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Abstract

Model based reasoning about physical systems deals with
diagnosis, supervision, interpretation, explanation, etc .
Most of the contributions to this domain do not pay much
attention to model construction, and it was generally
accepted that a model was available or could be easily
obtained . This assumption is no more valid when we
tackle real industrial problems rather than toy examples.
The situation is even worst since there is no standard
methodology or approach to making models . In this paper
we provide a framework to elaborate models which are
suitable for model based reasoning in general, and for
fault diagnosis in particular . The framework relies on the
bond graphs notation, which allows a uniform approach
for the different physical domains and offers
compositional view of the system .

Introduction

It is generally accepted that three stages of work are
involved in the model-based approach to analysing a
system [Weld & de Kleer 1989] . Firstly, a model of the
system is built. Secondly, a solution is solicited from the
model . Finally, a conclusion about the system is reached
based on the interpretation of the solution . The
importance of using a good model is obvious because
building a model is the starting point in the whole
process ([Dague & al . 1987], [Falkenhainer & Forbus
1991], [Nayak 1994]) .
Traditionally, models are constructed by hand and are
then used in experiments to ensure acceptable results .
Models produced in this manner tend to include
everything, including issues irrelevant to an application,
and require solid competencies in mechanical,
hydraulics, electricity and thermodynamics . These
considerations indicate the need for new approaches to
modeling, based on more rigorously defined modeling
processes. Automated modeling is such an approach
[Xia & al . 1993] . It attempts to generate models, which
are parsimonious and accurate for model-based
reasoning .

Few research works have already addressed this issue,
or part of it . We can quote GoM (Graph of Models)
[Addanki & al . 1991], which represents a collection of
models built by an expert in a particular domain . The
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collection is represented in terms of a graph in which
each node represents a model, whereas an edge is
labeled with an assumption (simplification or
refinement) . The Prompt

system [Weld 1992] allows for navigation through this
kind of graphs . A most significant work is CM
(Compositional Modeling) [Falkenhainer & Forbus
1991], which is devoted to generate qualitative and
quantitative answers to queries about physical systems .
Other works have been derived from the latter, namely
"Automated Model Selection for Simulation" [Iwasaki
& Levy 1993] and "Causal Approximations" [Nayak
1994] . MM [Amsterdam 1993], is also a very related
work to ours since he was introducing bond graphs as a
modeling language . Biswas and Yu [Biswas & Yu
1993] propose a formal modeling scheme that also use
bond graphs as modeling language . The main distinction
of our approach is its non-deterministic nature . Actually
we consider that modeling process requires the
exploration of a search space . This search space could
have several solutions (i .e . models), could accept
several cost criteria (e.g. parsimonious notion) and
could be explored with various search strategies . The
explicit use of modeling hypotheses and behaviour
constraints is a means to limit the exploration of the
search space .

Our work intends to introduce more automation in the
different modeling tasks, and led to the system : AIMD
(Automated Intelligent Modeller for Diagnosis) .
Modeling and diagnosis are the two main functions of
AIMD. In this article we focus on modeling, the
diagnosis process is outside the scope of the present
article . In section 2 we introduce a case study that is
used along this paper . In section 3 we present an
overview of the modeling approach, process and
language. Section 4 describes what kind of generic
knowledge AIMD is going to use, while section 5
describes the knowledge specific to a particular
scenario . The different tasks constituting the modeling
process are presented in detail in section 6. Section 7
presents the results obtained on our case study.



Before going through the details of our work, let's give
an overview of what kind of results AIMD is expected
to provide given some specific entries . Let us consider
along this paper the following pump system I as a case
study (figure 1) : a motor is driven by a voltage source
and, in turn, drives a pump, and then pumps fluid from
tank 1 to tank 2 .

The specific inputs (scenario dependent) for the pump
system are :
1 .

	

A structure description of the pump system . Figure
2 illustrates a schematic description of the structure .
The structure describes a decomposition of the
system in terms of primary components, which are
related by physical (hydraulic, mechanical, electric)
connections .

2 .

	

A set of hypotheses (eventually empty) about the
components of this system . An example of a
hypothesis is "consider the friction in the motor" .

3 .

	

Optionally, an expected behaviour of the system,
like "when the source tank becomes empty, the
motor speed increases" . The behaviour is given in
terms of qualitative constraints . The user has the
choice of the variables and the interval of time to be
considered .

battery-1

system

0-0

Case study

Figure 1 : Case study system

motor-t

hydraulic

mechanical
electric
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pipe-2

Figure 2 : Schematic description of the case study

Given such entries, AIMD is able to elaborate a
parsimonious model representing the system . This
model is given in terms of a bond graph, a set of
qualitative and quantitative equations and a causal
graph . We describe later the details of the obtained

I This test-case has been introduced for the first time in [Xia
& al . 19931

tank-2

model . This result is in turn exploited by AIMD to
perform diagnosis, proving in this way the adequacy of
the model . Diagnosis is achieved trough a dialog
between AIMD and the user. Previously, the set of
measurable variables of the system must be specified .
An example of a diagnosis session for the case study is
the following :

USER > observation : flow of (tank-2) is
below-normal .
AIMD > candidates : (r-3, +), (c-6, +),
(r-7, +), (c-4,-)2
what is the value of - pressure - tank-1?
(above, below, normal)
USER > bellow .
AIMD > a single candidate3 remains :
(c-6, +)
Interpretation of diagnosis :
(tank-1, leak) 4

Modeling Framework

Overview of the Modeling Process

The modeling process is based upon the consideration
of two groups of inputs, which feed the modeling
process : the scenario dependent ones, and the scenario
independent ones (by scenario we mean the modeling
session tackled by the designer) . As stated before, this
group is constituted by the description of the physical
system, a set of modeling hypotheses and a set of
behaviour constraints, whereas the second group is
constituted by a library of generic model fragments, as
long as other generic knowledge concerning physical
systems. Observations and measurements from the
physical system concern the diagnosis part.
The modeling process consists of the following tasks
(see figure 3 below) :
1) Fragment selection . Each component has a set of
model fragments stored in a library . Successive
selections are made increasing the degree of
complexitys of fragments starting with the least
complex fragments .
2) Fragment assembling. Fragment assembling is made
according to the structural description and some
compositional rules .

2 r-3, c-6, r-7, c-4 represent internal variables of the model .
We describe later the correspondence between internal
variables and the parameters and measurements of the system .
- and + stand for below and above normal respectively .
3 The discrimination capacity of the diagnosis depends on the
number of measurable variables and their position on the
system .
4 (c-6, +) stands for: the capacity of tank-lis above normal .
One possible interpretation of this fact is a leak in the tank.
5 The complexity degree wilt be defined latter .
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3) Model verification . The purpose of this task is to
verify that the obtained model could really exhibit the
expected behaviour . This is done by comparing the
simulated behaviour (using the qualitative equations
obtained in the precedent task) to the expected one .

Scenario
independent

inputs

	

Knowledge about
Physical Systems

The diagnostic function is intrinsically related to the
modeling function and they are integrated in AIMD.
The model produced from the modeling process will be
used as a reference against any malfunction on the
physical system .

Modeling language

.Library of generic
fragments

Start with
the least
complex

. .. .. . fragments .. ._ .

R
Model verification by
Qualitative Simulation

Bond graphs [Rosenberg & Karnopp 1983] are based
on modeling energy flow, power, between system
components and inherently enforce continuity of power
and conservation of energy. This provides a systematic
framework for building consistent and well-constrained
models of dynamic physical systems across multiple
domains (e.g ., electrical, mechanical, hydraulic) . Bond
graphs rely on effort variables (e) to represent
generalised voltage, pressure, temperature, etc ., and on
flow variables (f) to represent generalised current,
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Structure description

Modeling hypotheses

Behavior constraints

Parsimonious
Model

Scenario
dependent

inputs

Figure 3 : The modeling process
volume flow, entropy flow, etc . The topological
character of bond graphs allows for compositional
modeling and makes them directly applicable to
qualitative processing . This renders them useful in
situations where precise numerical information may not
be available . However, analytic system models derived
from bond graphs are also amenable to quantitative
simulation and analysis . Furthermore, bond graphs
embody a direct relation between state variables and
physical component parameters, and their causality
constraints provide the mechanisms for effective and
efficient diagnosis . More detailed presentation of bond
graphs are given in [Rosenberg & Karnopp 1983] .

Implementation

As we pointed out, the modeling approach aims to be
modular and declarative . On the other hand the nature of
modeling is intrinsically non-deterministic . In fact the
three tasks of the modeling process are highly non-
deterministic . For these reasons Prolog was used for



implementation, this choice allows for a declarative
representation of the different kinds of knowledge in
terms of logical relations and is naturally adapted for the
exploration of a search space . A counterpart of this
choice is the performance of execution, but this point
becomes secondary since the model construction part of
AIMD is made off line .

Scenario-independent inputs

Library of fragments

Ideally, a library of generic components should consist
of "context-free" component models that adhere to the
"no function in structure" principle [de Kleer & Brown
1984] . The definition of the library of components
respects this principle . This is possible since the
modeling process takes into account, explicitly, other
sources of knowledge . That means that for a given
component the fragment selection task could pick up
one specific fragment of model in the library even if this
selection is aberrant from a global point of view . That
doesn't matter, the fragment will be rule out in the
successive tasks and other fragment of the same
component will be considered .
Each component, in a given domain, has one or more
associated model fragments, from the simplest one to a
most complex one . Complexity is defined as the number
of bond graph elements from which a model fragment is
composed . It forms a partial order relation .
For example, a motor can be represented by 5 model
fragments, one of complexity 1 (GY), one of
complexity 2 (GY+R), two of complexity 3 (GY+R+C
and GY+R+I) and finally one of complexity 4
(GY+R+C+I) . The previous elements stand for GY=
gyrator, R= coil resistance, C= coil capacitance, I= coil
inductance .
The complexity of a whole model, will be the sum of
the complexities of all its fragments .
The following "component" predicates are used to
represent these model fragments of a motor in the
electric-mechanical domain :

component(motor, electric-mechanical, 1,
description(input(A),output(A),[A],[A-gy])) .

component(motor, electric-mechanical, 2,
description(input(A),output(B),[A,B,C],
[bond(A-gy,B-1), bond(B-1,C-r)])) .

component(motor, electric-mechanical, 3,
description(input(A),output(B),
[A,B,C,D],[bond(A-gy,B-1),bond(B-1,C-r),
bond(B-1,D-c)])) .

component(motor, electric-mechanical, 3,
description(input(A),output(D),[A,B,C,D,E],
[bond(A-1,B-i),bond(A-1,C-gy),bord(C-gy,D-
1), bond(D-1,E-r)])) .

component(motor, electric-mechanical, 4,

OR99 Loch Awe, Scotland

description(input(A),output(B),
[A,B,C,D,E],[bond(A-gy,B-1),
bond(B-1,C-r),bond(B-1,D-i),bond(B-1,E-

c)])) .

Each fragment is represented by :
" a name: the same one must be used for the

component in the device description ;
a domain : simple physical domain, or joined
domains to represent a transformation from one
domain to another as in the example of the motor .
A component could be presented in different
domains . For example a tank could be present in
the hydraulic domain and in the thermal domain ;
an integer representing the fragment complexity ;
a description (i .e . bond graph) composed by : (a)
input and output of the bond graph, in order to be
linked to other component' fragments, (b) the list of
Prolog variables each of which refers to a node in
the bond graph, and, finally, (c) a list of bonds
between nodes . A node is represented by a couple
name-type, where name is a Prolog variable and
type is the type of the element (i, c, r, gy) or the
junction (1, 0) . For example the fourth fragment of
the motor corresponds to the bond graph of figure
4 .

component(motor, electric-mechanical, 3,

description(input(A),output(D),[A,B,C,D,E],
[bond(A-1,B-i), bond(A-1,C-gy),
bond(C-gy,D-1),bond(D-1,E-r)])) .

Figure 4 : A fragment model of the component : motor

Knowledge about modeling hypotheses of

physical systems

As we mentioned before, a component may have several
model fragments corresponding to various situations of
use, and depending on the presence or not of particular
physical phenomena .
In each model fragment there is an indication on the
subjacent modeling hypothesis implicitly used . This
indication is obtained from the elements presented in the
bond graph . All we need to do, thus, is to provide a
correspondence about these elements and the physical
phenomena . This is achieved by defining a set of
corresponds » relation . Some of these relations are

given below :

corresponds(friction,r) .
corresponds(dissipation,r) .
corresponds(compressibility,c) .

Furthermore, we don't need the library to contain, for a
particular component, all the possible model fragments .
A tube, for example, can be represented either by one of
the following elements : C, I, or R, which correspond to
three modeling hypotheses, or by one of their
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combinations (see figure 5 below) . Actually, these
hypotheses do mean respectively :
H1 : compressible fluid (flexible walls) ; H2 : inviscid
liquid (long and narrow tube) ; H3 : viscous liquid (rough
walls) .

The device structure

Ht, H2, H3

Figure 5 : Graph of the possible model fragments of a

tube

It appears that beyond the second level of the above
graph (starting from the bottom), it is unnecessary to
encumber the library with the rest of the fragments,
which can be obtained by combining the basic ones .
This choice constitutes an improvement compared to the
graph of models in [Addanki & al . 1991], which
enumerates and represents all the combinations . The
mutually exclusive hypotheses are grouped in a same
class [Falkenhainer & Forbus 1991], in such a way that
all the combinations involving both hypotheses are
discarded . For example :

class(tube,[corresponds(viscosity,r),

corresponds(compressibility, c)]) .

Scenario dependent inputs

The device structure representation is an abstracted
view (model) of the physical system . It is Component-
Connection oriented, and, thus, contains the description
of system components, relations (including connections)
between component terminals, and the specification of
the inputs as well as the outputs of the system .
Let us, consider the structure description of our case
study presented in figure 1 . The declarative description
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(equivalent to the schematic description of figure 2) is
given below :

input ([]) .
output (tank2-hydraulic) .
set-of-relations([
connection(electric,[battery-1],[motor-
1]),
connection(mechanical,[motor-1], [pump-
1]),
connection(hydraulic, [pump-1], [pipe-
21),
connection(hydraulic, [pipe-1], [pump-
1]),
connection(hydraulic, [tank-11, [pipe-
1]),
connection(hydraulic, [pipe-2], [tank-
2])

In addition to the "connection" relation, other kinds
of relations can be used in AIMD, to allow someone to
represent relations such as a heat transfer.

Modeling Hypotheses

The variety of model fragments of each component are
due to the various modeling hypotheses one can
consider when representing a physical system . The user
is allowed to state explicitly such modeling hypotheses
about the device at hand : an a-priori set can be stated,
using "consider" predicates like in [Falkenhainer &
Forbus 1991] . For example : "consider the friction in the
motor", which is represented as following :

consider(mechanical,friction, motor-1) .

These hypotheses are used to index the model fragments
in the library . It means that, they are explicitly
represented in each model (in terms of bond graph
elements) . When such information is available, AIMD
do not explore all the possible combinations of model
fragments, but picks out those with the appropriate
elements to meet hypotheses . In our case study, since
there exist a knowledge that states a correspondence
between friction and 'Y', AIMD will consider only the
model fragments associated to the motor component in
the mechanical domain that contain the element "r" in
their description .

Behaviour Constraints

In addition to the description of the system's structure
and the modeling hypotheses, inputs to AIMD could
include a set of behaviour constraints . A behaviour
constraint describes in qualitative terms one possible
dynamic behaviour of some device variables .
The representation of these expected behaviours is done
through a "constraint" predicate :
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constraint(<component>,<variable>,
<segment>) .

It specifies the physical component and the concerned
variable within it, as well as an ordered list of couples
(value, derivative) for this variable, describing its
expected dynamic behaviour in qualitative terms
(segment) . The qualitative space considered in our study
is {-, 0, +} .
For example, the following constraint : "when the source
tank becomes empty, the motor speed increases", is
represented by the couple of constraints :

constraint(motor-l,speed,

constraint(tank-l,volume,

Figure 6 shows graphically the evolution
variables .

T1
(0,+) (+,+)

(+,+y
t

t

Figure 6 : Graphical representation of the pump

constraints

Modeling Process
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of these

Each segment is a succession of time points and time
intervals, such as in QSIM representation [Kuipers
1986] . All the couples of values for each variable are
represented for the same times .
Each time point has the 0 value for at least one variable
or for his derivative . This point time corresponds to a
change for the sign or evolution of a variable .

The modeling process consists of the following tasks :

Selection of model fragments

The inputs to this task are the structural description of a
system to be modelled and a set of modeling
hypotheses . For each component in a given domain, the
model selection procedure consists in choosing the
simplest model that doesn't contradict the set of the
modeling hypotheses . Initially, this set may include an
a-priori list of explicit modeling hypotheses ; otherwise,
the selection procedure takes the simplest model of each
component . Successive selections are made increasing
the degree of complexity of fragments starting with the
least complex ones .
If we consider a device with n components, and an
average complexity degree of p, then the search space
will cover all the pn combinations . Fortunately, these
combinations are not explored totally, and AIMD allows
for the application of two research strategies. The
modeling process could produce either :
" The first parsimonious model (least complex)

satisfying the criteria, by the application of a branch
and bound search, or

" The first model (not necessarily parsimonious)
satisfying the criteria by the application of a depth-
first search . The depth-first search means that one
component, at a time, has to be made more
complex .

Fragment Assembling

Fragment assembling is made according to the structural
description and some compositional rules . Once the
assembling is performed, AIMD analyses the whole
model to detect if it could be acceptable from the point
of view of causality (i .e . the obtained model must have
a plausible causality) . If it is not the case, a component
is chosen to be altered and its actual fragment is
replaced with the next more complex one . The obtained
model is given in terms of a bond graph (with an
affected causality) from which a set of qualitative
equations is derived .
Furthermore, AIMD uses the following compositional
rules :
1 . a connection between two components is

considered as a serial one :
connection(domain, (oll, [ill)
a serial connection is represented by a bond relating
the model fragments of the two components ;

2 .

	

a connection involving many-to-many components:
connection(domain,[ol,o2, . . .,on],

[il,i2, . . , in])
is considered as a serial connection between the
two lists of components, and as a parallel one
between the components of each list;

3 .

	

a parallel connection is represented by a junction (0
or 1 depending on the domain) ;
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5 .

6.

4 .

	

when a component is declared in the list of inputs
(structure description), a source of effort or flow is
added to it's model fragment (exogenous variable) ;
when a component is declared in the list of outputs,
a resistive element is added to it's model fragment ;
when different perspectives (domains) are possible
for the same component, an information bond is
introduce between the different points of view .

At this stage, AIMD tries to assign the causality bars to
the bond graph . This procedure, described in
[Rosenberg & Karnopp 1983] and in [Top & Akermans
19911, may lead to two cases :
1 . a conflict of causalities : we must, thus, loop

(backtrack) to the selection task to pick up other
fragments (we choose a more complex fragment for
one component) ;

2 . the procedure is successful : we continue with the
next task (if there are many solutions, we have to
cope with all these possible models (i .e . this
represents a non deterministic point during the
modeling process) .

Model verification

In a nutshell, the purpose of verification is to get
confident about the device model . This is crucial to
handle the diagnosis task : when a discrepancy between
what is observed and what is intended is detected, there
is no doubt that something is wrong with the device, so
we never incriminate the model in use.
For the purpose of verification, a set of qualitative
differential equations is derived from the bond graph .
We can now provide the following definition : A model
is said to satisfy a (or a set of) behaviour constraint(s),
if we find a matching between one of the possible
simulated behaviours and the expected one .

In order to be able to compare simulated behaviours
with the expected one, AIMD uses a table of
correspondences between external variables used to
state the behaviour constraint (like speed) and the
internal variables of the bond graph (like "f') . Some or
this correspondences are described in table l .

TABLE 1 : Correspondence relation

We use a QSIM [Kuipers 1986] like simulation in order
to simulate the behaviour(s) of a model . Adapting to the
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bond graph formalism, we elaborated the following
qualitative differential equations (QDEs):
" add(Y, [(XI, sl), . . ., (Xn, Sri)]) : represents the

sum of efforts or flows in a junction,
Y = Y, (si) Xi, where si are the signs (+, -) of each

Xi variable ;
" equal([XI, . . ., Xn]) : represents the equality of

efforts or flows in a junction, XI = . . .= Xn;
"

	

int(Y, X) : integration relation used in the case of a
C or I element (Y and X are either efforts or
flows), Y = J X dt;

"

	

mon(Y, X): a monotonic function used for a R, TF
or GY element .

We adopt the time alternation between time points and
time intervals [Kuipers 1986], and adapt it to the
qualitative variables domain {-, 0, +16 . As a result, we
obtain 15 P-transitions and 15 I-transitions which are
valid between each ([x], [x'])l state and a next ([x],
[x'1)2 state .

The verification algorithm can be described as
following :
1 . Input :

"

	

the set of qualitative differential equations
(obtained from the bond graph) ;
the expected dynamic behaviour
(segment) ;

"

	

a partial initial state (represented by the
first state of the segment) .

2 . Simulation/Comparison :
If the current (or initial) state is
incomplete?

Then complete this state by
propagating its values through the QDEs;
"

	

A next state is determined following these
stages :

a) We apply the simulation algorithm
inspired from QSIM [Kuipers 1986]
to produce a set of new current
qualitative states ;
b) Compare the current state in the
segment with the current qualitative
states . Eliminate those states from the
current qualitative states, which do
not match the segment .

Output/Loop :
"

	

If the set of current qualitative states is
empty (i .e . there is no state that can match

6 We also allow the "?" value.
This is the case in most of the situations, either because
we've got "?" values, or because the segment does not concern
all the system variables.

correspondence(hydraulic, pressure, e) .
correspondence(hydraulic, flow, f) .
correspondence(mechanical, force, e) .
correspondence(mechanical, speed, f) .
correspondence(electric, tension, e) . 3 .correspondence(electric, courant, f) .
correspondence(thermal, temperature, e) .
correspondence(thermal, energy-flow, f) .



the current state in the segment) then
verification fails and the process
backtracks to the last non-deterministic
point,

" Else, if the simulation reaches a state
corresponding to the last state in the
segment, then stop, the model satisfies the
constraints,

"

	

Else go to 2 (Simulation/Comparison) .

Results

Let us consider several modeling scenarios of our case
study . Each modeling scenario corresponds to a
combination of modeling hypotheses and behaviour
constraints, which are as following :

Modeling hypotheses:
Hyl :consider(dissipation,hydraulic,

pipe-1) .
Hy2:consider(dissipation,hydraulic,

pipe-2) .

Table 2 summarises the results obtained for each
scenario (we present here 8 scenarios) . For each
scenario AIMD produce a parsimonious model. The
crosses mean that a hypothesis or a constraint has been
considered :
Models obtained for the scenarios are shown below . We
remark that different scenarios may give rise to identical
models : a) for scenarios 1, 4 and 7, b) for scenarios 2, 5
and 6, and finally c) for scenarios 3 and 8. These models
are presented in figure 7 .
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Figure 7 : Obtained models
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To ease the understanding of the graphs, note that C1 and
C2 represent tank 1 and tank 2, RI and R2 represent pipe
1 and pipe 2, TF represents the pump and GY the motor,
whereas Se is used for the tension .
These modeling scenarios were very instructive, and as we
can see from the table 2, we can point out the following
conclusions :
"

	

As much as we consider modeling hypotheses, as fast
as is the modeling process . Indeed, the model
fragments are, in that case, picked up more
accurately ;

" A modeling hypothesis may be equivalent to the
specification of a behaviour constraint (the same
model can be obtained) . As a future work, we are
going to look closely to the relation between
behaviour constraints and hypotheses in order to
avoid simulation when an equivalence can be found ;
Even in the absence of modeling hypotheses and
behaviour constraints, the modeling process doesn't
lead necessarily to the simplest model, as the
causality assignment can fail when applied on the
latter . It appears, then, that the causality assignment
is, implicitly, considering modeling hypotheses,
which may be forgotten by the user of AIMD. This
characteristic is quite interesting, as we are able to
present the missing hypotheses to the user .
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TABLE 2 : Modeling scenario

" The model verification, and particularly the
qualitative simulation, is the most time consuming
task ;

Diagnosis session presented in section 2 is based on the
use of model c and its derived causal graph (figure 8) . For
more details about the diagnosis task as handled by AIMD
the reader can refers to [Ahriz & Xia 1997]) . Others
causal-model based diagnosis systems are described in
[Mosterman & Biswas 1996], [Tomasena & al . 1992] and
[Console & al . 1989] .

Rz 1;
3 4

Se--b1GN~--tom . TF1-~\ 0~~ --2--~ 0
8T1 1--2- Rt

c4~-6- t~s

Figure 8 : Bond graph and causal graph corresponding to
model c

Scenario

l

Scenario

2

Scenario

3

Scenario

4

Scenario

5

Scenario

6

Scenario

7

Scenario

8

Hl x x x x

Hy2 x x x

Ct l x x

Ct2 x x x x x

Time (see) 1,18 0,62 1 4,22 400,87 14,68 3,80 28,93

Inferences 23493 12715 20998 73141 7368638 268714 64053 534983

Obtained

Model

a b c a b b a c



Conclusion

The Compositional point of view of the modeling task is
the basis of our modeling framework . This approach
requires first to break a physical system into smaller parts
(components) and then to assemble the system from the
parts . Bond graphs modeling greatly facilitates this
requirement since it reposes on the structure of the system
and offers an uniform formalism for the definition of
generic component models which is an important step
through a library of reusable models . The nature of our
modeling approach is intrinsically non-deterministic and
requires the exploration of a search space . Different
models are checked to be consistent with a set of
behaviour constraints and modeling hypotheses provided
by the user . Results show that there is a close relation
between behaviour constraints and modeling hypotheses,
further studies are necessary to understand this relation in
order to avoid simulation during the model verification .
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