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Abstract

Recent rapid advances in MEMS and information pro-
cessing technology have enabled a new generation of Al
robotic systems — so-called Smart Matter systems —
that are sensor rich and physically embedded. These
systems range from decentralized control systems that
regulate building temperature (smart buildings) to ve-
hicle on-board diagnostic and control systems that in-
terrogate large amounts of sensor data. One of the
core tasks in the construction and operation of these
Smart Matter systems is to synthesize optimal control
policies using data rich models for the systems and en-
vironment, Unfortunately, these models may contain
thousands of coupled real-valued variables and are pro-
hibitively expensive to reason about using traditional
optimization techniques such as neural nets and genetic
algorithms. This paper introduces a general mech-
anism for automatically decomposing a large model
into smaller subparts so that these subparts can be
separately optimized and then combined. The mech-
anism decomposes a model using an influence graph
that records the coupling strengths among constituents
of the model. This paper demonstrates the mecha-
nism in an application of decentralized optimization for
a temperature regulation problem. Performance data
has shown that the approach is much more efficient
than the standard discrete optimization algorithms and
achieves comparable accuracy.

Introduction

The new-generation sensor-rich Al robotic systems
present a number of challenges. First, these systems
must reason about large amounts of sensor data in
real time. Second, they must construct and reason
about large models of themselves and the environ-
ment in order to rapidly determine optimal control re-
sponse (Williams & Nayak 1996). This paper describes
an efficient computational mechanism to automate one
of the major tasks in reasoning about distributed phys-
ical systems: decomposition of large models for these
systems into a set of submodels that can be separately
optimized and then combined.

® This paper also appears in the Proceedings of AAAI
1999. Copyright 1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.
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This paper makes important contributions to qual-
itative and model-based reasoning in two ways. (1)
The paper introduces a novel graph formalization for
a model decomposition problem upon which powerful
graph partitioning algorithms can be brought to bear.
The graph formalism is applicable to a large number
of problems where the dependency information in a
model of a distributed system can be either derived
from numerical trial data or reconstructed from analytic
descriptions commonly used in science and engineer-
ing. (2) The paper develops two efficient partitioning
algorithms to decompose a large model into submod-
els. The first algorithm employs spectral partitioning to
maximize intra-component dependencies (called the in-
fluences) while minimizing inter-component dependen-
cies. The second algorithm determines weakly coupled
groups of model components by systematically and ef-
ficiently examining the structural similarities exhibited
by trial partitions. To illustrate the utility of these algo-
rithis, this paper applies the decomposition algorithms
to a distributed thermal control problem. Performance
data has confirmed that the model decomposition al-
gorithms have yielded an efficient control optimization
algorithm that outperforms standard optimization al-
gorithms such as genetic algorithms and simulated an-
nealing. Our optimization algorithm exploits the local-
ity in the decomposition to attain efficiency and is able
to generate solutions that are interpretable in terms of
problem structures. These contributions significantly
extend our previous work (Bailey-Kellogg & Zhao 1998)
on qualitative models and parametric optimization for
large distributed physical systems.

Other researchers in qualitative reasoning, Bayesian
nets, and image processing have also investigated the
problem of using decomposition to efficiently model
complex physical systems. Williams and Millar de-
veloped a decomposition algorithm for parameter es-
timation that determines for each unknown variable
in a model a minimally overdetermined subset of con-
straints (Williams & Millar 1996). The algorithms of
this paper identify similar dependencies among nodes of
a net either from a constraint net or directly from nu-
merical data, and then partition the dependency graph
into nearly decoupled subsets. Clancy introduced an
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Figure 1: Rapid thermal processing for semiconductor
manufacturing maintains a uniform temperature profile
by independent control to separate rings of heat lamps.

algorithm for generating an envisionment of a model
expressed as a qualitative differential equation, once a
partition of the model is given by the modeler (Clancy
1997). Our influence-based decomposition algorithms
can produce the model partitions required by Clancy’s
algorithm. Recent work in image segmentation has in-
troduced measures of dissimilarity to decompose im-
ages, based on pixel intensity differences (Shi & Malik
1997; Felzenszwalb & Huttenlocher 1998). Friedman et
al. in probabilistic reasoning have introduced a method
to decompose a large Bayesian belief net into weakly-
interacting components by examining the dependency
structure in the net (Friedman, Koller, & Pfeffer 1998).
Many scientific and engineering applications have ex-
ploited similar insights in order to divide and conquer
large computational problems. In the well-studied N-
body problem, the interactions among particles are clas-
sified into near and far field so that they can be decom-
posed into a hierarchy of local interactions to achieve a
linear-time speed-up (Zhao 1987). In engineering com-
putation, domain decomposition techniques (Chan &
Mathew 1994) have been developed to separately simu-
late submodels of large models, based on connectivity in
the models. This paper utilizes a similar insight to for-
malize the task of model decomposition based on influ-
ences in the models. Furthermore, our approach explic-
itly represents the physical knowledge and structures
that it exploits, so that higher-level reasoning mecha-
nisms have an explainable basis for their decisions.

Problem Description

We develop the influence-based decomposition mecha-
nism for large models typically arising from distributed
sensing and control problems. For example, consider
a distributed thermal regulation system for rapid ther-
mal processing in semiconductor curing, where a uni-
form temperature profile must be maintained to avoid
defects (Figure 1). The control strategy is decentral-
ized, providing separate power zones for three rings
of heat lamps (Kailath & others 1996). As a similar
example, rapid prototyping in thermal fabrication can
employ moving plasma-arc heat sources to control the
temperature of parts to be joined (Doumanidis 1997).
Abstracting these real-world applications, this paper
adopts as a running example the generic problem of
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decentralized temperature regulation for a piece of ma-
terial. The temperature distribution over the material
must be regulated to some desired profile by a set of in-
dividually controlled point heat sources. Many sensor-
rich systems employ such decentralized control that ac-
complishes global objectives through local actions in
order to ensure adaptivity, robustness, and scalability.
For example, a smart building regulates its tempera-
ture using a network of sensors and actuators; decen-
tralized control allows the network to overcome failures
in individual control elements and to scale up without
incurring exponential complexity. Rapid synthesis of
optimal control policies for these distributed systems
requires efficient methods for reasoning about large cou-
pled models.

In particular, we focus on the control placement de-
sign task: to determine the number and location of heat
sources, subject to a variety of structural constraints
(e.g. geometry, material properties, and boundary con-
ditions) and performance constraints (e.g. maximum
output and maximum allowed error). While we only
consider the placement design here, we have also stud-
ied the parametric optimization (in this example, the
actual heat output) and reported it elsewhere (Bailey-
Kellogg & Zhao 1998). The engineering community has
applied various discrete optimization techniques (e.g.
genetic algorithms in (Dhingra & Lee 1994) and simu-
lated annealing in (Chen, Bruno, & Salama 1995)) to
the control placement design problem. In contrast to
these techniques, we seek to use domain knowledge to
extract and exploit qualitative structural descriptions of
physical phenomena in the design process. This yields
a principled method for reasoning about designs and
design trade-offs, based on an encapsulation of deep
knowledge in structures uncovered for a particular prob-
lem. This in turn supports reasoning about and expla-
nation of the design decisions.

The control placement design task will be used as a
specific example illustrating our general mechanism for
partitioning distributed models; the discussion section
further discusses the generality of our approach. The
goal here will be to design a placement that aids para-
metric optimization, by placing controls so that they
minimally interfere with each other. This is particu-
larly appropriate for applications where the placement
design is performed once, and the parametric design
is performed repeatedly (e.g. for various desired tem-
perature profiles). The design approach taken here is
to decompose a problem domain into a set of decou-
pled, atomic subregions, and then independently design
controls for the separate subregions. Regions are con-
sidered decoupled if the exact control design in one re-
gion is fairly independent of the exact control design
in another. A region is considered atomic if it needs
no further decomposition —.control design for the re-
gion yields adequate control of the region. Influence-
based model decomposition provides a powerful high-
level mechanism for achieving such designs.



Figure 2: Thermal hill for a heat source.

Influence Graph

In order to design decentralized controls for a physi-
cal field, it is necessary to reason about the effects of
the controls on the field. We previously introduced the
influence graph (Bailey-Kellogg & Zhao 1998) to repre-
sent such dependencies. Figure 2 shows an example of
influences in a temperature domain — a “thermal hill,”
with temperatures decaying away from the location of
a heat source. When multiple sources affect a thermal
field, their influences interact, yielding multiple peaks
and valleys.

The influences in this example obey the locality prin-
ciple: a heat source strongly affects nearby field nodes
and only weakly affects further away field nodes, de-
pending on the conduction properties of the mate-
rial. In addition, despite nonlinearities in the spatial
variables (e.g. non-uniform conduction characteristics
or irregular geometry), influences from multiple heat
sources can be linearly superposed to find joint influ-
ences. These properties are characteristic of a variety
of physical phenomena. In order to take advantage of
these and other properties, influence graphs serve as
an abstract, domain-independent representation of this
knowledge. The definition of influence graph assumes a
discretized model, as in (Bailey-Kellogg & Zhao 1998),
and as is common to standard engineering methods.

Definition 1 (Influence Graph) An

graph is a tuple (F,C, E,w) where

o ' is a set of field nodes.

o (C is a set of control nodes.

e E=C x F is a set of edges from control nodes to
field nodes.

e w:E — R is an edge weight function with w((c, f))
the field value at f given a unit control value at c.

influence

Hence, the graph edges record a normalized influence
from each control node to each field node. A thermal
hill (e.g. Figure 2) is a pictorial representations of the
edge weights for an influence graph from one heat source
to the nodes of a temperature field.

An influence graph is constructed by placing a control
with unit value at each control location of interest, one
at a time, and evaluating the field at field node loca-
tions of interest. The method of evaluation is problem-
specific. For example, it could be found by numerical
simulation, experimental data, or even explicit inver-
sion of a capacitance matrix. An influence graph then
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serves as a high-level interface caching the dependency
information. The following two sections use this depen-
dency information in order to decompose models based
on influences between their parts.

Graph Decomposition

As discussed in the introduction, many applications re-
quire decomposing models into smaller pieces, in order
to reason more tractably with the components or to
divide-and-conquer a problem. Many models can be
formalized in terms of graphs describing the structural
dependencies of components. Decomposing a model
is then equivalent to partitioning the corresponding
graph. Given a graph, a decomposition identifies sub-
sets of vertices so that a metric such as the number of
edges or total edge weight between vertices in different
subsets is minimized. In particular, the decomposition
of an influence graph partitions a model so that the
connected components maximize internal influence and
minimize external influence. For the running example
of decentralized heat control, this decomposes a ther-
mal field so that controls in one part are maximally
independent from those in other parts.

The numerical analysis and computational geometry
communities have developed a number of methods for
partitioning graphs; these methods have varying costs
and varying effectiveness. In particular, we concentrate
here on spectral partitioning (Simon 1991), which ex-
amines the structure of a graph’s Laplacian matriz en-
coding the connectivity between points. Specifically,
entry (z,7) in the Laplacian matrix has value —1 if and
only if there is an edge from node i to node j in the
graph; entry (i,i) has value equal to the total number
of edges from node ¢. It turns out that a.good approx-
imation to the optimal partitioning (minimum number
of cut edges) can be achieved by separating nodes ac-
cording to the corresponding values in the eigenvector
for the first non-trivial eigenvalue of this matrix (the
Fiedler vector). Intuitively, in a one-dimensional do-
main, this is similar to partitioning the domain by look-
ing at the sign of a sine wave stretched over it. This
technique can be extended to minimize the total weight
of edges cut, and normalization of edge weights allows
simultaneous optimization of both inter-partition dis-
similarity and intra-partition similarity. Shi and Malik
showed, in the context of image segmentation, that this
approach yields a good estimate of the optimal decom-
position (Shi & Malik 1997).

This novel formalization of control placement de-
sign in terms of influence graph partitioning provides
a graph-based framework in which to develop design
algorithms. The spectral partitioning algorithm serves
as one instantiation of this framework, based on an all-
to-all influence graph. The next section introduces an
alternative approach that uses a less detailed model,
decomposing a model using an influence graph from a
set of representative nodes to all the other nodes.
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Probe classes

Field

Figure 3: Overview of influence-based decentralized
control design for thermal regulation.

Equivalence Class Partitioning

The equivalence class partitioning mechanism decom-
poses a model based on structural similarities exhibited
in a field in response to the actions of sample control
probes. Figure 3 overviews the mechanism. In the ex-
ample shown, the geometric constraint imposed by the
narrow channel in the dumbbell-shaped piece of mate-
rial results in similar field responses to the two probes
in the left half of the dumbbell and similar responses to
the two probes in the right half of the dumbbell. Based
on the resulting classes, the field is decomposed into re-
gions to be separately controlled. In this case, the left
half of the dumbbell is decomposed from the right half.

The following subsections detail the components of
this mechanism.

Control Probes

For a temperature field to exhibit structures, heat
sources must be applied; then an influence graph can
be constructed. For example, Figure 4 shows the
iso-influences resulting from two different heat source
placements; in both cases, the structure of the contours
indicates the constraint on heat flow due to the nar-
row channel. The control placement design algorithm
is based on the response of temperature fields to such
control probes. The number and placement of control
probes affects the structures uncovered in a tempera-
ture field, and thus the quality of the resulting con-
trol design. Possible probe placement strategies include
random, evenly-spaced, or dynamically-placed (e.g. in
inadequately explored regions or to disambiguate incon-
sistent interpretations). Experimental results presented
later in this paper illustrate the trade-off between num-
ber of probes and result quality, using the simple ran-
dom probe placement strategy.
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Figure 4: Temperature fields exhibit structures in re-
sponse to heat source probes.

Probes serve as representatives for the effects of
arbitrarily-placed controls. In particular, the probes
that most strongly affect a location (e.g. influence
greater than average or a fixed threshold) serve to ap-
proximate the effects that would be produced by a con-
trol placed at that location. The quality of the approx-
imation of controls at arbitrary locations by represen-
tative probes depends on the effects of geometry and
material properties. Since the influence graph encapsu-
lates these effects, it provides a natural mechanism for
reasoning about approximation quality.

Using control probes as representatives of control
placement effects supports reformulation of the decom-
position problem into that of partitioning probes into
equivalence classes. Each equivalence class of probes
serves as a representatives for a region of strongly-
affected potential control locations, as discussed above.
A good decomposition produces probe classes with re-
gions decoupled from the regions of other classes, and
which have no acceptable subclasses.

Evaluating Control Decoupling

The first criterion for evaluating a decomposition is that
each region be decoupled from other regions; that is,
that controls in one region have little effect on nodes
in the other, and vice-versa. In terms of control probe
equivalence classes, decoupling will be evaluated by con-
sidering independence of both control placement and
control parameters.

To evaluate independence of control placement, con-
sider the influence gradient vectors induced by a set
of probes; Figure 5 shows a simple example for two
probes.! While the flows are different near the loca-
tions of the two probes, they are quite similar far away
from the probe locations. This similarity is due to con-
straints imposed by geometry and material properties;
in this case, the narrow channel of the material effec-
tively decouples the left and right halves. A numerical
measure for the similarity is implemented, for exam-
ple, by averaging the angular difference between gradi-
ent vectors produced by different probes. This measure
evaluates the indistinguishability of control placement
within the set of probe locations, and thus is correlated
with a good decomposition into decoupled regions.

To evaluate independence of control parameters, we
distinguish between nodes strongly and weakly influ-
enced by a control (the near field and the far field, re-

'Recall that an influence graph is constructed from field
values for unit controls. By influence gradient vectors, we
mean vectors in the gradient field for a control — rate and
direction of steepest change in field value.
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Figure 5: Similarity of flows due to control probes sug-
gests indistinguishability of control placement.

[ Near field

Figure 6: An influence hill partitions a field into near
and far fields relative to a control.

spectively), due to locality in the domain (Figure 6).
Possible near /far distinctions include a fixed influence
threshold, a threshold proportional to the peak of the
hill, or a threshold based on the “knee” of the hill. A
probe only weakly affects its far field, and thus can be
effectively decomposed from it. Alternatively, probes
that have significant overlap in their near fields can be
reasonably grouped together.

In addition to independence from any single control,
a well-decoupled region must be independent. from the
combined effects of other controls. That is, for a set of
probes, the total influence on its controlled region from
controls for other probe sets must be sufficiently small.

Evaluating Region Atomicity

The second criterion for evaluating a decomposition is
that each region be decomposed far enough. A region
is considered atomic if none of its subregions are ad-
equately decoupled from each other. For example, in
Figure 7 a partition {{A, B,C, D},{E, F,G}} achieves
good decoupling, since the probes in the first class are
relatively independent from those in the second class.
However, it is not atomic, since {A, B,C, D} can be
further decomposed into {{4, B}, {C, D}}.

One approach to ensuring atomicity of the classes of
a decomposition is to recursively test subsets of probes
to see if they result in, valid decompositions. For exam-
ple, by testing partitions of the class {4, B, C, D} for
independence, the partition {{4, B}, {C,D}} would be

| Ae \_r;gl_. E®
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Figure 7: Control probe placement with potential non-
atomic decomposition.
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Given probes P = {p1,pa,...,pn}

Form classes C = {{p1}, {p2},..., {pn}}.

Repeat until stable
For each neighboring ¢;,c; € C

If Forall k with k #1 and k # j
decoupling of ¢; and ¢; and
decoupling of ¢; and ¢ are better than
decoupling of ¢; and ¢;

And ¢; Ue; is atomic
Then replace ¢; and ¢; in C with ¢; U ¢;

Table 1: Probe clustering algorithm.

uncovered. The test can use heuristics to avoid testing
all possible subclasses. For example, just by examin-
ing overlap in influences in the class {4, B, C, D}, the
partition {{A, B}, {C, D}} can be generated as a coun-
terexample to the atomicity of {A, B,C, D}. If a class
is already small, out-of-class probes can be used in such
a test, and, if necessary, new probes can be introduced.
For example, in an atomicity test for {A, B}, checking
independence of {A,C} from {B, D} would show that
{A, B} is indeed atomic. An inexpensive and empiri-
cally effective method is to allow grouping of pairs of
probes only if their near fields sufficiently overlap.

Probe Clustering Algorithm

Based on these criteria, control probes can be clustered
into decoupled, atomic equivalence classes. One effec-
tive clustering method is greedily merging neighboring
probe classes based on similarity. Start with each probe
in its own class, and form a graph of classes based
on proximity (e.g. Delaunay triangulation or nearness
neighborhood). Then greedily merge neighboring pairs
of classes that are most similar, as long as a region
is strongly influenced by other regions, and until a
merger would result in a non-atomic class. Table 1
provides pseudocode for this algorithm. Figure 8 il-
lustrates a sample probe neighborhood graph, Figure 9
depicts some influence gradients for sample probes, and
Figure 10 shows the controlled regions for equivalence
classes of probes after the merging process. While more
sophisticated clustering mechanisms could be applied,
the results in the next section show this algorithm to
be empirically effective on a set of example problems.

Implementation Results

The influence-based decomposition algorithms have
proved effective in designing control placements for de-
centralized thermal regulation.. The performance has
been measured in two ways: quality of the decompo-
sition, and ability of the resulting control design to
achieve an objective.

Data for three sample problems are given here: a
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Figure 9: Probe clustering example: influence gradient
vectors from two probes.

sleselos ool eslel | BRIV AL E BT
¢ lo'stale'sln/slalasl 11 BOB5IEH FH8 s
I3 L 11 “eod
1] bk
0% O 1] Ity
L' OO0
i slole’s]
OO 0K
g ]
bt :; u
o o
X L4
t:: ol ] +11
= 1, M -
28 # 40@0 a8
#e 1
H 3308553050 ..08800888888 0!
g :; * A BEGad ::
PRDHBHH o
] FRODIEHERIDT .
° SRBEIGRY
SDANBIPEDD
(141
aeet
L
"

Figure 10: Probe clustering example: region decompo-
sition after merging.
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plus-shaped piece of material, a P-shaped piece of ma-
terial, and an anisotropic (non-uniform conduction co-
efficient) bar. These problems illustrate different ge-
ometries, topologies (the P-shaped material has a hole),
and material properties. Other problems have also been
tested; the results are similar.

The decomposition algorithm forms groups of con-
trol probes with similar effects on the field. This re-
quires that probes be dense enough, relative to condi-
tions imposed by geometry and material properties, so
that groups of probes with. similar effects can be uncov-
ered. Otherwise, each probe ends up in its own class,
and the decomposition is too dependent on probe place-
ment. To study the impact of the number of control
probes on the effectiveness of the resulting design, dif-
ferent numbers of probes (4, 8, 16, and 32) were placed
at random in a given domain, and results were aver-
aged over a number of trial runs. While smarter probe
placement techniques might yield more consistently ef-
fective designs, this approach provides a baseline and
illustrates the trade-off between number of probes and
error/variance. The probe clustering algorithm used a
Delaunay triangulation probe neighborhood graph, a
near field based on influence of at least 10 percent of
peak, and a similarity measure based on flow vector di-
rection. For comparison, merging was performed until
four classes remained.

Decomposition Quality

The goal of a decomposition algorithm is to partition
a domain into regions such that source placement and
parametric optimization in each region is relatively in-
dependent of that in other regions (decomposed) and
has no internally independent regions (atomic), The
estimate of the quality of a decomposition used here is
based on a corresponding formalization for image seg-
mentation by Shi and Malik (Shi & Malik 1997): com-
pare the total influence from each control location on lo-
cations in other regions (decomposed), and the amount
of influence from that location on locations in its own
region (atomic). To be more specific, define the decom-
position quality ¢ (0 < ¢ < 1) for a partition P of a set
of nodes S as follows (i is the influence):

r H (‘ T)
a= ] Yo === 3 A T i(c,s
REPceR 2ses'\©

For each control node, divide its influence on nodes
in its own region by its total influence. Summing that
over each region yields an estimate of the fraction of
control output of any control location in the region that
is used to control the other locations in that region. The
quality measure is combined over all regions by taking
the product of each region’s quality.

Figure 11 compares the performance of the equiv-
alence class partitioning mechanism with that of the
spectral partitioning mechanism. It provides the aver-
age error and standard deviation in error over a number
of trial runs, with respect to different numbers of control
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Figure 11: Performance data indicate that the probe
clustering algorithm supports trading decomposition
quality for computation. Results are relative to spectral
partitioning.

probes. For all three problems, the average quality for
the equivalence class partitioning mechanism naturally
decreases as the number of probes decreases. (There
is a slight taper in the performance for the plus shape,
due to statistical sampling.) Furthermore, the standard
deviation of quality tends to increase as the number of
probes decreases, since the partition is more sensitive to
specific probe placements. The curve indicates a trade-
off between amount of computation and resulting de-
composition quality. With enough probes, the quality
is commensurate with that of spectral partitioning.

Control Placement Quality

The ultimate measure of the control design algorithm is
how well a design based on a decomposition can achieve
a control objective. This section evaluates the abil-
ity of decomposition-based control designs to achieve
a uniform temperature profile. This profile is better
than other, non-uniform profiles at indicating the per-
formance of a decomposition, since it does not depend
as much on local placement adjustment and paramet-
ric optimization. Intuitively, if a decomposition clumps
together sources, then some other region will not get
enough heat and thus will have a large error.
Simulated annealing (Metropolis et al. 1953) serves
as a baseline comparison for error; an optimizer was run
for 100 steps. The decomposition-based control design
used a simple approach: for each region of a decomposi-
tion, place controls in the “center of influence” (like the
center of mass, but weighted with total influence from
the probes, rather than mass, at each point). In both
cases, only the global control placement was designed;
local adjustment could somewhat reduce the error.
Figure 12 illustrates average error and standard de-
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Figure 12: Performance data indicate that equivalence
class-based control placement design supports trading
control quality for computation. Results are relative to
simulated annealing.

viation in error over a set of trial runs. The equiva-
lence class algorithm was tested with different numbers
of control probes; as shown above, the spectral parti-
tioning algorithm would yield similar results. The er-
ror here is the sum of squared difference between actual
temperature profile and desired temperature profile. As
with decomposition quality, the average and standard
deviation of control quality tend to improve with the
number of probes; enough probes yields quality com-
mensurate with that of simulated annealing.

Run-Time Performance

There are two implementation strategies to consider in
terms of run-time performance. The centralized ap-
proach explicitly inverts the capacitance matrix describ-
ing the system (e.g. from a finite-element mesh), yield-
ing influences from every potential control node to every
field node. The matrix inversion constitutes the bulk
of the run time. Spectral partitioning then performs an
eigenvalue computation. Simulated annealing examines
some number of configurations (in the tests above, 100)
with respect to the effects encoded in this matrix. Our
approach does simple comparisons between fields due
to different probe locations.

The decentralized approach treats the system as a
black box function to be computed for each configu-
ration; the run time primarily depends on the number
of function evaluations. The spectral method is not di-
rectly amenable to this approach. Simulated annealing
requires the function to be evaluated for each configu-
ration (in the tests above, 100). Our apprach requires
the function to be evaluated for each probe (in the tests
above, 4, 8, 16, or 32 times).
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Discussion

This paper has developed mechanisms for automatically
decomposing large models, based on structural repre-
sentations of influences. This formalization in terms of
influences differs from the formalisms in related engi-
neering work, which typically use topology and geome-
try, and related AI work, which typically use constraint
nets. Redescribing a model decomposition problem as
an influence graph partitioning problem allows applica-
tion of powerful, general algorithms.

We first introduced the influence graph mechanism
in (Bailey-Kellogg & Zhao 1998) as a generic basis for
representing and manipulating dependency information
between control nodes and field nodes. The properties
of physical fields that it encapsulates (locality, linear
dependence, etc.) are exhibited by a variety of physical
phenomena, from electrostatics to incompressible fluid
flow. Note that these phenomena are all governed by
diffusion processes; it remains future work to develop
similar mechanisms for wave processes. Since they are
based on influence graphs, the model decomposition for-
malism and algorithms developed here are applicable to
this wide variety of models.

The influence graph provides a common interface to
the model of a distributed physical system, whether it
is derived from partial differential equations, simulation
data, or actual physical measurements. In the case of
physical measurements, sensor outliers can be detected
by comparing the data with the expected value based
on nearby points. Additionally, since the algorithms
reason about the qualitative structures of influences,
they are less sensitive to individual sensor errors.

The decomposition-based control design algorithms
search a design space in a much different manner from
that of other combinatorial optimization algorithms,
such as genetic algorithms (Holland 1975) and simu-
lated annealing (Metropolis et al. 1953). Rather than
(perhaps implicitly) searching the space of all possible
combinations of source locations, the influence-based
decomposition approach divides and conquers a prob-
lem, breaking a model into submodels based on in-
fluences. This approach explicitly forms equivalence
classes and structures in the domain, rather than im-
plicitly representing them in terms of, for example, in-
creased membership of highly-fit members in a popula-
tion. Since design decisions are based on the influence
structure of the field, this approach supports higher-
level reasoning about and explanation of its results; for
example, a design decision could be explained in terms
of constrained influence flows through a field.

Conclusion

This paper has developed efficient influence-based
model decomposition algorithms for optimization prob-
lems for large distributed models. Model decomposition
is formalized as a graph partitioning problem for an in-
fluence graph representing node dependencies. The first
algorithm applies spectral partitioning to an influence
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graph. The second algorithm decomposes a graph us-
ing structural similarities among representative control
probes. Both algorithms reason about the structure of
a problem using influences derived from either a con-
straint net or numerical data. Computational experi-
ments show that the algorithms compare favorably with
more exhaustive methods such as simulated annealing
in both solution quality and computational cost.
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