
Abstract

The task of generating informative explanations in
industrial training involves automated formulation of
system models with respect to the varying levels of the
trainees' knowledge . Compositional 'Modeling provides
a useful basis upon which to structure a suite of mod-
els that may reflect different complexities of the system
being modelled . However, additional inferences are re-
quired in order to select appropriate model fragments
to form a coherent system model that is suitable for a
given trainee's degree of expertise . This paper presents
a novel approach to perform such inferences by the use
of Bayesian networks . The work is implemented and
typical experimental results are given .

Introduction
The need for informative explanations regarding the
behaviour of physical systems arises in many tasks in
science and engineering . In industrial training, such
explanations are especially significant for the establish-
ment of coherent and consistent knowledge of the com-
ponents and their associated processes of a given plant .
The task of explanation generation involves, essentially,
finding information that is relevant to a communicat-
ive goal set. by the explainee, from available knowledge
sources, and organising this knowledge into a cohesive
and coherent multi-sentential text . An important re-
quirement of generating such explanations is the ability
to vary the explanation content according to the ex-
pertise of the explainee, by adjusting the level of detail
of the underlying domain knowledge .
To achieve the required adjustments of domain know-

ledge, a technique that allows for systematic variation
of the knowledge representation is needed . Composi-
tional Modelling (CM) (Falkenheiner & Forbus 1991) ;
(Gruber & Gautier 1993), (Nayak 1994), (Levy, Iwa-
saki, & Fikes 1997) has been developed as a methodo-
logy for formulating knowledge models for the domain
of interest by composing model fragments, i .e . (partial)
models of the domain's primitive elements that describe
only some aspects of the components' behaviour . As
such, CM enables the variation of detail of the entire
model by altering the detail of the fragments used as
building blocks and is used as basis for the present work .
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By reflecting the user expertise to the detail level of
at least some of the model fragments, guidelines for the
selection of the remaining fragments can be set in order
to formulate a model that corresponds to the under-
standing ability of the user . This is, however, a flexibil-
ity that has not been provided in the existing work for
automatic model formulation . An approach is herein
presented towards enabling such model formulation for
the domain objects of interest . The selection of the ap-
propriate model fragments is based on the utilisation
of reasoning with a Bayesian network . This is motiv-
ated by the intention to employ an efficient as well as
formal theory to handle the uncertainty involved with
the selection of fragments, based on initial preference
of some of the available model fragments according to
the information request of the user .
The rest of this document is organised as follows .

Section provides an overview of the design of the en-
tire computer program that, performs explanation gen-
eration, putting the model formulation module in con-
text with the rest of the modules involved . In Section .
after a brief review of the CM paradigm and basic ideas
in reasoning with Bayesian networks, the proposal for
model formulation through Bayesian model fragment
selection is presented . A simple example of the reason-
ing involved in this approach is illustrated in Section .
Section concludes the paper .

The Explanation Generation System
The present work is developed within the general frame-
work of explanation generation . Figure 1 shows the
main functional modules (Explanation Generator, Ap-
proximate Reasoner and Model Formulator) and their
component dependencies of an explanation system, de-
signed and implemented by the authors .
The Explanation Generator serves as a mediator with

the user . During a training session, the user can se-
lect questions from predefined menus about the com-
ponents of the domain system that is presented to the
user . Each selected question is internally transformed
into a first-order predicate structure which forms
the current user explanation goal: question-typel<
list of related objects >}, where an object is a
domain component or process of interest . This goal is
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object(s) of current interest (from currentezplanatian goa!)

MODEL FORMUL9TOR

utilised to update the user model and the history of
the discourse, following the methods given in (Cawsey
1993) .
The user model contains a set of profiles for the user,

classified according to the object's) appearing in each
of the queries . These profiles essentially keep a record
of the object's detail level as it was represented in the
model used for the most recent explanation involving
this object . The initial detail level of an object is set
by default to the simplest level possible for that object, .
The detail level is determined, currently, by the number
of variables involved in the set of equations constituting
the model fragment that represents the object . From
these profiles it is possible to derive the detail level in
the most recent representation of an object Dobject ;, as
well as the rate of change of the detail level, Dobject ;, as
the explanation process continues . Both these quantit-
ies and the frequency of occurrence of an object within
the profiles of the user model, 'object ;, are used by
the Approximate Reasoner to compute the desired de-
tail level. Dobject ;, of the fragments to be selected in
the subsequent system model formulation process . Ap-
proximate reasoning (Pedrycz & Gomide 1998) provides
a consistent methodology- of accounting for the uncer-
tainty about the relationship between the user's expert-
ise and the desired detail of the model fragments that
is needed for domain model formulation .
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-----------------------------------------------------------------------------

Figure 1 : Explanation system : individual modules and their components

The Model Formulator exploits the Approximate
Reasoner's decision to select appropriate model frag-
ments . It is this module that the current work is fo-
cused on . In CM, each of the model fragments typically
represents a component or process under certain oper-
ational conditions and is associated with several con-
sequences that will result if the conditions are satisfied .
Given model fragments for various aspects of a physical
system, the system model is formulated commonly by
determining its boundary and deciding the best repres-
entation of parts within that boundary . For the present
application, the boundary of the system model is set by
an initial domain-dependent description of the system
that the trainee is to learn about . The model formula-
tion process is facilitated by reasoning with a Bayesian
network . This process will be detailed in the following
section . The outcome of this reasoning is a complete,
adequate model containing fragments for all the com-
ponents of interest, at a detail level appropriate for the
user . The model is then parsed in order to extract in-
formation to be conveyed and the methods described
in (Cawsey" 1993) are applied for structuring dialogue
plans for this information to be communicated to the
user via the presentation manager .

Model Formulation
After a general overview of the system's functioning,
the details regarding the Model Formulator come into
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focus . Before engaging in the discussion of the main
issues of the proposed model formulation technique, it
is beneficial to briefly review the relevant theoretical
aspects for the two research areas involved in the model
formulation process, i .e . CM and Bayesian networks .
Compositional Modelling

	

CM offers a paradigm of
formulating models for a given physical domain, com-
posing them out of partial descriptions of certain phys-
ical aspects . These descriptions are generally known
as model fragments . Each of these fragments repres-
ents a component or process under certain conditions
and with several consequences which can be fulfilled
provided that the conditions are satisfied .
Having represented a set of phenomena using model

fragments, the methodologies developed within CM
strive to complete two tasks : determining the model
boundary and deciding the best representation of parts
within that boundary . The former involves determin-
ing the boundary of the model with respect to both the
physical extent of the system being modelled and the
detail of representation of the various components of the
system . Typically, a hierarchical manner of representa-
tion is followed, with all the components assembled by
subcomponents . Traditionally, heuristics such as dis-
covering the minimal covering system (Falkenheiner &
Forbus 1991) are used to identify the physical model
boundary .
With the model boundary identified, a decision is

made on how each part. of the system should be rep-
resented as well as how to assemble a model from the
partial descriptions for each of the parts . The main
approaches are creating a parsimonious model directly,
creating an over-complex model and then attempt to
simplify it, or creating a simple model and subsequently
adding detail to it according to the task for which the
model is required .
The final issue to be addressed concerns the verific-

ation of the adequacy of the formulated models with
respect to the task they are built for . The typical ap-
proach is to check the internal consistency of a model
against a set of adequacy constraints (Levy, Iwasaki, &
Fikes 1997) .
Compositional Modelling approaches are sound, but

offer little provision for use in uncertain environments .
In the context of explanation generation, however, se-
lecting suitable model fragments with respect to the
user's expertise inherently involves uncertainty in mod-
elling assumptions . This is because of
" incompleteness in determining exactly what the user
knows about the domain components of interest .

" approximation in specifying which level of detail can
be deemed as sufficient when selecting fragments to
satisfy a query,

" complexity in mapping all possible levels of expertise
to all possible detail levels for the available model
fragments .
A useful model formulation mechanism must be able
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to handle these issues . Bayesian network reasoning
provides a general and efficient means of addressing un-
certainty and is therefore used herein to assist the task
of the Model Formulator . In addition the network struc-
turing methodologies that accompany Bayesian net-
works can be an efficient basis upon which to translate
modelling expertise into intuitive causal relationships,
when selecting model fragments for different domain
components .
Bayesian Networks A Bayesian network is a dir-
ected acyclic graph in which the nodes represent the
variables of interest and the links stand for the causal
dependencies between variables (or nodes) (Pearl 1988) .
The nodes are labelled with conditional probabilities
that provide estimates of the strength of the dependen-
cies between the values of the variables . Therefore, a
Bayesian network is a compact, localised representation
of a probabilistic model, using a qualitative, graphical
depiction of the causal relations between the entities
involved, and a quantitative measure of the "strength"
of these links . The key to its locality is that, given a
graphical structure which represents the dependencies
(and, implicitly, conditional independencies) among a
set of variables, the joint probability distribution over
the set can be completely described by specifying the
appropriate set of marginal and conditional distribu-
tions over the variables .

Efficient reasoning mechanisms have been developed
to handle inferences within a Bayesian network (Pearl
1988), (Shennoy & Shafer 1988) . Typically, these mech-
anisms involve propagation of received evidence for the
value of a specific node throughout the network, using
the Bayes rule (Pearl 1988) for the estimation of pos-
terior probabilities of the nodes taking specific values .

Several major issues are important to be resolved
when applying Bayesian networks :
" structuring the network, based on qualitative inform-

ation of the causal influences between the chosen rep-
resentational primitives (i .e . the network's nodes) ;

" eliciting probabilistic information to annotate the
network's links, i .e . deciding about the prior prob-
abilities associated with the network's links : and

" selecting a method to propagate evidence throughout
the network, and collecting results to utilise later on .
These will be addressed below for the present applic-
ation problem .

Other details relating to Bayesian networks are beyond
the scope of this paper, but are discussed in depth in
(Pearl 1988) .
The Proposed Method The inputs to the Model
Formulator are :
" A structural description of the domain system,

specifying the components involved and the inter-
connections between them . This is prescribed before
the start of an explanatory session and remains un-
changed during the explanation process .



A library of model fragments, represented at differ-
ent detail levels . Each model fragment represents a
certain aspect of the structural and behavioural in-
formation of a given component of the domain sys-
tem . The model fragments for the different represent-
ations of a particular component are organised into
an assumption class for the component . Fragments
within an assumption class have different and often
mutually contradictory conditions, and thus only one
fragment from the assumption class of a given com-
ponent can be used to represent the component in a
system model .

" A desired level of detail for a subset of the model
fragments required to construct the system model,
provided by the Approximate Reasoner .

e A set of objects (components or processes) of interest,
obtained from the queries of the user .
The domain system description is used to structure

a Bayesian network relating model fragments from one
assumption class to fragments of other classes . Each
network node stands for the selection or rejection of a
specific model fragment. As such, a node may take a
value from the set {yes, no} (with yes indicating the
selection of the fragment and no the rejection) . The
links of the Bayesian network represent the relation-
ships between model fragments as determined by the
global system description : if component A has its out-
put connected to the input of component B, then links
are established from the model fragments of A towards
those of B. Although care needs to be taken over the
"connections" between fragments of different precisions,
the model fragments used are of qualitative symbolic
nature and such connections can be reasoned on the
grounds of qualitative values of the variables involved
in the fragments . The present work assumes the worst
case, allowing all model fragments of component A to
be connected to all fragments of component B, if A is
physically connected to B. Of course, any given con-
straints from theoretical or empirical knowledge sources
that prohibit such a connection can be taken into ac-
count in setting up the network structure by assigning a
prior probability of zero to the forbidden network links .
Given the structure of a Bayesian network, each net-

work node is annotated with estimates for the condi-
tional probabilities of the node acquiring a yes or no
value when its "parent" nodes are assigned their val-
ues . In general, deriving such prior probabilities is a
task of great difficulty (Pearl 1988) . There are applica-
tions where historical data is available, thereby enabling
the required estimation, sometimes by simply calculat-
ing the frequencies of value appearance . In less fortu-
nate cases, like the present application, some sort of
rules or heuristics have to be derived from the problem
description in order to decide the prior probabilities .

In this work the heuristics employed depend on
whether or not a node is a root node, i .e . one that has
no parent nodes . The first heuristic indicates whether
a model fragment is to be selected, by weighing the fol-
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lowing two important factors : the strength of causal
influence that the fragment receives from its selected
parents and the compliance of the fragment with re-
spect to the detail level of these parent nodes . This
heuristic can be stated as follows .
Definition 1

	

For each non-root node MFji , j =
1, . . . , L, representing the selection or rejection of model
fragment j of component Ci, i = 1, . . . , M, with parent
nodes Ujk, k = 1, . . . , N, the prior probability of select-
ing the corresponding fragment when some of the parent
nodes are taking a value yes (with the remaining parent
nodes taking a no value) is determined by:

P(MFji = yesi n
P
Ujp = yes)

	

_

P(MFji = yes n9 Li9 = yes, DU), = DMF; i )

. P(MFji = yesl nr Ujr = yes, DU;. ~4 DmF; i )

with

P(MFji = yes) n9 Ujq = yes, DUjq = DMFii )

e LMFii-Ufa

P(MFj i = yes n
r Ujr = yes, DUjr 7~ DMF,i )

Hr VMF~i -U�,

llr(DMF,i -Du,,)'

In this definition, p ranges among the parents that have
taken a yes value, and VMF" IU;� l E {q, r} denotes an
estimate of the amount of causal influence that frag-
ment MFji receives from parent Uji when Uji takes
a value yes. Let Ni,,fluence be the number of those
variables which are defined in the consequences of UJ I
and which are influencing variables of MFji , and Ntota,
be the total number of variables defined in Uji , then
VMF; i ~--U;, is calculated as the ratio Ninfluence1Ntotal.
As an example of the heuristic, consider the simple

network offigure 2 which connects four model fragments
of different detail levels (for three components A, B and
C) . Model fragment Al has one variable out of a total
two variables that can influence variables in its child
node, fragment B1, that is VB,,A, = 0.5 . The "error"
in detail between fragments Bl and A1 is DB, - DA, =
4 - 2 = 2 . Similarly, Va1,A, = 0.33, 1 /C,,B, = 0.50,
DB, - DA, = 1 and DC, - DB, = 0 . The application
of the above heuristic gives, thus, the following non-
normalised results :

A much simpler heuristic is used to assign prior prob-
abilities to root nodes, assuming all fragments of a com-
ponent are initially equally likely to be selected .

2 2

P(B1 = yeslAl = yes, A2 = yes) 0 .0413
P(Bi = yesiAl = yes) 0.125
P(Bl = yesIA2 = yes) 0 .33
P(C1 = yesIBI = yes) 0 .50
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Figure 2 : A simple Bayesian network and the corres-
ponding model fragments

Definition 2

	

For all root nodes RMFri , r =
1,...,R of a component Ci, i = 1, . . . , S, the prior
probability of them being selected is P(RMFri =

yes) =
nr .

Following this, for the root nodes A1 and A2 of figure
2 ; their probability of being selected is :

P(A1 = yes)

	

= P(A2 = yes)

	

=

	

1/2

Given a subset of the prior probability values for the
network's root nodes and for each non-root node with
respect to its selected parents, the probabilities for the
remaining node values combinations can be calculated .
This is accomplished using the principle of maximum
entropy, subject to the constraint that the sum of all
probability values to a node must be equal to 1 and
assuming a uniform distribution of those prior prob-
abilities for which we have no previous estimation (see
(Pearl 1988) for details of this principle) .
Given the structure and prior probabilities, reason-

ing is performed based on the evidence of which frag-
ments of what components are of current interest to
the user and on which model fragments are indicated
by the Approximate Reasoner . The reasoning process
helps with the decision of which fragments to select
(see figure 1) . The evidence is translated to selection
of the indicated fragments with probability 1 . This is
propagated throughout the network to determine the
posterior probabilities of the nodes for which there ex-
ists no evidence, using a standard Bayesian network in-
ference method as detailed in (Shennoy & Shafer 1988) .
When the reasoning process terminates, the posterior
probabilities of every- model fragment being selected or
rejected are returned .
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Model acceptance under adequacy constraints
The Bavesian reasoning process determines the most
probable representation of each individual component
with respect to the user's expertise . Although the reas-
oning is mathematically sound, ensuring that only one
fragment is chosen for each component, the system
model constructed by simply combining the selected
model fragments through their terminal connections is
not entirely guaranteed to be most adequate in sup-
porting the user's information needs . Additional con-
straints may be needed to modify the decisions made by
Bayesian inference to eliminate inclusion of fragments
that would have led to an inadequate model . The cri-
teria listed in table 1 are used to serve as the adequacy
constraints, the intuitive knowledge of human modelers .

These constraints are applied whenever a model frag-
ment is considered for selection (or rejection) accord-
ing to the reasoning of the network . The partially for-
mulated model is checked for its adequacy, and if not
all constraints are satisfied, the model fragment is dis-
carded . In this case, the next most probable model
fragment (of the same component) is considered as a
candidate for selection . A fragment cannot be retrac-
ted once it has passed the test of the adequacy con-
straints . This is to allow for consistent application of
the adequacy constraints avoiding potential loops .

Example of formulating adequate

models

To demonstrate that the proposed model formulation
technique works, the approach has been implemented
and applied to the domain system depicted in figure
3 . The example system is a simplified version of the
secondary liquid sodium cooling system within a fast
breeder nuclear power plant . It contains seven compon-
ents : IHX (intermediate heat-exchanger), P/M (pump-
motor system), EV (evaporator), SE (source of liquid
sodium), and RI, R2 and R3 (hydraulic resistances of
the connecting pipes) . For simplicity, only 'hydraulic
phenomena. are considered for each of these compon-
ents . The model fragments library contains three model
fragments with detail levels of 4 ; 6 and 10 variables for
each component, except the liquid sodium source which
is modeled with one model fragment with a detail level
of 4 variables . The fragments for each component are
grouped using the component's assumption class . Sup-
pose that, each component within the system is influ-
enced only through its two input terminal variables, the
input liquid flow and the input pressure . Consequently,
each fragment can influence other fragments through
its output terminal variables : the output pressure and
the output flow . This is the worst scenario with respect
to the possible relations between variables defined in
system : knowing practically nothing about the causal
relationships between the variables .
Given the domain system description ; the Bayesian

network can be structured as also shown in figure 3 .
Using the heuristics defined in section , the prior prob-
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No . Primitives involved

	

Description

	

Rationale
An

	

adequate

	

model

	

The behaviour of a component cannot beex-
should include every component

	

plained if the component is not represented in
of interest .

	

the model .
In an adequate model none of
its exogenous variables should be
influenced by any other model
variable .

3

	

Influences on dependent

	

An adequate model should con-
variables

	

must

	

be

	

tain a complete set of model frag
complete

	

ments that influence each of the
model's dependent variables, ac-
cording to the overall domain
system description .

4

	

Influences on dependent

	

An adequate model should con-
variables must not be

	

tain no fragments that relate to
redundant

	

each other through class inher-
itance (e.g . a condenser and a
heat exchanger fragment for one
component) .

1

	

Model variables
System components

2Exogenous variables

5 Influences on dependent An adequate model should in-
variables must be valid

	

elude model fragments with valid
conditions .

8 :
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Table 1 : Adequacy constraints : description and rationale

Exogenous variables are influenced only by the
surrounding environment of the modelled sys-
tem and are independent of other variables in
the model .
This ensures that a model is complete : for
each component the model should include
model fragments for all components that may
affect it, at the detail level of interest, accord-
ing to the domain system description .

This is imposed to ensure that when com-
posing model fragments together coherence is
maintained by avoiding to mix different de-
scription levels of an entity .

This ensures that all selected model fragments
have valid conditions (structural and behavi-
oral) with respect to the entities appearing in
the model'at the respective detail level .
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Figure 3 : Liquid sodium cooling loop, its corresponding Bayesian network and some prior probabilities
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abilities for each of the nodes with respect to the links
from its parents, as well as the prior probabilities for
the root node (SE) are determined . Part of the set-
ting of the normalised prior probabilities is presented
in figure 3 . The prior probability value tables attached
to the remaining nodes are the same as those listed in
tables T21-T23 in figure 3 and hence are omitted . Once
the network is structured and the prior probabilities are
assigned and normalised, the inference procedure repor-
ted in (Saffiotti & limkehrer 1991) is ready to be ap-
plied to calculate the posterior probabilities for possible
values of the network nodes .
Without considering evidence from the user or the

Approximate Reasoner ; the posterior probability dis-
tribution of the Bayesian network is computed as that
given in sample A of figure 4 . The shaded mini tables in
this figure correspond to the elements that are indicated
for selection, as a direct result of Bayesian reasoning .
Given no evidence, the simplest model fragments are
selected, meeting the training purposes well .

Suppose now that the user has indicated interest for
the intermediate heat exchanger component . This is
translated to a piece of evidence suggesting that a model
fragment of this component should be selected . As-
suming that the Approximate Reasoner has calculated
a detail level of 10 variables for this component, the
most complex model fragment is selected . This evid-
ence is propagated throughout the network, resulting

Figure 4 : The posterior probability distribution for the network in figuref A : without considering evidence ; B: with
IHX3 selected by evidence ; C: with PM3 and EV3 selected by evidence ; D: with the selection of R13 and R23 biased
through application of adequacy constraints .

in the probability configuration for other system com-
ponents as shown in sample B of figure 4, with the evid-
ence denoted by X. As indicated the simplest fragments
are still favoured over the complex ones, although the
probabilities of selecting complex model fragments have
increased compared to those in sample A .

If the indications for the preferable model fragments
continue to favour the most complex ones, as with
sample C of figure 4 where the fragments for PM and
EV are also selected by given evidence, this can lead
to a change of the fragment selection . However, as il-
lustrated by this example, although the most complex
fragments are in favour compared to the simpler ones,
some of them obtain a posterior selection probability
that is less than 0.5 . That is, the corresponding frag-
ments should not be selected in a strict mathematical
sense . Therefore, the inference over the Bayesian net-
work can indeed help identify which model fragments
to select, but it cannot guarantee that all components
in the system under consideration will be represented .
The prior network probabilities are responsible for this :
they are biased towards simpler model fragments, caus-
ing the probability of the complex fragments to be less
than 0 .5, as simple fragments are not supported by the
incoming evidence . This gives rise to the need of im-
posing the adequacy constraints .

In fact, the adequacy of the model under formulation
is checked every time a model fragment is about to be
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selected or rejected for a component . For this partic-
ular example, when the network attempts to overrule
all existing fragments for a component, adequacy con-
straint no . 3 is violated . This triggers a mechanism that
overrides the network's decision, by asserting as evid-
ence the selection of the most probable fragment among
the otherwise overruled ones . The reasoning process of
the network restarts thereafter . The amended result for
the cases of components Rl and R2 is shown in sample
D of figure 4, with the selections imposed by the use
of adequacy constraints denoted as AC. The resulting
system model is well-suited for generating explanations
that fit the expertise level of the present trainee .

Conclusions
This paper has proposed a technique for model formu-
lation to support the task of explanation generation .
The technique exploits the reasoning of a Bayesian net-
work, which is structured based on the structural de-
scription of the domain system, to facilitate the selec-
tion of appropriate model fragments . Initially, frag-
ments for some components are selected, based on the
user's interests and expertise level . Bayesian reasoning
provides suggestions for model fragments to use for the
remaining part of the system . The model under formu-
lation is then checked for its adequacy, using a set of
adequacy constraints . The final result is an adequate
model of the domain system under consideration, which
can be subsequently analysed to extract contents for the
explanations to be communicated to the user .
The proposed approach has been implemented and

experimental results obtained so far have been very
promising . The methodology described employs the
simplest regimes for addressing the issues of structur-
ing the Bayesian network and those of defining the prior
probabilities for the task of model fragment selection .
Although it functions satisfactorily for simple cases, it
needs to be re-engineered in order to become more gen-
eral and less ad-hoc with respect to the use of the ad-
equacy constraints . Work is also ongoing in an attempt
to automatically construct models using the present ap-
proach for more complex systems .
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