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Abstract

The paper deals with the representation of continuous-
variable systems whose state can only be measured
through a quantiser. The model provides a discrete-
event description which is suitable for consistency-
based diagnosis. The paper describes which informa-
tion about the quantised system the model includes
and how the discrete-event model can be abstracted
from a quantitative model. The results are applied to
the fault diagnosis of an electronic power stage which
supplies an electromagnetic valve of a car engine and
consists of digital and analogue components .

Introduction
Model-based approaches for process monitoring and di-
agnosis are based on explicit knowledge about adynam-
ical system . Due to this, the development of a diagnos-
tic system can be separated into the construction of a
general diagnostic algorithm and the modelling of the
given system . Different approaches have been elabo-
rated in the fields of control engineering or artificial
intelligence, cf for surveys (Frank 1996), (Hamscher,
Console, and de Kleer 1992), (Isermann 1984), (Lunze
1995), and (Patton, Frank, and Clark 1989). This pa-
per focuses on the modelling step . A qualitative mod-
elling approach is proposed, which should be applied to
continuous-variable dynamcal systems under the fol-
lowing practical circumstances:
" Under strict real-time restrictions continuous signals
often cannot be processed fast enough (the cycle time
of the power stage example described in this paper is
between 10 and 100 milliseconds) . Therefore, qual-
itative considerations are necessary which abstract
from detailed information.

" The model has to be used to find faults that change
the behaviour of the given system qualitatively (eg
Figure 5) . Then, qualitative considerations have suf-
ficient information to discriminate correct and faulty
behaviours.

The qualitative view of this paper is illustrated by Fig-
ure 1 . The input and output signals of the quanti-
tative system are only measured through quantisers .
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A quantiser generates an event e each time the sig-
nal changes its qualitative value. Instead of continuous
signals u(t) and x(t) only discrete-event sequences E
are obtained . The continuous-variable system together
with the quantisers is called the "quantised system" .

Jan Lunze
Technische Universitat Hamburg-Hamburg
AB Regelungstechnik, Eissendorfer Str.40

D-21071 Hamburg, Germany
LunzeCtu-harburg.de

Fault
________________

Input u :

	

; Outputx

Quantiser

	

Quantiser

Quantised System
._4___________________

Input event sequence Eu

Quantitative System

Discrete-event model
of thequantised syste

Diagnoser

Diagnosis

Fig. 1 : Quantised system

Output event sequence Fx

The qualitative modelling problem treated in this pa-
per concerns two tasks:

First, a discrete vent model suitable to represent
a quantised system for diagnostic tasks is defined.
By using the ideas of (Lunze, Nixdorf, and Schroder
1999), (Raisch et al . 1998), and (Sampath et al .
1996) a nondeterministic automaton is used as quali-
tative model. The automaton captures the discrete-
event dynamics of the quantised system by represent-
ing the occurrence of an event as state transition of
the automaton.
Second, an abstraction algorithm for the construc-
tion of the qualitative model is described. The main
result of the paper concerns the relation between the
abstracted discrete-event representation by means of
an automaton and the quantised continuous-variable
system .
The modelling problem considered here has been

dealt with in the literature on qualitative modelling
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by, for example, (Antsaklis, Stiver, and Lemmon 1996),
(Lunze 1995), (Lunze, Nixdorf, and Schr6der 1999),
(Raisch et al . 1998). The main difference to this
work results from the pure discrete-event point of view
adapted in this paper. That is, the time points con-
sidered are determined by the quantiser (and not by
a sampler as in the discrete-time systems literature) .
While approaches as (Dousson, Gaborit, and Ghallab
1993) capture cuts of the discrete-event behaviours in
so-called situations, the automaton proposed in this pa-
per represents event sequences in a recursive manner .
The diagnostic algorithm is derived from the results

of (Lunze 1999). It is used here mainly to demonstrate
the usefulness of our qualitative model.
The paper is organised as follows. The quantised

system is introduced in the next section. The follow-
ing section defines the automaton for the representation
of the discrete-event behaviour of quantised systems
and specifies the modelling requirements . Then, the
construction of the model by abstraction is presented
and proved to meet the modelling requirement (Theo-
rem 1) . The subsequent section proposes a consistency-
based diagnostic algorithm that uses the discrete--event
model. Finally, the approach is demonstrated for the
diagnosis of an industrial application example.

The quantised system

The continuous-variable system
This paper concerns dynamical systems that can be de-
scribed by the differential equation

x(t) = f(x(t), u(t)' f),

	

x(0) = xo-

	

( 1 )
where the behaviour of the state vector x E IR.' is de-
termined by the input vector u E IRm and the system
function f. The dynamic behaviour of the system de-
pends on the fault f E Y = {fo, . . . , fn, } where fo
denotes the faultless system .
Because the main ideas can be demonstrated for au-
tonomous systems, the system

-k(t) = f(x(t), f),

	

X(0)=X 0

	

(2)

without inputs will be considered in the following. All
signals of the systems are assumed to be observable
which is reflected in the fact that no difference is made
between state signals x and output signals y = x.

Spatial and temporal quantisation
Spatial quantisation . The state quantiser (Figure 1)
can be represented by a partition of the state space IR"
into the sets Q-,(i) C IR', i E Alu = {0,1, . . . , N}. The
qualitative value of the state x(t) at time t is given by
the index i of the set Qx(i) to which the state belongs:

[x(t)] = i

	

4=*

	

x(t) E Qx (i) .

	

(3)

Thus, only the quantised state [x] is assumed to be mea-
surable whereas the measurability of the quantitative
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state x is not necessary. In case a signal is not observ-
able at all, a single partition may cover the whole value
range of this signal . The approach is then suitable for
systems whose output signals y include only a subset
of the input signals u as well .

Temporal quantisation. An event eji E 9 takes place ;
at time to if the qualitative value of the state x changes
from the value i to j :

e.ii := (i,j),

	

i 14 j

[x(te - a)] = i , [x(te + a)] = j ,

	

b -~ 0.

	

(5)
At the event time to the trajectory x(t) passes the bor-
der 6Qx(i, j) between the partitions Qx(i) and Q,(j).
In an event sequence E(0 . . . H) = (eo, el, e2, . . . , eg)
the events are numbered where ek denotes the k-th
event and H = JEJ is the number of events that the sys-
tem generates within a given time horizon. If the quan-
tised system is considered in the time interval [0, Th],
the continuous-variable system follows the trajectory
x(o,T,,l . The relation between a continuous state trajec-
tory xfo,T,,l and the event sequence E is given by the
quantiser. This fact is reflected in the equation

E(0 . . . H) = Quant (x(o,Tr,]) .

	

(6)

Behaviour of the quantised system
For a given time interval [0, Th], a fault f and an initial
event eo the quantised autonomous system behaviour is
defined as a set of event sequences

S(eo, f) = {E=Quant(xlo,T,,l) J

	

2otE 6Q((eo)}f),
(7)

The qualitative system behaviour S(eo, f) denotes the
event sequences that are generated by the quantisation
ofpossible state trajectories . Only the initial event eo is
assumed to be known. Therefore, the initial condition
xo in equation (1) is uncertain and only constrained to
the set of points on the border JQx (eo) between two
partitions . Due to this uncertainty a set of trajecto-
ries has to be considered, hence a set of different event
sequences. For that reason the qualitative system be-
haviour is nondeterministic in general .
The function ps (e, k, f) E {0,1} describes whether an
event e may occur at step k:

_

	

1

	

the event e may occur at step k
ps (e' k' f) - {

	

0

	

else
(8)

The value of ps(e, k, f) is related to the quantised sys-
tem behaviour S(eo, f) by :

ps(e, k, f) = 1

	

q

	

3EE S(eo, f)

	

:

	

ek = e.

	

(9)
The aim of the following modelling step is to represent
the quantised behaviour (7) in an efficient and compact
manner . A collection of all possible event sequences
would not meet this constraint, neither the use of the
system equation (2) together with the inequality repre-
senting the quantiser.
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Discrete-event modelling of quantised
systems

Representation of the quantised systems by
a nondeterministic automaton
The quantised system is represented by a nondetermin-
istic automaton

where Z denotes the set of model states, Y the set of
faults, L the state transition relation and zo the initial
model state . A nondeterministic model has been chosen
due to the nondeterministic behaviour of the quantised
system that is caused by the state quantisation .
In (Lunze 1994) and (Lunze, Nixdorf, and Schr6der
1999) the automaton state z E Z denotes the quantised
state [x] or alternatively an event e. In the following
this approach is generalised. Each automaton state rep-
resents an event sequence E(1 . . . d) which consists of a
length-d sequence of events ("model depth" d) . Each
event sequence (that is each model state) is interpreted
as the sequence of last events that occurred in the quan-
tised system . This idea has been described by (R.aisch
et a1 . 1998) for time-discrete sequences of qualitative
states and is used here for sequences of events .
Initially, only the single event eo is given. Afterwards
a sequence of events can be observed . In order to trace
the behaviour also before d events occurred, automaton
states are added to Z that represent event sequences of
a length less than d. The set of model states is thus
defined as :

Z={z1, . . .,ziy}=

	

U {(e1, . . .,eh)I ejE-F} .
h-1 . . .d

(I1)
In contrast to approaches with model depth d = 1 where
each automaton state represents only the last event, the
extension to d > 1 yields the possibility to reduce the
set of spurious solutions that qualitative models gener-
ally produce.
The dynamical behaviour of the nondeterministic au-
tomaton is described by the transition relation

L : Z x Z x .F

	

--r

	

{0,1} .

	

(12)

For L (z', z, f) = 1 the automaton can step from model
state z to z' if the fault f is present. If the model
performs a state transition it generates an event e. This
event is stored as the last element of the new state's
event sequence . In the following, this last element of a
sequence is symbolised by e = lastevent(z) .

Behaviour of the model

N = (Z,J7,L,zo)

	

(10)

The behaviour of the automaton is given by the set of
all possible model state sequences

Ms(eo,f) - 1 (zo,z1, . . .,zH)

	

I

	

L(zi+l,zi,f) = 1,
zo = (eo)}-

	

( 13)
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To compare the model behaviour with the behaviour
of the quantised system (7) the set of model state se-
quences has to be mapped on a set of event sequences:

M(eo,f) = {E=(eo,ei, . . .,eH)I

	

(14)
3(zo,z1, . . .,zH) E MZ(eo,f)
ei = lastevent(zi) }

The description whether a model state z occurs at step
k in the model behaviour and its relation to the set (13)
is defined in the same way as in (8) and (9) :

1

	

z may occur at step k
ptit(z,k,f) _ ~ 0 else

	

(15)

pm(z,k,f) = 1

	

t~

	

3(zo,z1, . . . . zk) E Mz(eo,f)
zk = z.

	

(16)

The automaton possesses the Markov property as its
state captures all information of the past needed to
predict the future events . Therefore, the behaviour set
.M Z (eo, f) and the value of the function pm (z, k, f) can
be determined recursively if the initial event eo or the
initial model state zo = (eo) is known, that is, for

pm(z, 0,f) = 1

	

4*

	

z = zo = (eo) .

	

(17)

Thevalue of prat (z, k+1, f) only depends on the preced-
ing value pm (z, k, f) and the state transition relation
L of the Markov model:
pm(z,k+l,f)=1 (~ EL(z,z,f) - pm(z,k,f) >0

iEZ
(18)

If pm (z, k, f) is known it can be determined whether
an event e can occur at step k.

pm (e, k, f) = 1

	

t*

	

3z :

	

e= lastevent(z),

	

(19)
pM (z, k, f) = 1 .

In this way, possible event sequences of any length can
be produced by the automaton.

Modelling aim
Now it is possible to investigate the relation between
pm (e, k, f) and ps(e, k, f). Although the continuous-
variable state of the system obeys the Markov property,
the quantised state does not (Lunze 1994) . In contrast,
the automaton possesses the Markov property. Due to
this, an equality of the quantised system behaviour and
the model behaviour is not possible in general. There-
fore, the modelling aim is given by

M(eo, f) 2 S(eo,f)
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(20)

which demands that all possible event sequences of
the quantised system are included in the model be-
haviour . For most quantised systems the equality
sign is not achievable . Instead, spurious solutions
M(eo , f)/S(eo , f) are generated by the model. These
solutions can not occur in the quantised system .



Determination of the model by
abstraction

Abstraction algorithm
The main question concerning the construction of the
automaton model is how to determine the state tran-
sition relation L in order to satisfy the modelling aim
(20) . We propose the following model construction that
is based on the abstraction of the quantitative system :

Given: System (2), Quantisers (6), Model depth d.

1 . Initialise the transition relation L to zero :

For all tripels (z', z, f) with z E Z, z' E Z, f E Y:

L(z', z, f)

	

:=

	

0.

	

(21)

2. Determine possible transitions :

For all tripels (z, e', f) with z E i, e' E £, f E F:

2.1 . Construct a succeeding model state z' by
appending the new event e' to the event sequence
represented by the model state z :

if

	

3xo, Th
Quant (xlo,T,,~

	

x(t) = f(x (t), f),
x(0) = xo)

then

	

L(z',z,f) := 1 .

Result : Model transition relation L (z', z, f ) .
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2.2 . Check whether the transition from z to z'
is possible under the given dynamics :

= (el, . . .,eh,e')

	

(24)

The algorithm starts with a model transition rela-
tion L - 0 (21) . Then it determines cases where
L(z', z, f ) = 1 . To determine such transitions, at first
the set of compatible successors for each modelstate
z E Z is determined (step 2 .1). The succeeding state
z' keeps the, d - 1 last events of the preceding state z,
where d denotes the model depth. If there are not yet
d-1 events represented by the preceding state, the new
state has to take all events of the old one and append
a new event. This new event e' represents the event
generated by the model if the transition is performed.
Finally, the central part 2 .2 ofthe abstraction algorithm
determines whether the given quantised system allows
a transition from model state z to z' . The existence
condition within relation (24) is checked as follows: An
initial quantitative state xo has to be found. The quan-
titative state trajectory starting from this initial state is
quantised and results in an event sequence . This event
sequence has to be equal to the sequence (el, . . . , eh, e')
which represents the considered model state transition .

As the first event generated by the quantised system
has to be el, the search for a suitable xo has only to
be performed within the set of states bQx (el) . The
time horizon Th has to be sufficiently long so that d+ 1
events are generated . Note that only a short sequence
of d + 1 events has to be considered . The quantita-
tive behaviour needs not to be traced for more events .
Nevertheless, the automaton is able to produce event
sequences of any given length by recursive evalution
of equation (18) .

	

If the event sequence (el, . . . , eh, e')
can be generated the model transition relation is set to
L = 1 for the concerned case . Otherwise it keeps the
value zero .
A search for the initial state xo, hence for the event
sequence, is needed to check the existence condition of
(24) . This search can be realized numerically. For that
reason a quantitative description (2) of the continuous-
variable system must be available. Automating soft-
ware has been build for this task. It performs multiple
simulations and evaluates the resulting first d+1 events
of each simulated trajectory. Thus, the model transi-
tion relation can be set up by a systematic exploration
of the quantitative signal space.

Example
The model construction principle is illustrated by the
example in Figure 2 which shows a set of trajectories
from a stable oscillator in the phase portrait . Starting
from the event e87 which denotes the transition from
qualitative state 7 to 8 (marked by the arrow), different
event sequences are possible :

_

	

{ (e87, esa) , (eel, ess, ee5, ess) ,
(e87, ess, es9, ess) }

Three representative trajectories are highlighted .

Nx

S(e87)
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Fig. 2 : Trajectories of an oscillator within a quantised
state space

To determine the transition relation L for model
depth d = 2 only two preceding events have to be in-
vestigated whether a succeeding event may occur or

z = (el, . . .,eh) = (el, E). (22)

if h=d : z' := (E, e')
(23)

if h<d : z' :=(el,E,el) .



not. For example, the event ess can take place if ei-
ther (e98, e69) or (e58, e65) occurred before . More cases
that statisfy the condition for a state transition are for
example

1

	

=

	

L((e87, e98), (e87)) = L((e87, ess), (e87))
=

	

L((e98, ess), (e87, e98)) = L((es9, ess), (ess, ess))
=

	

L((es9, e3s), (ess, ess)) = . . .

Starting from the initial event eo = e87 the model gen-
erates all event sequences of S(e87) but also spurious so-
lutions, eg Espur. = (e87, e98, e69, ess, e23, e12, e4i, e54) .

Validity of the abstraction algorithm

The automaton's transition relation L is determined
by considering short sequences of d + 1 succeeding
events . However, the resulting automaton can generate
sequences of any length by recursively applying equa-
tion (18) . Given an initial event eo, the model gen-
erates a set of event sequences .M (eo, f), whereas the
qualitative system behaviour covers the set of event se-
quences S(eo, f) . The modelling aim (20) demands that
M(eo, f ) ;? S(eo, f) holds.

Theorem 1 :

	

The automaton constructed by al-
gorithm (21. . .24) satisfies the modelling aim (20) .

Proof.

	

It has to be shown that the relation

d e E £ :

	

ps (e, k, f) = 1

	

#.

	

pM (e, k, f) = 1

	

(25)

is valid. If this relation is proved for 0 . . . k, the model
aim holds for horizons H < k. The proof for (25) will
be given by induction.
For k = 0 the relation (25) holds as it is assumed that
the initial event eo is known and, hence, for the model
state zo = (eo) ps (eo, 0, f) = 1 and pM (zo, 0, f ) = 1
imply relation (25) .
Assume now that relation (25) is valid for 0 . . . k and
that for a given event e the equation ps (e, k +1, f) = 1
holds. Due to (9) an event sequence E(0 . . . k + 1) E
S(eo, f) exists with ek+1 = e. This fact is equal to the
existence of a shorter event sequence E(0 . . . k) and a
transition possiblity for ek+i :

ps(e, k + 1, f) = 1
3E(0 . . . k + 1) E S(eo, f)

	

:

	

ek+1

q 3E(0... k) E S(e o , f) A

ps(ek+i = e I E(0 . . . k)) = 1

The first part (26) allows to perform the induction step
from k+1 to the already proved case k, while the second
part (27) involves the specific properties of the abstrac-
tion rule as follows :
Equation (26) implies that a shortened event sequence
is an element of the model behaviour because the model
aim is satisfied for 0 . . . k. Then, a model state se-
quence must exist that represents the concerned event
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sequence . The last model state of this sequence repre-
sents the last d occurred events :

E(0 . . . k) E S(eo, f)

E(0 . . . k) E M(eo, f)
EI(zo , z1 , . . ., zk) E .M.(eo, f) : ei = lastevent(zi)

PM (zk = E(5, . . . , k)) = 1

	

(28)

with the abbreviation o = max(0, k - d + 1) .
Second, the model transition relation can be concluded
from (27) as this conditional expression involves that
the condition in (24) holds:

ps(ek+i = e (E(0...k)) = 1

PS (ek+i = e

	

E(o . . . k)) = 1

	

(29)
L(z', z, f) = 1

	

with z = E(o, . . . , k),

	

(30)
z' = E(o . . . k + 1), lastevent(z') = e

with o = max(0, k - d + 2) .

	

Because pM (z, k, f) = 1
and L(z', z, f) = 1 are valid for the considered z and z'

pM (z', k + 1, f ) = 1,

	

lastevent(z') = e

	

(31)

hold due to equation (18) . This result has to be mapped
onto the model transition relation by relation (19) :

PM W,k+1,f) = 1
pM (e = lastevent(z'), k + 1, f) = 1 .

Thus, (25) is proved for k + 1 and by induction for any
k. Consequently, the model aim (20) is satisfied for the
given abstraction which proves the Theorem 1.

Consistency-based diagnosis

The diagnostic system has to answer the question

Can the quantised system generate an observed
event sequence E(0 . . . H) ?

(32)

It has to determine if the relation E(0 . . . H)

	

E

S(eo, f) holds or due to (20) if E(0 . . . H) E

	

A4 (eo, f)-
The diagnostic result for horizon H is denoted by

PN(f, H):

PN(f
H) = 1 if E(0...H) E M(eo, f)

	

(33)
0 else .

To determine PN, it is tested whether changes in the
signal state are consistent with the state transition rela-
tion L of the automaton . As this test can be performed
for one observed event after the other, the algorithm
can be used recursively and on-line:
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Diagnostic Algorithm:

Given:

	

A sequence of events E(0.. . H)
An automaton for each fault mode f E F.

1 .

	

The diagnosis starts with no information about
the occurrence of a fault, that is, with

2 .

	

After each occurrence of a new event the diag-
nostic algorithm determines PN (f , k) recursively
for given PN (f, k - 1) as follows:

PN(f, k) _

	

PN(f, k - 1) = 1

	

(35)
0 else .

Result :

CPU

PN(f, 0) = 1

	

for all f E Y7.

	

(34)

PN(f, H) for each fault f E T.

In the recursion step k, the algorithm uses the newly
observed event ek, the former events ek_d, . . . , ek-1 rep-
resented by zk_1 and the result PN(f,k - 1) of the
former step . The model state zk is constructed by
(ek-d+1, . . .,ek).
If the fault f could be excluded for a shorter time hori-
zon, PN (f ; k - 1) = 0 holds and PN(f, k) = 0 follows.
Otherwise, the result concerning f depends on the pos-
sibility that the automaton performs the state change
zk_1 -+ zk . This possibility is described by the state
transition relation L.

Example: Modelling and diagnosis of a

The presented qualitative modelling approach was
applied to an industrial application example and tested
by using the model for consistency-based diagnosis.
The investigated electronic power stage is an hybrid
system with discrete components (parts of the CPU
and a logical control unit) and analogue components
(resistors, inductances, capacities, diodes etc) . It
supplies an electromagnetic valve of a car engine
(Figure 3) .

1

	

if

	

L(zk, zk-1, f) = 1,

power stage

Fig. 3: Structure of the power stage

u

The power stage shows a typical behaviour which is
depicted in Figure 5 for two digital signals and the
analogue current signal (upper plots, fat lines) . This
behaviour is periodically repeated with a cycle time of
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about 10 to 100 milliseconds .

The spatial quantisation is given by a set of
boundaries that define intervals for each signal . These
intervals are selected in such away that the qualitative
behaviour captures the main characteristics of the
nominal system . The grey boxes in Figure 5 illustrate
the evolution of the qualitative signal values .
An event is generated each time the qualitative value
of a signal changes. The event times are marked
by vertical bars in the bottom plots of Figure 5.
As can be seen, the qualitative behaviour differs
in normal and faulty cases. This holds true also if
the time-scale is abstracted and only pure 01106 -
cal") event sequences are observed by the quantiser (6).

The automaton model (10) has been constructed for
the normal case and six fault modes (shortcircuits, open
circuits etc) by abstracting a given quantitative model
of the power stage according to the presented algorithm.
An autonomous view could be adopted for this task by
including the CPU to the concerned system . This is
equal to a specification of the originally arbitrary input
signals. The values of the two digital signals are natu-
rally partitioned into the set {0, 1} while the analogue
values of the current signal are divided into five subsets.
A fourth signal, an internal voltage which is not shown
in the signal plots, is partitioned into six intervals. The
model depth is set to d = 1 .
Figure 4 illustrates the automaton-graph for the nor-
mal case . The cyclic nature of the process is visible
as well as the nondeterministic behaviour (from model
state 17 transitions are possible to model state 7 or 9) .

Fig. 4: Automaton for normal mode

The cartesian product of qualitative values generally
results in a large number of possible model states .
In our example the set of model states could be

power stage

Logical valveon /off Control
Unit T___11mode

ii



m~.

Normal case

0

lime

Fig. 5: Quantitative and qualitative behaviour for different fault modes

reduced significantly as the behaviour is limited to
few trajectories that do not pass every possible com-
bination of qualitative values . Without this reduction
the automaton graph would consist of about 700 nodes.

The consistency-based diagnostic system obtains
event sequences which are abstracted from measure-
ments of the power stage. The diagnostic process then
checks each event whether it is consistent with any
model that was assumed to be valid before the event
occurred . Figure 6 visualises two diagnostic runs . It
shows the evolution in time of the given signal values
and the diagnostic results. The grey boxes denote for
each model (numbered from 0 for the normal case and
from 1 to 6 for the faults) that the event sequence has
been consistent with the model so far.
In the first scenario a normal behaviour was given. Af-
ter the first event the faults f3, f4 and f5 had to be
rejected, after the occurrence of more events only the
normal case fo could be assumed to be valid. The sec-
ond scenario concerned a shortcircuit in the analogue
circuit. Some faults could be excluded after the first
events . Then the event sequence also became incon-
sistent with the normal model, that is a fault was de-
tected . As only the model for fault f2 could justify the
observed event sequence, the fault could also be dis-
criminated and located at the analogue circuit of the
power stage.

Conclusions
The paper presents a discrete-event representation of
continuous-variable systems with signals that can only
be observed through quantisers . A nondeterministic
automaton is applied as discrete-event model .
The main contribution of this paper concerns the de-
termination of the discrete-event model by abstraction
of a given quantitative description of the system . This
abstraction of a precise system description aims to
simPlify the diagnostic system .
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The paper states that a model that is set up according
to the presented abstraction algorithm (21 . . .24) yields
a description of the quantised system which satisfies
the model requirement (20) . The model is then suitable
to be used within a model-based diagnosis framework.
The approach is demonstrated for the qualitative
modelling and consistency-based diagnosis of a
power stage. Faults can be detected and isolated by
reasoning about the observed event sequences and the
information provided by the automaton.

Future work will extend the approach to systems
whose behaviour is not precisely known. Uncertainties
have to be considered within the abstraction algorithm
as parameter tolerances of the system . Alternatively,
the discrete-event model can be set up by an identi-
fication procedure based on experimental data . Then,
an explicit system description is not needed .
Furthermore, the modelling and diagnosis can be im-
proved by including information about the tinge inter-
vals between two succeeding events in the model, cf the
semi-Markov approach of (Lunze 1999).
For compositional modelling a net of automata can be
set up. Each automaton of the net represents a single
component. The links between the automata are de-
fined by the connections of the concerned system com-
ponents.
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