
Abstract

We present an object-oriented semi-qualitative model-
ing language and a web-based simulator implementa-
tion . This language is used to develop physics based
simulations in virtual environments . The associated
simulator is a self-contained module . It produces, in
parallel, numerical data for interactive visualization
and qualitative data . The latter is available to any
autonomous agents inhabiting the environment . This
work is part of an ongoing project to develop self-
explanatory maintenance procedure simulation in vir-
tual environments .

Introduction
Simulations in virtual environments are becoming in-
creasingly common. However, few of them provide
monitoring, self-explanatory, or tutoring functions .
Some progress has been made with systems like the
STEVE (Johnson & Rickel 1997) training environment .
The embodied agent STEVE can explain and demon-
strate the operation of virtual machinery . This system
focuses on producing realistic verbal and non-verbal
communication between tutor and trainee . We are also
engaged in the field of self-explanatory simulation in-
volving virtual humans. While STEVE uses preset
causal relationships to explain physical behaviors, we
are trying to infer causality from actual simulation . In
a broader perspective, we are working to fill the gap be-
tween physical simulation in virtual environments and
autonomous agents .

In this paper, we will present a semi-qualitative mod-
eling language and its simulator . These components are
part of an on-going project to simulate maintenance
procedures on hydraulic systems (Badler & Erignac
1998)

Motivation
We are designing a language to support the concepts of
cOmpositional modeling (Falkenhainer & Forbus 1991) .
11, this paradigm, physical devices are built out of ele-
mentary blocks named model fragments. With careful

QF199 Loch Awe, Scotland

Semi-Qualitative Simulation
for

Virtual Environments

Charles A. Erignac
Center for Human Modeling and Simulation

University of Pennsylvania, PA 19104-6389, USA
cerignacCgraphics .cis.upenn.edu

modeling one can author libraries of fragments for dif-
ferent physical domains and combine them at will . This
method allows one to make modeling assumptions ex-
plicit ; by stating them in the simulation scenario . A
user can refer to them later to assess the simulation's
domain of validity. These assumptions can also trig-
ger a set of rules to select ancillary or interdependent
models .
The Compositional Modeling Language (CML)

(Falkenhainer et al. 1994) and its extension, the
Compositional Modeling Interchange Language (CMIL)
(Iwasaki et al . 1997) were the first attempts to define a
standard qualitative modeling language . They are used
in the Collaborative Device Modeling Environment
(CDME) (Iwasaki et al. 1997) . CDME enables engi-
neers to design and test device models through a web-
based interface . This system uses a suite of Lisp pro-
grams to run semi-qualitative simulations . The semi-
qualitative simulators Pika (Franz G. Amador & 'Weld
1993) and SINIGEN (Forbus & Falkenhainer 1990a:
1990b ; 1995) also use Lisp-based modeling languages .
We chose not to use any of these languages for two

reasons . First, the simulator was to be implemented
in C++ for speed and ease of interfacing with a com-
mercial VR system like Jack (EAI/Transom) . Second,
we wanted a syntax with the constructs, look and feel
of regular object-oriented languages (i .e . : attributes,
methods, encapsulation, inheritance) .
One could argue that these reasons are purely sub-

jective and that Lisp, which is deeply rooted in the Al
community, would perform as well . One of our goals is
to expose a wide audience of object-oriented developers
to the concepts of qualitative physics . The best way to
do so is to use their dialects .

This choice raises the interesting problem of selecting
a qualitative behavior streaming format which enables
dialogs between the simulator and Lisp-based agents .
Nevertheless, the Lisp-like syntax is very appropriate
for defining patterns and relations . We used a simi-
lar syntax for the internal representation of the logical

3

elements of our language .
We bind model fragments with influences (Forbus

1984a) . However, our approach is different from the
classic direct/indirect treatment . It is up to each frag-
rnent to filter and resolve (Forbus 1984a ; Kuipers 1994)
explicitly its influences . This is similar to the formulae
used to resolve forces in classical physics .

Physical processes are the key components of qual-
itative physics (Forbus 1984a) . With there, one can
model entire physical domains from first principles .
They model the flows of matter or energy that sponta-
neously occur in physical systems . Their explicit mod-
eling simplifies explaining physical behaviors in quali-
tative terms . They are supported by the language as
self- instantiatiog fragments .
The numerical models built by semi-qualitative sim-

ulators are dynamic hybrid-systems (Alur et al . 1994 ;
Mosterman & Biswas 1997) . There are a large num-
ber of hybrid systems modeling languages and associ-
ated simulators available . These programs produce only
quantitative data . Some of them can instantiate model
classes during the simulation (Deshpande, Gollii, & Se-
menzato), but they do not have inference engines to
trigger instantiation rules of qualitative physics . Also,
there is no support for influence resolution . However,
objects are generally modeled as finite state machines .
This feature allows to model complex components eas-
ily . Likewise, our language has state and transition con-
structs to embed finite automata in model fragments .
We chose to support lineal differential algebraic equa-

tions as a compromise between speed and expressive-
ness .

Modeling Language
In this section we present the main concepts of our
modeling language . After a brief definition of primi-
tive types, we introduce the language's dual represen-
tation . This key feature enables logic and procedu-
ral programming to cohabit within an object-oriented
framework . Then, we show how model fragments re-
late to object classes . The following three subsections
present our quantity model, the expressions and state-
ments. We complete our overview with our treatment of
constraints, influence resolution and self- instantiation .
We will, along the way, define a sigma arithmetic oper-
ator on which our model composability depends .

Primitive Types

The language has simple primitive types and object
primitive types . The simple types are boolearrs, in-
tegers, reals, and predicates . Predicates are boolean
attributes of fragment instances .
The primitive object types are :

QR99 Loch Awe, Scotland

Quantities A quantity is a semi-qualitative state vari-
able . It is equivalent to a real variable .

States A state has a specific name and can contain
logical, algebraic, and differential constraints . Every
fragment has a default start state

Transitions A transition is defined between two states
and is guarded by a boolean expression . An optional
block of statements is executed each time the transi-
tion is performed .

Dual Representation
Qualitative modeling uses first order predicate calcu-
lus to implement the high-level logical control of model
fragments (Forbus 1984a; de Kleer & Brown 198-1 ;
Falkenhainer et al . 1994) . However, object-oriented
languages use a different operational semantic . There-
fore, we use a dual representation for each fragment
instance, quantity, predicate, transition, and state .

In the first part of the representation, these objects
are entries in the procedural execution environment
(symbol table, heap and stack) (Aho, Sethi, & Ullman
1985) . In the second, they are facts of a global knowl-
edge base (KB) . Each fact is identified by a unique Lisp-
like term called tag .
The procedural execution context supports the

object-oriented constructs of the language .
The logical constructs, such as rules, transitions,

or instantiation conditions are managed by a pattern-
directed inference engine (Forbus & de Kleer 1993) . It
uses the KB to draw inferences and records them in a
'Ruth Maintenance System (TIMS) (Forbus & de Kleer
1993) .
A type is fact equivalent if all of its instances are asso-

ciated with a fact in the KB . By extension, an instance
is fact equivalent if its type is fact equivalent .
A fact is either unknown, true or false . .4 predicate

has the same value as its corresponding fact . The pred-
icate P of an instance x is referred by x . P in object-
oriented notation will have the tag P(x) in the KB. For
the rest of this paper we will mean by predicate a fact
in the KB. This includes predicate attributes since they
are "unary predicates" . We will make the distinction if
necessary .
Given an instance x and one of its properties y of

primitive object type (quantity, state and transition),
the tag of y is (y x) .
The fact representing a fragment instance, a quantity,

or a state is true if the object exists . It is unknown oth-
erwise . For the remainder of this paper we will consider
an object, its tag, and representing fact as one entity .
So saying that an object is true means that it exists . If
it is unknown, it has been retired or was never instan-
tiated .

74

Every object instance has a default predicate named
Active . It indicates whether the instance is active . All
objects, except states and transitions, are always active
as long as they exist . Fragment instances that have
states are initialized in their start state when they
become active .

Model Fragments

Model fragments are the programming units of the
language . They are similar to object-oriented classes .
Their attributes can be of primitive type or references
to other fragment instances . An instantiation clause
renders a fragment self-instantiatiog . So far, the lan-
guage does not support inheritance .
The body of a fragment defines a local naming con-

text, an execution context, and a partial constraint en-
vironment .
The quantities, states, and transitions of an instance

are created during the instantiation of the fragment it-
self. They share the instance's life span . The quantities
are active if and only if the instance is active. Only one
state is active at a time. Similarly, there is at most
one active transition within the scope of a fragment in-
stance .
A model fragment can also feature methods (user de-

fined functions) . The keyword create is reserved for
identifying the Eiffel-style (Meyer 1991) constructor of
a model fragment . This function returns a new instance
of the fragment each time it is applied to a variable of
the same type . It binds the variable with the new in-
stance as a side effect .
So far, the language has no provisions for garbage

collection . Objects are retired by retracting them (i .e . :
setting their corresponding fact to unknown) . They re-
main allocated but without logical existence . An object
can stay in limbo until it is reasserted (i .e . : its corre-
sponding fact is set to true) . This feature is particularly
useful for implementing intermittent processes .

Quantities

As stated earlier, quantities are semi-qualitative state
variables . Each of them has a user defined set of land-
marks (Kuipers 1994) . A landmark is defined by an
arithmetic expression which is evaluated once when the
quantity is instantiated . The qualitative magnitude of
a quantity is updated according to its numerical value .
The qualitative derivative is not yet supported by the
language . It can be computed if the quantity has an
explicit derivative .
A quantity has three built-in predicates : IsConst,

IsUnknown, and IsIntegral . They are mutually ex-
elusive and indicate whether the quantity is a constant,

QR99 Loch Awe, Scotland

an unknown s of the global differential system, or the in-
tegral of another quantity (see differential constraint) .

Expressions
The syntax of the language allows for logical and arith-
inetic expressions . Pure Boolean expression can be built
with the operators and, or, not, => and <=> . They can
contain references to fact equivalent objects . They can
also refer simple predicates (facts that do not represent
objects) in a Prolog-like form'- .
The arithmetic expressions are built with constants,

real or integer variables, quantities, and the operators
+, -, *, /, _ , sign, and sigma. The definition of the

sign operator is sign(x) = if x = 0 then 0 else x/JxJ .
The sigma operator will be defined later .
Mixed boolean expressions are build by nesting arith-

metic expressions with the relational operators =, <>, >,
<, >=, and <= .
An arbitrary boolean expression can be pure or

mixed .

Statements
So far the language has only three types of statements :
assignment, assertion, and retraction . They can be in-
serted in the body of functions or transitions .
The assignment exprl :=expr2 ; stores the value of

expr2 at the reference returned by exprl . Example :
plane .weight := plane .mass*g; .

The statements Assert (P) ; and Retract (P) ; re-
spectively assert and retract the predicate P . Example :
Assert (Flow0f (a,t)) ; where a and t are fragment in-
stances .

Further development of the language should add flow
control statements to encode more complex procedural
behaviors during transitions .

Constraints
Logical, algebraic and differential constraints define the
logical, continuous and dynamic behaviors of a model
fragment . They are defined within the body of a frag-
ment or in one of its states . When a fragment or a state
is instantiated, the constraints of its body are applied
within the context of the created instance . These ap-
plied constraints form a partial constraint environment. .
The latter is active when the instance it belongs to is
active . This means that the constraints defined in a
state are active if and only if the state is active . The

1 Unless specified, an unknown quantity a means that a
is an unknown and not that its equivalent fact is unknown
(i .e . : retracted) .

2 A Lisp-like syntax is used for internal representation of
KB tags . The Prolog form is used in the expressions because
it is similar to function calls and fits better in the overall
syntax .

7

total constraint environment is the union of all the ac-
tive partial constraint environments . It is used to model
the behavior of the whole physical system .

Logical Constraints

	

The language supports clauses
and rules (Forbus & de Kleer 1993) .
A clause is defined by an arbitrary boolean expres-

sion . The completeness of the inferences that can be
drawn from a set of active clauses depends on the im-
plementation of the simulator .
Example : given the model fragment AirplaineSeat

with the predicates Up-Right, Tray-Stowed and Safe ;
given the AirplaineSeat instance seat, the constraint
clause seat .Up-Right and seat .Tray-Stowed
<=>seat .Safe ;

is equivalent to
seat .Up-Right and seat .Tray_Stowed t* seat.Safe .
A rule definition contains a context, an operator, a

trigger and a body . They are defined as followed :
Context A declaration of local variables of fact equiv-

alent type to be used in the trigger and body. It is
equivalent to the local context of a procedure .

'Digger An arbitrary boolean expression .
Body A sequence of Prolog-style predicates .
Operator The token => or -> . The double arrow => is

equivalent to =~. . The first time the rule is triggered,
the condition of the trigger becomes an antecedent of
the aforementioned predicates . The single arrow ->
simply asserts the predicates when the rule is trig-
gered .

Each time a rule of the form

	

context :body =>
predicate fires, it is translated into a clause context
n body =~> predicate after substitution of the local vari-
ables in context, condition and predicate .

Rules of the form context : body -> predicate are
procedural . When they fire, their predicates are as-
serted after substitution of the context . Unless they
are explicitly retracted, these assertions remain even if
the firing conditions cease to hold .
Example : let Dog be a fragment model with the quan-

tity age as property . The constraint
rule Dog d:(d .age<=2 .0)=>Is_A_Puppy(d) ;

is

	

equivalent

	

to

	

dd

	

E

	

Dogs, d.age

	

_<

	

2
Is-4-Puppy(d) where Dogs is the set of all Dog in-
stances .

Unlike rules, clauses do not impose a causal ordering .

Algebraic Constraints Algebraic constraints are
implemented as linear algebraic equations . The con-
struct equation expi =exp2 ; defines the algebraic
equation expi = exp2 where expi and exp2 are arith-
metic expressions . They must be linear for the unknown
quantities they contain .

QR99 Loch Awe, Scotland

Equations are the real equivalent of clauses . They do
not impose a causal ordering .

Differential Constraint

	

The language has a differ-
ential constraint that binds one quantity as the time
derivative of the other . For example derive x,y ;
means y = da

dt .
Given derive x,y ;, x is the integral of y and y is

the derivative of x . At any time a quantity can have at
most one integral and one derivative .
Upon activation the constraint derive x,y ; will as-

sert the IsIntegral predicate of x . When it gets de-
activated it asserts the IsUnknown predicate of x . This
indicates that x is not an integral anymore and has to
be solved .
The derive constraint is similar to those found in nu-

merical simulation languages (Cellier 1991) . However it
goes against the notion of additivity of direct influences
(Forbus 1984a) . We will show how the language reme-
dies this situation, but first we need to define a special
operator .

sigma Operator

The sigma operator has three components : a context,
a trigger, and an arithmetic expression . The context
and trigger have the same meaning as in a rule . The
expression is within the naming domain of the context .
Like in a rule the trigger defines a set of substitutions .
When we apply a substitution to the expression we get
a new expression similar to the original except that the
references have been substituted .
To evaluate a sigma operator we compute the valid

set of context substitutions (at the time of the evalu-
ation),expand the expression with the set and evaluate
the result . To expand means to apply each substitution
to the expression and sum all the substituted expres-
sions . This operation produces the expression symboli-
cally equivalent to sigma operator for a given substitu-
tion set .
More formally, given the global variables xl , . . . , x,,

the context Tl yl, . . . ; T�, y�, where yl, y�, are the
local variables of respective type Tl, T,n ;
given the boolean and arithmetic expressions
trig(x l , xn, yl) y*n)
and expr(x l , . . . , xn, yl, . . . , ym) ;
then
sigma(Ti yl, . . .,T,n ym-trig(xi, . . .,x"yl' . . .'ym)I
expr(xl, . . . , xn , yl, - . . , yrn)) ;

equals

Y_ expr(x l , . . . , xn, yl, . . . , ym)
'd'yl E TL, . . . , ym E Tm : trig(xl , xn, Yt , . . . , ym)

7

The sigma operators featured in statements are eval-
uated according to the formula above . Those used in
active equation constraints are expanded . Their sub-
stitution set is continuously updated . Each time set
changes the corresponding expansion is regenerated .
Example : let t be an instance of the model fragment

Tank . Let a, b and c be three instances of the Flow

model fragment . Tank has three quantities inFlow,

outFlow and netFlow . Flow has one quantity q . Let:
Flow0f (f, t) be the relation indicating that f is a flow
of t . This relation holds as long as both instances are
active .
Tank has the following constraints :

equation inFlow=sigma(Flow f : Flow0f (f ,self)

and f .q>0 .01 q) ;
equation outFlow=sigma(Flow f : Flow0f (f ,self)

and f .q<0 .01 q) ;
equation netFlow=inFlow-outFlow ;

Let us assume that at a given point of the simulation :
Flow0f(a,t), Flow0f(b,t), Flow0f(c,t), a .q> 0,

b . q< 0, and c . q> 0 .
Then the two first equations are expanded as

inFlow = a.q + c.q and outFlow = b.q .
If after a certain time, the flow a ceases to exist and

c . q< 0 then inFlow = 0 and outFlow = b.q + c.q .

Influence Resolution
The Qualitative Process Theory (QP Theory) (Forbus
1984b) states that, given two quantities xi and y, xi
influences y if y is functionally dependent on xi . An
influence is either direct or indirect .
The indirect influence Q+ (y, xi) means that there ex-

ists an f such that y = f(. . . , xi, . . .) and d > 0.
The direct influence I+ (y, xi) means

dt = sum(. . . , xi, . . .)3 .

The actual "assembly" of model fragments is accom-
plished by resolving the influence of each quantity. To
do so, one converts all the influences on a quantity into
a constraint . Before doing so, one must assume knowl-
edge of all the influences on the given quantity . This
assumption, known as closed world assumption, must
be revised each time an influence is added or removed .
The definition of derive states that a quantity can

be directly influenced only once at a time (i .e . : direct
influences are exclusive) . This means that direct influ-
ences do not need to be resolved . However, we need to
find a way to express multiple direct influences .

In QP theory, direct influence resolution is done as
follows : given a quantity Isi (y, xi) where Vi E [1, n] si E
I -,+)

	

then y'

	

=

	

ssurn(sl , sn , xl, . . . , xn)

	

where
y' = dt .

	

ssum is a sum in sign algebra such that if

si = + them = 1 otherwise a
3These definitions are from (Kuipers 1994) .

QR99 Loch Awe, Scotland

Since we cannot express multiple direct influences on
y, let us convert the direct influences Is " (y, xi) where
i E [l, n] into the indirect ones Qs. (y', xi) .
The QP theory solution to the indirect influences is

y` = M(s s . x Xn) . This means that y' is a
monotonic function of xi and if si = + then a > 0
otherwise s < 0 .
The monotonic constraint M represents a large class

of functions . However, in classical physics, influences
are flows of matter or energy . Their resolution is for-
mulated by conservation laws which have the form of
sums . As a consequence, we will use a sum instead of
_414 .

This simplification complies with the qualitative defi-
nition of direct influence resolution . On the other hand,
it. restricts the expressiveness of indirect influences . We
trust that. this will not, hinder the modeling capacity of
the language .

Finally, the method to express direct and indirect
influences is to use sigma operators . This is done in
two steps :

Stepi Create a predicate which will bind the fragment
that contains the influenced quantity with the frag-
ment of the influencing quantity (or the quantity it-
self) . The name of the predicate can be used to clas-
sify the nature of the influence .

Step2 In the influenced fragment, write an explicit res-
olution formula. with an equation featuring the in-
fluenced quantity and a sigma . The context should
contain a variable whose type is the influencing frag-
ment . The trigger should be a condition to match
the binding predicate .

The flow conservation example we gave earlier (see
sigma Operator) uses the predicate Flow0f (f , t) . The
latter indicates that the flow f influences the inFlow

or outFlow of the tank t . The two first equations in
the Tank fragment resolve the Flow0f influences with
additional constraints (direction of flow) .
The example also illustrates the ability of sigma

to update itself when the closed world assumptions
change . In this case, the change was due to the ter-
mination of flow a and the reversal of flow c .
The explicit resolution method has the advantage of

preserving the form of mathematical formulae used in
physical models . For example, the conservation of mo-
mentum rn x a = FF,xternal for a given fragment.
translates to

equation m*a=sigma(quantity f :
External-Force(f,self)If) ;

4 If s ; _ - we can always substitute x ; with xi where
x', = -xi .

7 7

where External-Force is the binding predicate .
Explicit resolution enables a fragment to screen in-

fluences . This complies with the concepts of encapsula-
tion and protection of objects . However, it might, be in
slight contradiction with the notion of modeling from
first principles. The implicit influence resolution of QP
theory warrants that an object cannot escape the ac-
tion of physical processes (like gravity) . It will be up
to the modeler to make sure that its model fragments
are properly influenced .

Self-Instantiation
Physical processes of QP theory are first class entities .
They have two specific characteristics . First, only pro-
cesses can entail direct influences . Second, their in-
stantiation is controlled by a rule that detects individu-
als (participating objects) and fires if certain structural
constraints are satisfied .
The language implements

processes as self-instantiatiog model fragments . Self-
instantiation is defined by an instantiate constraint .
It is similar to a rule because it contains a context arid
a trigger . The context defines the set of individuals .
The trigger expresses the structural conditions .
The activity of the individuals and the trigger form

a logical support which will sustain the activity of the
process . The support is compromised if an individual
becomes inactive or if the trigger fails to be satisfied .
As we mentioned earlier, inactive fragment in-

stances are not destroyed . Therefore, an inactive self-
instantiated fragment will regain activity if its logical
support is restored . This also means that a process is
instantiated only once for a given set of individuals .
The formal definition of instantiate follows :

given the model fragment A, given the global vari-
ables x l , . . . , x� the context Tl yl, . . . , Tm y.n where
yi, . . .,y, are the local variables of respective type
T1, . . . ,T, given the boolean expression
trig(xl , xn, yi, . . . , Y"l) ;
the constraint declared within A
instantiate Tl y1,. . . ,T,n yn,
trig(xr, . . . , xn , yi, . . - y,n) ;
is logically equivalent to VY1 E T 1 , . . . , y .. E Tilt
trig(xr ,xn,y1, " . .,yrn)

	

=:~

	

A(y1, . . .,y,n)

	

where
A(yl, . . . ; y,n) is the fact corresponding to the instance
of A created with the context Tl .y, , . . . , T�, y,n .

As a reminder, fragment instances are equivalent to
the fact representing them in the KB. Therefore, the
logical expression implies the existence of the instance
itself. Furthermore, existence is a synonym for activity
for a user defined fragment . Therefore, the expression
also implies activity .

If a self-instantiatirig fragment contains a create
function, then this constructor will be applied for each

QR99 Loch Awe, Scotland

fragment AgingProcess{
instantiate WineBottle b, Pyramid p : In(b,p) ;

quantity aging, taper ;
derive b .age, aging ;

state start{} ;
state fast{
derive aging, taper ;

} ;

state normal{
equation aging=1 .0 ;

} ;

transition(start,fast,true)

transition(fast,normal,aging<=1 .0) ;

fun AgingProcess create()

instantiation .
As mentioned earlier, a fragment instance with states

is set to start for each activation . So intermittent
processes are instantiated once and they are always re-
stored in their start state (if any) .
Example : some people believe that wine ages faster

in pyramids . Let us assume that the aging effect tapers
off with time . Here is a model of this aging process .
Let p be an instance of the Pyramid fragment . Let
WineBottle be a fragment with the quantity age . Let
In(b,p) be the predicate indicating that the bottle b
is in the pyramid p . The AgingProcess fragment is de-
scribed in figure 1 . Let us assume that the WineBottle
instance b is in p . We have In(b,p) . This fact instan-
tiates AgingProcess (b,p) .
At the beginning, b ages ten times as fast . This rate

is set by the immediate transition from start to fast .
The effect tapers off in approximatively 10 days . When
aging reaches 1 the transition from fast to normal is
performed . The process remains in state normal until
In(b,p) is retracted .

	

.
If we take the bottle out of the pyramid and put

aging := 10 .0 ;

Assert(IsConst(taper)) ;
taper := -10 .0'-5 .0 ;

Figure 1 : AgingProcess model fragment .

7 8

it back (i .e . : retract and re-assert In (b , p)) the aging
process restarts . Adding a second bottle c in p will
entail the process AgingProcess(c,p) .

Notice that, we could assert In(b,p'), where p' is
another pyramid . This would trigger a runtime error
because b . age would be directly influenced twice by two
derive constraints . So, if we decide to build pyramids
within pyramids to age the wine even faster we will have
to use more complex models .

Simulator
Our current implementation of the simulator is an in-
terpretor very similar to Pika (Franz G. Amador &
Weld 1993) . Unlike Pika it is coded in C++ as a self-
contained module . Its main components are :

Interpretor parses the fragment models and executes
the procedural parts of the simulation .

Knowledge Base (KB) stores and retrieves the facts
of the simulation .

Pattern-Directed Inference Engine applies rules
to the KB.

Logic Based Truth Maintenance Systern (LTMS)
records the inferences of the engine and applies the
clauses (Forbus & de Kleer 1993) .

Solver maintains and solves symbolically the algebraic
equation systems .

Integrator maintains the list of integral variables and
integrates them .

An LTMS is not a complete inference system . There
are facts that it cannot prove nor refute . It is com-
plete only if we use Horn Clauses (Forbus & de Kleer
1993) . The solver uses dependency between variables
and equations to solve unknowns . All the solved sys-
tems are cached in case they are reactivated later . The
integrator uses the forward Euler method .
The inference engine detects first time instantiation

and transition triggering . The simulator relies heav-
ily on the LTMS to assemble the constraint environ-
ment . This includes transition re-triggering, sigma ex-
pansions, reactivation of equations, cached systems and
instances .
The simulation algorithm is described in figure 2 .

Case Study
We tested the modeling language and its simulator
by implementing web-based maintenance simulations .
There were two scenarios featuring simple hydraulic
systems and a maintenance task to accomplish . We
used a client-server architecture . The client is a Java
applet displaying a schematic of the hydraulic system
and a control panel (see Figs&4) . The server is our

QR99 Loch Awe, Scotland

load scenario and fragments
while(run)
while(pending transitions or instantiations)
perform transition or instantiation
end while
update current equation system
solve system
if no transitions or instantiations pending then
update list of integral variables
integrate

end if
end while

Figure 2 : Simulation algorithm .

simulator wrapped in a socket interface . The user is-
sues maintenance actions by clicking the interface . The
orders are sent to the simulator . The server sends peri-
odically the state of the systern to update the interface .
We developed an ontology for the hydraulic. domain . It
uses second order differential equations and supports
pressurized systems . Because of their semi-qualitative
nature, our models are substantially more complex than
in (Collins & Forbus 1989) . The piping structure was
also more detailed . We added couplings and ports to
simulate assembly tasks . Special model fragments were
used to detect hazardous processes such as leaks and
decompressions . The simulator ran in real-time except
when new equation systems were being created or pro-
cesses instantiated . The current switch time is between
one and two seconds for the second test case and negli-
gible for the first .

Analysis and Future Work
The modeling language proved practical for the devel-
opment of a semi-qualitative ontology. The main diffi-
culty was designing the models, not coding them .
The language needs some improvement . The sta-

tus representation of quantities (unknown, integral, and
constant) can be improved by using constraints (as in
(Kuipers 1994)) . Rules could be extended to entail con-
straints . Inheritance has to be added . Finally, adding
hierarchical finite state machines will make modeling
complex devices or agents easier .

Related Work
More "qualitative" simulations are generated by the
semi-qualitative simulators Q2 (Kuipers 1994) and Q3
(Berleant & Kuipers 1998) . They use interval algebra .
Q3 can iteratively converge to a numeric solution by
iteratively refining the width of its intervals .
SIMGEN Mk3 (Forbus & Falkenhainer 1995) is

used to produce web-based self-explanatory simulations

7 9

(QRG) . Similarly, CyclePad provides distributed tu-
toring in the domain of thermodynamics (Forbus et al .
1998) .
Hybrid bond graphs are an alternative formalism for

modeling physical systems in terms of flows of matter
and energy. They are used in the HyBrSim (Mosterman
& Biswas 99) simulation environment .
On the side of object-oriented languages, R++

(D .Dvorak 1995) is C++ with rule constructs .

Conclusion
We presented the early developments of a new semi-
qualitative modeling language . Our aim is to merge
the concepts of compositional modeling and qualitative
physics into a traditional object-oriented framework .
The result give a modeling environment featuring var-
ious computational primitives such as functions, rules,
finite state machines and linear differential algebraic
systems . The language resolves influences in an explicit
form, similar to traditional physics formulations .
Our case study demonstrated the feasibility of the

simulator . It also proved that the language could tackle
one of qualitative reasoning favorite domain (i .e . : hy-
draulic systems) .

Acknowledgment
This research is partially supported by the U .S . Air
Force through Delivery Order # 17 on F41624-97-D-
5002 .
We want to thank Hogeun Shin for developing the

web-based architecture of the case study, as well as the
anonymous reviewers whose comments helped improv-
ing this paper .

References
Aho, A . ; Sethi, R . ; and Ullman, J . 1985 . Compilers
Principles, Techniques, and Tools. Addison-Wesley .
Alur, R . ; Courcoubetis, C . ; Halbwachs, N. ; Henzinger,
T. A . ; Ho, P.-H . ; Nicollin, X . ; Olivero, A . ; Sifakis,
J . ; and Yovine, S . 1994 . The algorithmic analysis of
hybrid systems . Technical Report TR94-1451, Cornell
University, Computer Science Department .
Badler, N ., and Erignac ; C . 1998 . Logistic research
technilogy, product modeling technology for automat-
ing maintenance instructions, final report . Technical
report, CIS, University of Pennsylvania, Philadelphia,
PA.
Berleant, D., and Kuipers, B . 1998 . Qualitative and
quantitative simulation : bridging the gap . Artificial
Intelligence 95(2) :215-255 .
Cellier, F . E . 1991 . Continuous System Modeling.
Springer Verlag .

QR99 Loch Awe, Scotland

Collins, J ., and Forbus, K. 1989 . Building qualitative
models of thermodynamic processes . In Proc . 3rd Int.
Workshop on Qualitative Physics.

D.Dvorak . 1995 . R++ User Manual . Bell Labs .
de Kleer, J ., and Brown, J . S . 1984 . Qualitative
physics based on confluences . Artificial Intelligence
24:7-83 . Also in Readings in Knowledge Representa-
tion, Brachman and Levesque, editors, Morgan Kauf-
rnann, 1985, pages 88-126 .
Deshpande, A . ; Gollii, A . ; and Semenzato, L . Shift
programming language and run-time system for dy-
narnic networks of hybrid automata . Technical report,
Univ . of Calif. at Berkeley, EELS Dept .
EAT/'Ransom . http ://www.transom .com .
Falkenhainer, B., and Forbus, K . D . 1991 . Composi-
tional modeling : Finding the right model for the job .
Artificial Intelligence 51(1-3) :95-144 .
Falkenhainer, B . ; Farquhar, A. ; Bobrow, D. ; Fikes, R . ;
Forbus, K . ; Gruber, T. ; Iwasaki, Y . ; and Kuipers, B .
1994 . Cml : A compositional modeling language_ Tech-
nical Report KSL-94-16, Knowledge Systems Labora-
tory, Stanford .
Forbus, K. D ., and de Kleer, J . 1993 . Building Problem
Solvers. Cambridge, MA: MIT Press .
Forbus, K. D ., and Falkenhainer, B. 1990x . Self-
explanatory simulations : An integration of qualitative
and quantitative knowledge . In Proc . 8th National
Conf. on Artificial Intelligence (AAAI-90), 380-387.
AAAI Press/The MIT Press .
Forbus, K. D., and Falkenhainer, B . 1990b . Self-
explanatory simulations : Scaling up to large models .
In Proc . 10th National Conf. on Artificial Intelligence
(AAAI-92), 380-387 . AAAI Press/The TNIIT Press .
Forbus, K. D., and Falkenhainer, B . 1995 . Scaling
up self-explanatory simulators : Polynomial-time com-
pilation . In IJCAI95.

Forbus, K . ; Everett, J . ; Ureel, L . ; Brokowski, XL ; Ba-
her, J . ; and Kuehne, S . 1998 . Distributed coaching for
an intelligent learning environment . In Proceedings of
QR98.
Forbus, K . D . 1984x . Qualitative process theory . Ar-
tificial Intelligence 24:85-168 .
Forbus, K. D . 1984b . Qualitative process theory . Tech-
nical Report Technical Report 789, MIT Al Labora-
tory .
Franz G. Amador, A . F ., and Weld, D. S . 1993 .
Real-time self-explanatory simulation . In Proc . 11th
National Conf on Artificial Intelligence (AAAI-93).
AAAI Press/The MIT Press .
Iwasaki, Y. ; Farquhar, A . ;. Fikes, R. ; and Rice, J .
1997 . A web-based compositional modeling system for

8 0

sharing of physical knowledge . In Proceedings of the
15th International Joint Conference on Artificial In-
telligence (IJCAI-,97), 494-500 . San Francisco : Mor-
gan Kaufmann Publishers .
Johnson, L ., and Rickel, J . 1997 . Steve : An animated
pedagogical agent for procedural training in virtual
environments . SIGART Buletin 16-21 .
Kuipers ; B . J . 1994 . Qualitative Reasoning : Model-
ing and Simulation with Incomplete Knowledge. Cam-
bridge, MA: MIT Press .
Aleyer, B . 1991 . Eiffel: The Language . Prentice Hall .
Mosterman, P . J ., and Biswas, G. 1997 . Formal speci-
fications for hybrid dynamical systems . In Proceedings
of the 15th International Joint Conference on Artifi-
cial Intelligence (IJCAI-97), 568-577 . San Francisco :
Morgan Kaufmann Publishers .
Mosterman, J ., and Biswas, G. 99 . A java imple-
mentation of an environment for hybrid modeling and
simulation of physical systems . In ICBGM99.
QRG.
http://w«rw .qrg.ils.nwu.edu/ideas/sesidea .htm.

QR99 Loch Awe, Scotland

.!k-Wtnrni l � a..S$

Figure 3 : The first test case features a pipe (pipe-1) between two valves (valve-1&2) . The assembly is placed
between a water source and sink . The maintenance task is to disconnect the pipe from the circuit without creating
leaks nor decompressions . The user can control the valves and disconnect the pipe by opening the couplings . The
snapshot shows the pipe disconnected from the second valve and leaking water in the environment .

QR99 Loch Awe, Scotland

	

82

OR99 Loch Awe, Scotland

Figure 4 : The second test case is a tank whose water level is regulated . The goal of the maintenance task is to remove
the servo-valve (valve-2) without leaks or risk of electrocution . High-level actions, Drain Tank and Remove Valve-2,
perform the task automatically. They are modeled as hierarchical plans and executed by autonomous processes .

8 3

