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Abstract
Many extensions to existing qualitative simulation
packages allow combined use of available numeric and
qualitative information . Some provide numeric in-
tegration across two qualitative states but none of
them highlights numerically or semi-quantitatively
the qualitatively predicted time points . Moreover,
high accuracy at time points is only achieved by a
fine level of granularity across the entire time inter-
val . This paper presents landmark approximation as
a new methodology to improve semi-quantitative pre-
dictions in qualitative simulation . We also present
a transition table and a method to propagate semi-
quantitative values that is suitable for landmark ap-
proximation . These techniques have been imple-
mented in a simulation engine that is based on qual-
itative reasoning techniques with a semi-quantitative
extension . We demonstrate that a semi-quantitative
approximation to landmarks improves the predictive
power of the simulation tool even with a reduced
number of interpolated states .

Introduction
Qualitative reasoning techniques, as introduced e.g .
by (de Kleer & Brown 1984 ; Forbus 1984; Kuipers
1986), have been developed to model and simulate
physical processes . It is a technique that is capable
to describe relations in terms of qualitative equations
or constraints for simulation . Such constraints cover
a set of numerical solutions of a qualitative model but
may also produce spurious behaviours that are not
consistent with any numerical solution . Some exten-
sions to qualitative simulation allow the combination
of qualitative and quantitative information to prune
spurious behaviours and provide quantitative predic-
tions . Others make predictions over the qualitative
time interval . These predictions are in some cases very
weak because the distance between two time points
can be very large . Another set of programs overcomes
these weak predictions by interpolation of new time
points . On the one hand this increases the precision
of quantitative predictions but on the other these ap-
proaches may require a large number of refinement
steps to reach a fine level of granularity, which can be
a prohibitively time consuming task . However, since
a fine level of accuracy can only be achieved across
an entire interval, we propose landmark approxima-
tion to gain more accuracy at the possibly interesting
time points. A fixed step size can be chosen for nu-
meric integration and at the interesting time points
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we reach a fine level of granularity by approximating
the time point to a chosen e . Furthermore, we present
a transition table that defines a set of possible state
transitions, which is suitable to landmark approxima-
tion .
The presented work extends the simulation engine

of the qualitative simulation environment for molecu-
lar biology BioSim (Heidtke & Schulze-Kremer 1998)
which is based on qualitative descriptions with a semi-
quantitative extension . The system provides mod-
elling features such as objects and processes . The ob-
ject structure allows to constrain parameters of active
objects and the process structure allows to define con-
straints on object parameters that hold under certain
preconditions . Given such a description the algorithm
performs repeatedly a qualitative analysis of the cur-
rent object parameters of a given state and predicts
possible qualitative successor states . If quantitative
information has been made available, new time points
are interpolated, controlled by the qualitative predic-
tion and refined by the landmark approximation algo-
rithm at qualitatively predicted time points .

System and Methods
The underlying simulation engine is a constraint cen-
tered approach providing an object and process struc-
ture . The characteristics ofan object are described by
parameters that are functions over time and are repre-
sented by a set of ordered landmarks and intervals be-
tween them, termed quantity space . This purely sym-
bolic description can be extended by available semi-
quantitative information . A semi-quantitative mag-
nitude is either a numeric magnitude or an interval
in the range of two numeric magnitudes . A landmark
can be bound to a numeric value or a numeric interval .
If the landmark is bound to an interval its borders are
included . The value of a parameter includes at mini-
mum a magnitude and a direction of change that can
be extended by a semi-quantitative magnitude . Fig-
ure 1 shows an example of two objects .

Example 1 In Figure 1, the initial qualitative value
(v,dec) of parameter velocity in object rocket
could be represented as a semi-quantitative value
((3000, 3300), v, dec), too . In this context both no-
tations have the same meaning, because landmark v
is bound to the interval [3000,3300] in the quantity
space .



object( earth,
'Earth',
[ [ mass,

[0, m ` 5 .98e24, inf],
[(m, std)] ],

[ gravitation,
[-inf, g "' -6 .67e-11, 0],
[(g, std)] ],

[ surface,
[0, sl - 6.37e6,

	

inf],
[(sl,std)] ] ],

constant( surface ),
constant( gravitation
constant( mass ) ]

object( rocket,
'with initial velocity in decr . gravity',
[ [ dist,

[O,inf],
[(O,inc)] ],

[ accel,
[-inf,'-g',O,inf],
[(I-g',inc)] ],

[ radius,
[O,inf],
[((O,inf),inc)] ],

[ velocity,
[-inf,O,v - [3000,3300] ,inf],
[(v,dec)] ] ],

Figure 1 : The semi-quantitative model describes two ob-
jects : earth and rocket . The earth is characterised
by mass, surface (distance from the earth's core) and
gravitation. Each of the parameter's quantity space has
a landmark that is bound to a numeric value, e.g . mass
has the landmark m bound to 5.98 x 10 24 . All parameters
are defined to be constant . The rocket is characterised
by the distance dist from the earth's surface, the radius
from the earth's core, velocity and acceleration accel. In
the quantity space of velocity the landmark v is bound
to the interval [3000, 33001. Units have intentionaly been
left out.

Processes describe functional dependencies between
object parameters . Process preconditions determine
whether or not a process holds, i.e . it is active or in-
active . An example of a process defining constraints
on objects is given in Figure 2. The qualitative be-
haviour of a model is derived from the directions of
change of a parameter in conjunction with its qualita-
tive and its semi-quantitative magnitude, if available.
Possible transitions from one state to another are de-
termined by a transition table. The set of possible
qualitative behaviours is then represented by one or
more behaviour trees. Each node represents a state
of the entire system described by all values of object
parameters at one point in time .

Functional dependencies can be defined in objects
on their own parameters and in processes on parame-
ters across objects. The system provides three differ-
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process( acceleration,
'Acceleration of rocket',
[ rocket(dist) ge 0 ],
[ add(earth(surface),rocket(dist),

rocket(radius)),
'm+'(rocket(dist), rocket(accel),

[(inf,0),(0,'-g')]),
rocket(accel) =

(earth(gravitation)*earth(mass))/
(rocket(radius)*rocket(radius)),

'd/dt'(rocket(dist), rocket(velocity)),
'd/dt'(rocket(velocity),rocket(accel)) ]

Figure 2: The semi-quantitative model describes one pro-
cess acceleration that describes the functional dependen-
cies in a qualitative (add, ' m+' and 'd/dt') and quantita-
tive ('=', add, 'd/dt') manner . This process is only active
as long as parameter dist of object rocket is greater or
equal 0.

ent types of constraints :
" Qualitative constraints:

	

m+, m-, constant,
increasing and decreasing .

" Qualitative-semi-quantitative constraints:

	

add,
sub, mult, div and d/dt .

" Semi-quantitative constraint : '=' . The right hand
formula can be any combination of addition, sub-
traction, multiplication and division .

The implemented numeric constraint solver can
handle real and interval arithmetic (Alefeld &
Herzberger 1983 ; Struss 1990 ; Hyv6nen 1992), with
respect to multiplication, division, addition and sub-
traction . For numeric integration the simulation en-
gine provides three different algorithms :

" Euler's method,

" Runge Kutta 2" order and

e Runge Kutta 4th order with adaptive step size con-
trol .

The following two subsections describe in more de-
tail the transition table of the simulation engine and
the method of propagting semi-quantitative informa-
tion on qualitatively predicted time points .

Transition table
The behaviour of a system is described by changes of
the qualitative value of parameters . The manner of
changing the qualitative value of a parameter while
changing from one state to another is restricted by
a set of state transitions . The transition table that is
given in the following definition only allows state tran-
sitions from one distinguished time point to another.
State transitions from a time point to a time interval
or vice versa are not allowed. Therefore, all changes
are identifiable at distinguished time points .

Definition 2 The transition table of BioSim . qv(t)
represents a qualitative value at a point in time t.
h represents a landmark, (1 ;,1j+L ) an interval between
two neighbouring landmarks in a quantity space .



table:

transitions from

transitions from steady values
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increasing values

transitions from decreasing values

The following gives an example how to interpret the

Example 3 Assuming a quantity space [0, a, irlf] and
a qualitative value (a, inc) at time point t2 the possi-
ble successor values at time point t3 are determined
from 11), 1,2), 13) and 14) to be (inf, inc), (inf, std),
((a,inf),inc) and ((a,inf),std) .

When a parameter changes to or from a steady
state, the direction of change in the interval is de-
termined by the direction of change at the time point
that succeeds or preceeds the current time point, re-
spectively.

Propagation of quantitative information
In this section we describe how numeric, interval and
qualitative information is combined and propagated .
We answer an important question : "What is the quan-
titative scope of a symbolic magnitude?" in Defini-
tion 4. In the following, we use the notations:

" sgm(p(t)) to refer to the semi-quantitative magni-
tude,

" gm(p(t)) to refer to the symbolic magnitude and

" gdi.r(p(t)) to refer to the qualitative direction of
change

of the parameter p at a particular time t .

Definition 4 Let to and to+i be time points of two
successive qualitative states, let nm be a newly com-
puted semi-quantitative magnitude for a parameterp.

1 . If p(tn+1) is a qualitative value then nm extends
the qualitative value to a semi-quantitative value, iff
the gm(p(tn+1)) is not bound to a semi-quantitative
magnitude within the parameters quantity space.

2. If p(t�+1) is a semi-quantitative value or a qualita-
tive value, where the symbolic magnitude is bound
to a semi-quantitative magnitude within the param-
eters quantity space, then

gm(p(tn+1)) is bound to an interval [x, y] ~ x, y E
Rn x < y and [u, v] n [x, y] = 0
then the whole behaviour wild be refused,

(b) if nm E R and gm(p(t~,+1)) is bound to x E R
and sgm(p(tn )) E R then the whole behaviour
will be refused if x ¢ [nm, sgm(p(tn))] n nm <
sgm(p(tn )) and x ¢ [sgm(p(t tt )), nm] n nm >
sq'm(p(tn))~
if nm

	

=

	

[u,v]

	

l~

	

u,v

	

E

	

R

	

l~

	

u

	

<

	

v and
gm(p(tn+1)) is bound to x E R and x ~ [u, v]
then the whole behaviour will be refused,

(d) if nm E R and gm(p(tn+1)) is bound to an inter-
val [x, y]

	

n x, y E R n x < y and nm ¢ [x, y]
then the whole behaviour will be refused.

3. The sgm(p(t~)) and sgm(p(tn+l)) must 6e
consistent with the direction of change, e.g .
if gdir(p(tn )) = inc then sgm(p(tn+1)) >
sgm(p(tn )) must hold .

This definition guarantees, that two values p(tn)
and p(tn+1) at successive time points are consistent .
The following gives an example to illustrate the above
given definition .

Example 5 In our representation a landmark is a
symbolic description that separates two qualitatively
distinguished regions of the quantity space. The ba-
sic landmark 0 separates the region of positive values
from the negative ones . When we extend a qualitative
value, (0, inc), with numeric information, this must
be consistent with the existing symbolic magnitude 0,
which is implicitly bound to the numeric magnitude 0
i9a the parameter quantity space.

" A newly computed numeric magnitude must match
with the qualitative value (0, inc),

	

e.g.

	

0 would
be

	

appropriate

	

to

	

extend (0, inc)

	

to

	

the

	

semi-
quantitative value (0, 0, inc), where 0 is a semi-
quantitative as well as a qualitative magnitude,
inc is the direction of change . Definition 4.2 .b .

" Any interval [x, y], x, y E R n 0 E

	

[x, y] cha ge
used to extend (0, inc) to ([x, y], 0, inc), where [x, y]
is a semi-quantitative magnitude, 0 a qualitative
magnitude and inc the direction of change . Defi-
nition l, .2 .c.

gv(tn ) gv(tn+1)
19) 15, dec 15_l,dec
20) (15, dec) (15_1, std)
21) (15, dec) ((15_1,15), dec)
22) (15, dec) ((15_1,15), std)
23) (( 15 ~ 15+i ), dec) (15, dec)
24) ((15 ~ 15+1), dec) (15, std)
25) ((1i,1i+1), dec) ((11,15+1), dec)
26) ( ( 15 ,15+1) ~ dec) ((15 ~ 15+1), std)

gv(tn) qv(tn+1)
11) 15 , inc (15+i, inc)
12) (15, inc) (15+i, std)
13) (15 , inc) ((15 ~ 15+1) ~ inc)
14) (15, inc) ((lu 15+1)~ std)
15) (( 15 ~ 15+1), inc) (15+1, inc)
16) (( 15 ~ 15+1), inc) (15+ ~, std)
17) (( 15 ~ 15+1) ~ inc) ((15,15+1), inc)
18) ((15 ~ 15+1), inc) (( 15~ 15+1)~ std)

gv(tn) ~1t'(tn+1)
15 , std 15 , std

2) (15 , std) (15+i, inc)
3) (15 , std} ((15 ~ 15+i ), inc)
4} (15, std) (15_ 1 , dec)
5} (15, std) ((15, h_1), dec)
6) ((15,15+i), std) ((15,15+1), std)
7) ((15,15+1), std) (15+1 ~ inc)
8) ((15 ~ 15+1)~ std) (( 15 > 15+1), inc)
9) ((h, 15+1), std) (15, dec)

10) ((15 ~ 15+1) ~ std) (( 15~ 15+1), dec)



Algorithm

Landmark approximation is a new method to refine
the numeric integration at qualitative time points .
These time points must be examined in fine detail if
one wants to get numerically precise results. When in-
terpolating a qualitatively predicted time interval, the
algorithm detects whether one of the numeric mag-
nitudes sgm(p(tn)) or sgm(p(tn+1)) lies outside the
scope of the parameter's symbolic magnitude. In this
case, the interpolated state is refused and the step is
repeated with a halved step size, until a user chosen e
is reached or the two successive magnitudes are within
the same qualitative region .
Another criterion for landmark approximation is

the direction of change . The direction of change is de-
fined to be constant across a qualitative time interval .
When the algorithm detects a change of direction of
one of the parameter values, landmark approximation
is applied, too. The following describes our algorithm
of landmark approximation.

Algorithm 6 Given a set of numeric equations EQ,
s the actual state, n the qualitative successor state of s,
ms the maximum step size, mi the maximum number
of interpolation steps, e to approximate numerically
a qualitative landmark, let h = "-i be the step size,
let ns = s be the initial state and Tet ran =normal be
the mode of the algorithm then the algorithm proceeds
as follows :

SI) If nm = normal nh < ms or nm = narrow A h > e
" then let be Ps = ns the previously interpolated

state .
*Otherwise the algorithm stops . The numeric

magnitudes of state ns are propagated to the qual-
itative values of state n . If this fails the state n
is marked as inconsistent (n) .

S2) Apply the chosen numeric integration method on the
set of equations EQ to interpolate the next state ns
for the given step size h .
If the calculation fails, i .e . EQ has no solution, the
state s is marked as failN(s) . The algorithm stops .

S3) Compare ns with the previously interpolated
state ps .
If any newly interpolated magnitude falls outside the
current qualitative region or if a change of direction
has been detected then
" let be h = i and nm = narrow .

If h > e then go to Step 2, otherwise go to Step 1 .
" Otherwise let be nm = normal and go to Step 1 .

Example 7 Let {-inf, 0,

	

+inf} be the quantity
space of parameterp, let p(tn) = (5, (0, +inf), dec) a
decreasing semi-quantitative value at to and p(tn+1) _
(-2,

	

(0, +inf),

	

dec)

	

its predicted successor value
at tn+l . The landmark 0 in the parameter's quan-
tity space separates the positive and the negative num-
bers . The numeric magnitude sgm(p(tn+1)) does not
belong to the positive numbers and is rejected . In con-
sequence, the step size is halved and the interpolation
step for tn+1 is repeated, until the interpolated state
returns for sgm(p(tn+l)) a positive magnitude or the
step size is less than or equal to e . When the stepsize
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becomes smaller than or equal to E landmark approxi-
mation stops . In that case the resulting sgm(p(tn+1))
must match a qualitatively predicted state at tn+i, as
defined in Definition /,, or the behaviour will be re-
fused .

Note 8 A positive side effect of the landmark approx-
imation can be observed when interpolating non-linear
functions . Assuming a chosen step size for interpo-
lation to be too wide to reflect the "real" function,
particularly Euler's method will give false results for
the interpolated time points . The algorithm detects
when an interpolated state falls outside the current
qualitative region of a parameter, the step size will be
halved and the newly interpolated states are closer to
the "real" function . The algorithm then proceeds with
the newly computed step size .

Example
In this section we present an example to highlight
the predictive power of the landmark approximation
algorithm. The example is taken from (Berleant &
Kuipers 1997) where it has been modelled using Q3,
to be discussed later. We have chosen this example to
compare our approach to a well established simulation
engine .
The behaviour of a rocket, fired upwards from the

earth's surface, is described by the follwing equation :

d2r _ -GM
dt2 r2

The model that represents Equation 1 is given in
Figures 1 and 2 . The model is initialised with G =
-6.67 x 10-11 k98T the gravitational constant and
M = 5.98 x 10"kg the earth mass . The rocket's initial
position is at sea level 6.37 x 1Osrrt, i.e . the distance
from earth is Om. The rocket is fired upwards with
an initial velocity within the range [3000,3300]m and
the engine turned off. The initial velocity is less than
the escape velocity, so that after some time the rocket
will return back to earth .
We performed two simulation runs using Euler's

method . The maximum number of integration steps
has been set to 10 and 28, respectively. The third sim-
ulation run has been performed using Runge Kutta 4th
order with adaptive step size control. The maximum
number of integration steps has been set to 10 andthe
maximum width of the time interval has been set to
500s, i .e . the integration method will proceed in steps
of 50s . The e for landmark approximation has been
set to Is . If a landmark is reached the landmark is
approximated by dividing the step size by 2, until the
step size is less than or equal to the given e .
The results obtained are shown in Table 1. For

comparison, we added the results from (Berleant &
Kuipers 1997) and those of an iterative summation
method . The table focuses on the time intervals ti
and t2 . At t i the rocket reaches its maximum dis-
tance maXD from the earth's surface and at t2 the
rocket returns to earth. The table's last row holds the
number of interpolated states .
The Runge Kutta 4th order method delivers the

most precise result in comparison to tile control val-
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Figure 3: The plot shows the only possible behaviour that results from asimulation run using Euler's method . At the time
points where the integration method reaches a landmark we can observe that the time steps get closer . The qualitative
predicted time points too, tq1, tq2, tq3, tq4 and tq5 ; to be found at Os, 0.78s, 336s, 337s, 378s and 723s . They are indicated
by the symbols T,T,T, o, j and j, e.g . for distance and acceleration . The connecting slope in the plots has no other
meaning than visual guidance .

Table 1: From the plots we can observe that. the rocket reaches the maximum height at t1 and it turns back on earth at t2 .
The maximum distance from earth is given by maxD . The table shows three significant digits of the results. The fourth
row holds information about the number of interpolated states . Two simulation runs have been performed using Euler's
method and one using Runge Kutta 4th order (RK4) . For comparison the results of Q3 and an iterative summation
method with step size O.ls as reference (Control) are shown in the last three columns.
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Euler RK4 Q3 Control

tl s [336,378] 1337-,3791 338, 379 [334,384] [335,3821 [339,381

t2 [S] [722,805] [693, 777] [675, 758] [607,915] [607,835] [677,761]
maxD [krn] [559,6731 [518,633] [493,6071 [457,666] [470,646) [495,609]
# states 25 51 23 25 50 7614



ues. Although Runge Kutta 4th order constantly de-
livers by approximately two seconds smaller time in-
terval values for the boundaries compared to the ref-
erence values, it is closest to the control values of all
methods examined . The only exception is the upper
bound predicted by Q3 for t1 which is slightly more
accurate than Runge Kutta 4th order's corresponding
value. However, the lower boundary predicted by Q3
is much more far off than the prediction by Runge
Kutta 4th order and results in a wider and less precise
interval .
Comparing the results using Euler's method and the

Q3 method, we can observe that even with just 25
interpolated states our algorithm predicts tighter
bounds for t1, t2 and maXD then Q3 does with 50
interpolated states . This is due to the landmark ap-
proximation algorithm. Q3 produces weak results for
the upper and lower boundaries which can be observed
particularly for the prediction of t2 . Our method pre-
dicts t2 to be [722,805]s while Q3 predicts [607,9151s,
for 25 interpolated states . The closest value predicted
by Runge Kutta4th order is [675, 758]s and the result-
ing interval smaller by 36% even for twice the number
of interpolated states in Q3 . The result of the simu-
lation run using Euler's method with 25 interpolated
states is shown in Figure 3, the qualitative predicted
time points tqo, tql, tq2, tq3, tqg and tq5 are indicated
by the symbols T, T, T, o, 1 and 1, e.g . for distance
and acceleration . We can observe that the time inter-
vals, which preceed qualitative time points are smaller
sizes, i.e . they provide a refined linear approximation.
The first two time points in Figure 3 are at t = Os

and t = 0.78s . These are identical with the first two
qualitatively predicted time points tqo and tql . Here,
the landmark approximation algorithm has been ac-
tive for the first time . The parameter distance has the
following values : rocket (dist) (tqo) = (0, 0, inc) and
rocket (dist) (t ql ) = ((0, +inf), inc) . The numeric
integration could not interpolate a state that matches
with gm(rocket (dist) (tqo)) = 0, so the step size has
been halved until it became less than e = ls . This is
the case at t = 0 .78s . With respect to Definition 4 .1
the semi-quantitative values of this state have been
propagated to the qualitative predicted state at tql .
The effect of curve correction can be observed in

the interval [t q l, tq2], at [to.7s, t336] . From t = 301s,
the linear approximation produces results that lie out-
side the scope of a qualitative magnitude or that are
incompatible with the direction of change of a parame-
ter. In this case a newly interpolated state is accepted
only if it is compatible with the parameter's qualita-
tive values or the step size becomes less than e.
From t = 0.78s the algorithm proceeds in steps

of 50s. The next time point after t = 301s would
be t = 351s, but the algorithm detects a conflict in the
direction of change : sgm(rocket (distance) (t301)) >
sgm(rocket (distance) (651))

	

and
gdir(rocket (distance) (tso1))

	

=

	

inc.

	

The step
size is halved and the parameter value at the
newly computed time point t = 326s is com-
patible with the direction of change . The algo-
rithm proceeds in steps of 25s, but the next time
point would be t = 351s and again this conflicts
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with gdir(rocket (distance) (t326))

	

=

	

inc.

	

This
time the algorithm rejects the newly computed time
point twice. The step size is 6.25s and a new state
is interpolated at t = 332s . The step size is halved
again to 3.125s. A new state is accepted at time
point t = 335s . The step size is halved twice and
the algorithm stops, because e _> 0.78125 . The
magnitudes of the newly interpolated state t = 336s
are propagated to the qualitative predicted state tq2,
with respect to Definition 4.
The next qualitative interval [tq2, tq3], at [ts36, t337],

has no interpolated states . The step size has been
halved until it has been less than or equal to E. The
magnitudes computed for t = 337s have been propa-
gated to tq3 .

At the time points t = Os we observe
sgm(rocket (accel)(t)) = -9.83-T41 . This magnitude
has been computed initially and has been used to an-
notate the landmark -g in the quantity space of pa-
rameter accel . At t = 773s the qualitative simula-
tion predicted rocket (accel) (tq5) = (-g, dec) . After
some interpolated states, landmark approximation is
applied and the last interpolated state is propagated
to tq5 at t = 773s in Figure 3, with respect to Defini-
tion 4.2 .c .

Discussion
The work presented in this paper demonstrates that
landmark approximation improves the prediction of
numeric magnitudes and leads to tighter intervals at
possibly interesting time points than numeric interpo-
lation alone could do for the same step size . With the
combination of all available symbolic and numeric in-
formation, we gain the precise information on the crit-
ical or interesting states of the system . This statement
is additionally supported by the effect of curve correc-
tion because the numeric interpolation is controlled
by a previously predicted qualitative behaviour. Also
the representation of semi-quantitative values is an
important key to the improved prediction . Although
a landmark in a parameter's quantity space can be
bound to a numeric magnitude, a predicted interval
will only match if this magnitude lies within the pre-
dicted numeric interval .
The presented transition table does not provide

transitions to or from intermediate states . We as-
sume the direction of change of a parameter to be con-
stant between two time points . The advantage of this
method is that all changes in the parameter values are
identifiable at particular time points . In systems like
QSim (Kuipers 1994), that use two transition tables
for point-to-interval and interval-to-point transitions,
a parameter value can be steady at a time point and
increasing at the next state, which is a time interval .

Although there exists some semi-quantitative ex-
tensions to QSim, these extensions have some weak-
nesses . Semi-quantitative predictions of Q2 (Kuipers
& Berleant 1988) over time intervals can be very
weak when the distance between time points be-
comes very large, because it does not interpolate
states in time intervals. To overcome this weak-
ness Q2 has been extended to Q3 (Berleant 1991 ;
Berleant & Kuipers 19970. It uses an step size re-



finement algorithm to subdivide intervals predicted by
Q2 and interpolates new time points between existing
ones . In contrast to our work, Q3 can not reach a
finer granularity at the time points than across inter-
vals . Furthermore, both Q2 and Q3 rely on the mean
value theorem for interval propagation, whereas we
provide the use of Runge Kutta 2nd order or Runge
Kutta 4th order and gain a higher accuracy for the
semi-quantitative predictions .
NSim, dynamic envelope simulation, presented

in (Kay 1996 ; Kay & Kuipers 1993) extends a QSim
QDE to a semi-quantitative differential equation,
SQDE. An extremal ordinary differential equation sys-
tem is dervied from a SQDE by minimizing and maxi-
mizing each derivative equation . This system is simu-
lated using numeric integration such as Runge Kutta .
In contrast, our integration methods are capable to
handle interval arithmetic as well . SQSim (Kay 1996 ;
1998) combines Q2 and NSim. Predictions of Q2 and
NSim can be intersected and must be consistent, oth-
erwise the behaviour can be refused . SQSim can make
more precise predictions than each of the methods
alone could do . However, SQSim. inherits the limi-
tations of QSim as discussed above .
Based on QPT (Forbus 1984), SimGen is presented

in (Forbus & Falkenhainer 1990; 1992) . SimGen per-
forms a qualitative analysis on a qualitative model
to predict possible qualitative behaviours . For each
behaviour a numeric model can be inferred for a nu-
meric simulation run . Pika (Amador, Finkelstein, &
Weld 1993) is another self-explanatory simulator, sim-
ilar to SimGen . In contrast to SimGen it performs
much better and the modelling language allows arbi-
trary algebraic and differential equations . Like our
simulation engine, the method used for numeric in-
tegration is Runge Kutta 4th order with an adap-
tive step size control . However, in our approach pre-
dicted qualitative behaviours are controlled by semi-
quantitative information and interpolated behaviours
are controlled by qualitative information, where in
contrast neither SimGen nor Pika use qualitative and
semi-quantitative models for simulation .
SQPC (Farquhar & Brajnik 1995), is an exten-

sion of QPC (Crawford, Farquhar, & Kuipers 1990) .
SQPC models are translated into SQDEs, an exten-
sion of QDEs. The simulation algorithms used are Q2
and NSim which are extensions of QSim as discussed
above . Similar to our approach, both QPC and SQPC
combine the conceptual modelling mechanism of QPT
and the mathematical methods representation within
QSim, but in contrast we allow the direct definition
of objects and processes by the use of qualitative or
semi-quantitative constraints .

Fuzzy mathematics is introduced for qualitative
modelling (Nordvik, Smets, & Magrez 1988), diag-
nosis (Vescovi & Robles 1992) and process engineer-
ing (Bousson & Trave-Massuyes 1993) as well as
a semi-quantitative extension to qualitative process
theory (D'Ambrosio 1989) and qualitative simula-
tion (Shen & Leitch 1993) to resolve ambiguities that
are inherent to qualitative approaches. Although not
all spurious behaviours can be pruned fuzzy math-
ematics helps to reduce the number of spurious be-
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haviours significantly. However, no numeric interpo-
lation is provided using fuzzy mathematics .

Numerical Interval Simulation, NIS, presented
in (Vescovi, Farquhar, & Iwasaki 1995) is based on
fuzzy simulation . Interval arithmetic is used to com-
pute the possible values of state variables . However,
this system does not provide qualitative reasoning
techniques to combine symbolic and semi-quantitative
information .

Conclusion
There are a number of systems that rely on qualitative
reasoning techniques which can combine numeric and
qualitative information .

In this report, we present a new methodology to in-
crease the precision of semi-quantitative predictions
at qualitative predicted time points that highlight
the critical or interesting states of a system's be-
haviour . This methodology takes advantage of our
transition table as well as the way of propagating
semi-quantitative information . The results of the
simulation runs have been evaluated in four ways.
First, by comparison to simulations with various step
sizes . Second, by comparison to the results of a sep-
arately implemented "C"-version of the integration
methods . Third, by comparison to an iterative sum-
mation method . And finally, by comparison to one
established semi-quantitative simulation tool .
The system is implemented to work as a semi-

quantitative reasoning server, where multiple clients
can connect and build simulation models from the
connected molecular biology knowledge base and af-
terwards perform a simulation run (http://cogito .rz-
berlin.mpg .de/- biosim) .
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