,)

5 . The piston pressure(atmosphere) < pressure(gas)
is pushing pressure(gas) is increasing .
the spring. volume(gas) is increasing .

W = pressure,, ;,, + pressure,-/2 x
(volumes�,- volume,,;,,,)



In this example, the initial state is well constrained and
there is only one possible initial qualitative state . The final
state is given only in terms of pressure. Examining how the
value of pressure changes using Table 2, we see that
pressure only increases when piston is pushing against the
spring . Since the initial pressure is less than 7MPa, we
know that the piston pushing against the spring is the first
qualitative state that can satisfy our criteria for being the
final state of the problem .

After deriving the equations for work, the problem solver
can then find the answer to the question . By being able to
model the different states of the piston, the problem solver
was able to use all relevant applicable equations to solve
the problem .

Example Two
In Figure 3, we show a typical problem involving a
pedestrian running after a bus taken from an introductory
physics textbook (Haber-Schaim, Dodge, & Walter 1986) .
The problem solver performs a problem guided

envisionment of the problem to determine what can happen .
There is only one initial state (state 0) . The problem
mentions two different possible outcomes . Likewise, our
intuitions on this problem are that the pedestrian can either
catch the bus, or miss it . However, the envisionment shows
that there are actually three different paths through the state
space for this problem, two of which correspond to the
pedestrian catching the bus . The difference between these
states is that in one, the man overtakes the bus (state 2), and
in the other, he just barely catches up to it before it pulls
away from him (state 4) . The two final states mentioned in
the problem correspond to states 2 and 4 (when he catches
the bus), and state 3 (when the bus escapes) .

In Figure 4, we show the attainable qualitative
envisionment for this problem . Although there are ten
states in the attainable envisionment for this problem, only
half of these need to be examined in this problem (states
0-4) . These are generated in only two iterations of the
algorithm in Figure 1 .

In this example, the problem guided envisionment
enables the problem solver to take a systematic approach to
evaluating the possible behaviors of the system in the
problem . The problem includes constraints on what the
relationships between the parameters have to be .
Evaluating these constraints (step 3 in Figure 1) allows the
problem solver to find which states actually occur . After
finding the actual final state, the problem solver can use the
equations from the state path to find the solution .

Qualitative reasoning enables the problem solver to
consider the possible outcomes of the situation, and to find
the one that actually occurred . Then it helps by stipulating
which equations can be used in those situations .

Table 3 : Explanation of Figure 4

A pedestrian is running at his maximum speed of
6.0 m/s to catch a bus stopped by a traffic light .
When he is 25 meters from the bus the light changes
and the bus accelerates uniformly at 1 .0 m/s2 . Find
either (a) how far he has to run to catch the bus or (b)
his frustration distance (closest approach) . Do the
problem either by use of a graph or by solving the
appropriate equations .

Figure 3 : Chapter 1, Problem 24

Figure 4 : Attainable envisionment for Problem 24
[Squares are instants . Circles are intervals .]
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State Description Qualitative State Information
0 . The bus is position(person) < position(bus)

stationary . velocity(person) > 0
velocity(bus) = 0

1 . The bus begins to position(person) < position(bus)
move . velocity(bus) > 0

velocity(bus) < velocity(person)
3 . The bus begins to position (person) < position(bus)
escape from the velocity(bus) = velocity(person)
person .

4 . The person just position(person) = position(bus)
catches the bus . velocity(bus) = velocity(person)

2 . The person is position(person) = position(bus)
overtaking the velocity(bus) < velocity(person)
bus .

8 . The person is position(person) > position(bus)
past the bus . velocity(bus) < velocity(person)

9 . The bus begins to position(person) > position(bus)
catch up to the velocity(bus) = velocity(person)
person .

5 . The bus is position(person) > position(bus)
catching up to the velocity(bus) > velocity(person)

,, person .
7 . The bus is position(person) = position(bus)

overtaking the velocity(bus) > velocity(person)
person .

6 . The bus has position(person) < position(bus)
escaped from the velocity(bus) > velocity(person)
person .



Conclusion
In the past, the difficulties in constructing qualitative

models and the lack of tools for applying qualitative
analysis made these techniques generally unavailable for
use in problem solving . The recent advances in qualitative
reasoning have shown that building large qualitative
domain models is possible and necessary for analyzing
complicated systems .

In this paper, we argued that qualitative reasoning is a
necessary technique for dealing with multi-state problems .
We showed that qualitative reasoning is essential for at
least two classes of multi-state problems that are commonly
encountered in engineering problem solving .
For the first class of problems, we use qualitative

reasoning to find constant parameters that can be used to
simplify and combine equations . For the second class of
problems, we use problem guided envisionment to discover
important hidden states . By identifying hidden states we
can break down the problem and limit the application of
each equation appropriately .

Problem guided envisionment also reduces the size of the
envisionment and the number of states that must be
explored. The space can further be reduced in problems
that specify events that occur within the behaviors of the
system for a specific problem, by using temporal
constraints such as those in TeQSIM . (Brajnik & Clancy
1996) Beginning with SUDEs instead of attainable
envisionments could also assist the problem solver in
focusing on the important behavioral distinctions for each
problem . (DeCoste 1994) Part of our future work is to
extend the problem solver to make use of more restrictions
on envisionment, such as these .

Currently, we have successfully implemented constant
parameter detection and our algorithm for discovering
hidden states as a part of a thermodynamics problem solver
(Pisan 1996) . Although our examples were taken from
physics and thermodynamics, the same principles are
applicable to other domains where qualitative models can
be built . For example, in history-oriented envisioning, the
goal is to estimate and plan system behaviors . Our
technique of problem guided envisionment could be
adapted to assist in history-oriented envisioning, by
reducing the number of contingencies that need to be
considered . (Washio & Motoda 1996)
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