
Improving Semiquantitative Simulation by Using Lyapunov Analysis*

Abstract

Semiquantitative simulation is a powerful method
to analyze uncertain dynamic systems using reason-
ing techniques . However, simulating systems which
exhibit oscillatory behavior, impose big difficulties
on the current semiquantitative simulation methods .
Reasoning about "energy" can be very helpful for an-
alyzing such systems using semiquantitative simula-
tion . The simulation program QSIM provides such a
mechanism, called kinetic-energy filter, which can be
used for second order systems of a specific type . This
paper proposes a more general approach on the basis
of Lyapunov functions. By exploiting the similarities
of the descriptions of the system used in semiquan-
titative simulation and nonlinear control theory it is
possible to apply powerful methods for the latter to
deduce a Lyapunov function for the system under
investigation . Simple yet powerful filtering meth-
ods based on Lyapunov functions are presented and
demonstrated by example .

Introduction
Semiquantitative simulation is a method to analyze
uncertain dynamic systems . The basis for the simu-
lation is a system description in the form of a semi-
quantitative differential equation (SQDE) which is an
abstraction of an uncertain ordinary differential equa-
tion (ODE) model of the dynamic system under in-
vestigation . The simulation is performed using rea-
soning methods and predicts the possible behaviors
of the system starting from an uncertain initial state .
QSIM (Kuipers 1986) and its semiquantitative exten-
sions (Berleant 1991)(Kay 1996) provide such a sim-
ulation environment for analyzing uncertain dynamic
systems . Due to the uncertainty of the system we
get a set of possible behaviors as simulation result .
The predicted set of behaviors contains every real be-
havior of the system. However, it is very often the
case that the reasoning mechanism also predicts be-
haviors which are not possible for the system . This
is due to the fact that current reasoning mechanisms
are not powerful enough to detect and filter every
inconsistent. behavior . These so-called spurious be-
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haviors can spoil the simulation result and make sim-
ulation of systems of the order n > 2 very difficult
if not impossible . Especially systems which show os-
cillatory behavior impose big difficulties on current
reasoning/simulation techniques . Besides many ad-
vanced reasoning methods (Williams 1991)(Bousson
and Trave-Massuyes 1992)(Clancy and Kuipers 1997)
it was shown that reasoning about "energy" in the sys-
tem under investigation is very helpful for analyzing
such systems (Fouche and Kuipers 1992) . QSIM pro-
vides such a mechanism, called kinetic-energy filter,
which can be used for second order systems of very
specific type . This paper proposes a more general ap-
proach which uses Lyapunov functions for improving
the reasoning capabilities . In the first step, we shall
demonstrate the similarities of the representation of
the system used in semiquantitative simulation and
the representation used in nonlinear control theory.
By exploiting these similarities we can reformulate our
analysis problem in a form such that powerful meth-
ods from nonlinear control theory (Boyd and Yang
1989) can be applied to construct a Lyapunov func-
tion for the system under investigation . In a Isecond
step, we shall show how reasoning based on Lyapunov
functions can detect many spurious behaviors so that
semiquantitative simulation can be enhanced. The
application of the methods described is demonstrated
on the basis of two examples .

Semiquantitative Modeling and
Simulation

Using semiquantitative simulation it is our goal to
analyze an uncertain nonlinear initial value problem

x = f(x),

	

x(to) =: xo,

	

(1)

where x represents the state vector x := [x1, . . ., X,]T .
The initial value problem consists of an ODE with
an uncertain nonlinear function f(x) := [fl, . . ., fn]T
and an uncertain initial state xo, which lies in a box
Do defined b the vector air x- :=

	

x- TY

	

pairx1,1X0, i~ . . .,

	

o,n]
xo

	

_ [Xo i , . . . . Xo ]T so that xo

	

xo

	

xo (the
sign

	

denotes the componentwise inequality) . The
nonlinear functions fi are composed using arithmetic



operations (+, -, *, /) and nonlinear functions of a
scalar variable which are of a specific class, called
M+ in literature (Kuipers 1986). Such an M+ func-
tion describes an uncertain, nonlinear, continuously
differentiable, time-invariant, strictly monotonically
increasing functional relationship u = f(y) . The
uncertainty of an M+ function f(y) is specified by
envelope functions f- (y) and f+ (y) and numeri-
cal bounds for the slope ( and 77 so that f- (y) <_

f(y)

	

< f+ (y) and

	

<

	

ddy

	

< 77 .

	

We shall use
the notation f.~1 to represent the set of M+ functions
which satisfy the inequalities with envelope functions
and slope { f,-- (y) , fi (y) , (j, T7j } . The set of vec-
tor functions with M+ elements will be denoted by
fM .-

	

M

	

A1 T

Semiquantitative simulation uses an abstraction of
the uncertain ODE in the form of an SQDE which
describes the variables of the system, the constraints
among them, and the uncertain numerical informa-
tion in the form of interval values and envelope func-
tions. Based on such a description it is possible
to reason about the behavior of the system using a
constraint-satisfaction mechanism. As a result of the
simulation we get a set of possible behaviors which
describes the possible trajectories x(t) of the initial
value problem (1) in a semiquantitative form.

Lyapunov Analysis

The aim of this paper is to show how methods from
nonlinear control theory can be used to improve semi-
quantitative simulation . For this purpose we shall
demonstrate the similarities between the standard
nonlinear feedback system shown in figure 1 and the
representation of the system used in semiquantitative
simulation .

nonlinear system
Qy)

Figure 1 : Feedback connection of a linear system and
a nonlinear element

The feedback system consists of a linear plant and
a nonlinear feedback connection and can be described
by

z = Az+Bu
y = Cz
u = -f.(Y) .
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The nonlinear function fZ :_ [fz,i, . . . , fz,P]T should
be decoupled in the sense that the jeh component fz,j
depends only on the jth component yj of the vector
y. Its components are so-called sector-nonlinearities,

meaning that they satisfy the inequality

ajyj _< yjfz,j(yj) < )3,jyj , d? = 1, . . .,p

with constants ai and Oj (the nonlinearities f-,,j are
also said to lie in the sector [aj ,Qj]) . In order to use
the theory developed for systems of the form (2) we
shall restrict the semiquantitative analysis to systems
which can be described by

x = Ax - Bf,,(Cx),

	

(4)

where f is an M+ vector function described by fM.
The main consequence of the use ofM 4 vector func-
tions instead of sector-nonlinearities is that system (4)
does not necessarily have its equilibrium point at the
origin x = 0. In fact, we have to distinguish between
two different types of equilibrium points : We shall say
that an isolated point xe is an exact equilibrium point
of (4) if for all M+ functions fX which are members
of fM it is true that Axe - Bf,,(Cxe) = 0. In con-
trast to the exact equilibrium point we shall say that
a point xe is an uncertain equilibrium point if there
exists at least one M+ function f which is a member
of fM so that Axe - Bf,,(Cxe ) = 0. An uncertain
equilibrium point will lie in a box De defined by the
vector pair Xe , xe so that xe -< xe -,< xe .

Regardless of the specific value and type of an equi-
librium point, we can introduce a new state vector
z := x - xe so that equation (4) becomes

i = Az - Bf,.(Cz)

	

(5)

which is the same form as the standard control loop
given in (2) except that we represent fZ by an M+ vec-
tor function with the property &(0) = 0. Due to the
similarities of M+ functions and sector-nonlinearities
we can always represent fZ by sectors so that we can
use the comprehensive theory developed for the stan-
dard feedback loop (2). The values of ai and Oj which
define the sector for the components fz,j of the vector
function fZ can be evaluated using the envelope func-
tions and slope bounds. If system (4) has an exact
equilibrium point we have to find the smallest sec-
tor [aj Qj] so that ajyj? < yjfz,j(yj) < Ojyi and
ajyj? < yj fzj(yj) < 3jy? holds, where fz-3

	

j and fzj
represent the shifted envelope functions. Otherwise,
if (4) has an uncertain equilibrium point, the sector
is defined by the slope so that aj = Sj and Oj = r1j .
To reason about the behavior of the system it is

important to know about the stability of the equilib-
rium point(s) . We shall say that the system (2) is
absolutely stable if the origin z = 0 is globally asymp-
totically stable . This implies for the original uncertain
ODE system (4) that for every initial state xo E Dd,
where Dd C R' denotes the domain of f, it is true
that lim(t_to),,, x(t) = xe, xe E De . One method
to test whether (2) is absolutely stable is to find a
quadratic function

V(z) = Z
T
pz,

	

(6)
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with a positive definite and symmetric matrix P, so
that V(z) is a Lyapunov function for the system, i.e.
V(z) > 0, V(z) < 0, Vz ~4 0.
The problem of finding a quadratic Lyapunov func-

tion can be formulated as a linear matrix inequality
(LMI) problem for which powerful solvers are avail-
able (a summary of the underlying theory is given in
the Appendix).
Our current implementation is able to perform the

previously described analysis automatically. If the
simulation program is provided with the, SQDE of
the system under investigation, it checks whether the
system can be represented in the form of equation
(4), calculates the equilibrium point(s), performs the
state variables change, and constructs a quadratic
Lyapunov function for the system if it exists . The
SQDE together with the Lyapunov function is then
used by the simulation engine .

Lyapunov-Filtering
A quadratic Lyapunov function for the uncertain
ODE system allows several filtering methods to be ap-
plied in order to improve semiquantitative simulation .
The most important and also most effective method
is based on the fact that by knowing a Lyapunov func-
tion for the ODE of an uncertain initial value prob-
lem it is possible to calculate bounds for the state
variables so that all real behaviors of the system stay
within these bounds . Behaviors predicted by serni-
quantitative simulation which reach the bounds can
be identified as spurious behaviors and are filtered
from the simulation result .

Let us outline this method for a system with an
exact equilibrium point first . The Lyapunov func-
tion V(x) = (x - xe )

TP(x - xe) describes a hyper-
ellipse centered at the equilibrium point xe . All we
have to do is to find the smallest hyperellipse defined
by Vmax such that Vmax > (x0 - xe)T_

	

P(xo - xe ) for
every initial state xo E Do . This can be done by
checking the Lyapunov function at the 2' vertices
x0(1)' . . .' x(o2") of Do and taking the maximum value:
Vmax = maxi=1, . . .,2^ V(xoj)) . The hyperellipse found
in this way not only contains all possible initial states
of the uncertain initial value problem, it also contains
all possible trajectories x(t) . However, the mathemat-
ical representation of a region in the form of ahyperel-
lipse is not very helpful for our purpose as QSIM uses
boxes for the description of uncertainty. Therefore we
approximate the hyperellipse with a box Db . Figure 2
shows the construction of such a bounding-box Db for
a second order system .
A slightly modified approach must be taken for sys-

tems with an uncertain equilibrium point. In such a
case we have to find the smallest hyperellipse which,
centered at any point of De , contains the box Do . It
Ls possible to show that we can restrict our search
to hyperellipses which are centered at the 2' vertices

QR99 Loch Awe. Scotland

Figure 2 : Bounding-box construction

xell , . . . , x(2") of the box De . The value of Vnax can
be evaluated by taking the maximum value of the
22' Lyapunov functions V(x0 xej)) . All we have to
do then is to find a bounding-box Db which contains
the hyperellipse defined by Vmax, no matter at which
point xe E De it is centered .
The bounding-box can be recalculated for every

predicted semiquantitative state. In this way it is
possible to shrink the box during simulation . The nu-
inerical information represented by the bounding-box
not only allows very efficient filtering of all behav-
iors which reach the box, it also provides additional
numerical information which improves the reasoning
about the numerical ranges of the system variables.

It is also possible to identify certain spurious be-
haviors which stay within the box as the one shown
in figure 3 . This can be done by checking behaviors
with semiquantitative states where all state variables
except one are at their equilibrium value.

Figure 3: Spurious behavior x(t) in the bounding-box

Consider the two time-points ti, tj , (ti < tj) where
all state variables except xk should be at their equi-
librium value, i.e . x1(ti) = xl (t ;) = x,,,, 1~k. The
expression for the Lyapunov function at these time-
points is reduced to

V" = (x - X,)TP(x - xe) = Pkk(xk - xe,k)2 .

	

(7)

For an absolutely stable system it must be true that

1 9 :3



V(t j) < V(ti) . As the coefficient Pkk of the positive
definite matrix P is always positive we can write

(xk(ti) - xe,k)
2
< (Xk(ti) - xe,k) 2 "

	

(

The value of a variable at time-points is represented
symbolically in the form of a so called landmark with
an associated numerical range. It is possible to iden-
tify some spurious behaviors which violate (8) by
checking the ordering of the landmarks for xk (tj ) and
xk(ti) with respect to the landmark for xe,k . Behav-
iors which satisfy one of the following two conditions

xe,k < xk(ti) !~ xk(ti)
xk(tj) < xk(ti) < xe,k

Spring-mass system
Examples

violate (8) and can be filtered from the simulation
result' .
A third filtering method cars be based on the fact

that an absolutely stable system cannot exhibit cyclic
behaviors with constant amplitude . These behaviors
can be identified with the cycle detection mechanism
of QSIM and filtered from the simulation result .

It should also be noted that the existence of a Lya-
punov function for the system under investigation in-
creases the expressiveness of an attainable envision-
ment simulation . This simulation type determines all
possible semiquantitative states of the system which
can be reached from an initial state and links these
states in a transition graph. The advantage of such an
approach is that the possible behaviors can be repre-
sented in a finite graph. Its disadvantage is that nor-
mally it is not possible to decide whether cyclic be-
haviors, which are represented as cycles in the graph,
describe increasing, steady, or decreasing oscillations .
By knowing a Lyapunov function for the system under
investigation it is possible to overcome this ambiguity
since the system can only exhibit oscillatory behaviors
with decreasing amplitude and therefore all cycles in
the graph can be classified correctly.

We want to demonstrate the presented Lyapunov
methods with a damped spring-mass system first 2 .
This allows us to compare the described filtering
methods with the kinetic-energy filter (Fouche and

'The reason for testing these conditions symbolically
and not numerically is that it is possible that two land-
marks lm-1 and lm-2 with the symbolic ordering lm-1 <
im-2 have overlapping numerical ranges! (E.g . see
figure 4, where the landmarks X-4 and X-9 with the sym-
bolic ordering X-9 < X-4 have the same numerical range
(0.0 2.0).)

2The damped spring-mass system is one ofthe simplest
mechanical systems that exhibits oscillations and it should
be noted that it is difficult to simulate semiquantitatively
without additional energy based reasoning!
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Kuipers 1992) which can handle second order sys-
tems of this specific type . The SQDE for the damped
spring-mass system is given by

where f i describes the spring characteristic and f1a
specifies the damping term . The envelopes for these
M+ functions define the sector [30.0 32 .0] for f and
[0.18 0.24] for fM. Providing our extended QSIM
simulation environment with this SQDE, the sys-
tem predicts an exact equilibrium point at the origin
(xe,1 = xe,2 = 0) which is classified as locally asymp-
totically stable using a stability test based on Lya-
punov's indirect method (Hofbaur 1997). Our system
then deduces the standard nonlinear feedback system
representation of (10)

xl = x2
x2 = -fx,l(x1) - fx,2(x2),

with the state vector z := [x1, X2]T and the sectors
[30.032.01 for fzi (y1), and [0.180 .241 for fM(y2) and
calculates the quadratic Lyapunov function

T [ 0.6642 0.0019V(z) = z

	

z0.0019 0.0214 .

	

(12)

A semiquantitative simulation using the previously
described Lyapunov filtering methods together with
the non-intersection filter (Lee and Kuipers 1988) pre-
dicts, when starting at the uncertain initial state

a set of behaviors which represents an oscillatory be-
havior with decreasing amplitude (see figure 4) which
can become overdamped after a finite number of half-
cycles .

Mt

xo,1 E [1 .0 2.0],

	

xo,2 = 0,

	

(13)
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Figure 4: Semiquantitative time-plot of x1(t)

The possible ranges of the state variables for t > to

x1(1) E (-2.0 2.0),

	

x2 (1) E (-11 .1 11 .1)

	

(14)

124

(10)

z [ 00 0 1
0 0

z+ [ 1 u

Y
1 0
0 1

z (11)

u - [ fz1(Y1)1 fz2(Y2)
]T



are defined by the bounding-box Db which is calcu-
lated using the Lyapunov function (12), the initial
state (13), and the equilibrium point of the system . A
semiquantitative simulation using the kinetic-energy
filter, on the other hand, provides the same set of
possible behaviors but with the weaker ranges

x, (t) E (-oc 2 .0),

	

x2(t) E [-356 oc).

	

(15)

Controlled tank system

The second example should demonstrate the appli-
cation of our analysis and filtering methods with a
second order system modeling a PI-controlled tank .
Although this system seems to be rather simple, it is
important to note that current semiquantitative sim-
ulation using the kinetic-energy filter can handle such
a system only in a simplified and revised form (e.g .
see (Clancy, Branjnik and Kay 1997)) . Such an addi-
tional effort is not necessary with our approach since
the Lyapunov analysis is performed automatically by
our extended QSIM simulation environment.
The mathematical model of a fluid tank with a PI-

controller for a fixed set-point xs is given by

~1

	

=

	

-f(xl)+Vg u
x2

	

=

	

x9 -XI

	

(16)
9I.

	

=

	

K (x s - xl) + T x2,

where x1 represents the fluid level, x2 the integral
part of the controller, Vg = 0.7771 the input gain
of the tank system, and K = 0.1498, Ti = 18 .1857
are the parameters of the PI-controller which was de-
signed for a fixed set-point xs = 20.0 . The uncer-
tainty of the system should lie in the inexact knowl-
edge of f(xl ), which is of type M+ and represents the
outflow characteristic of the tank and the maximum
fluid level of the tank x1,max E[43 .0 45 .0] . This model
can be described by the SQDE

ii

	

=

	

-fM(xl) - fx2(x1) + fx3(x2)

	

(17)
x2 = -fx,4(xl),

where the linear and exact relationships are also
modeled as M+ functions. The uncertain function
fM is defined for xl > 0 and characterized by
the envelopes fX_,1 = 0.385 ( xl_+0.25 - 0.5), fx 1 =
0.385 ( xl_+0.25 + 0.5) and the slope (1 = 0 .0285,
711 = 0.39. The functions f2, f,, and f4 are given
by fx,2 = f~2 = 0.1164 (xl - 20), (2 = 772 = 0.1164,

fy,3 = f.3 = 0 .0064 x2, (3 = 713 = 0.0064, and fX,4 =

fx4 = xl-20, (4 = 714=1 .

Providing our extended QSIM simulation environ-
ment with this SQDE, the system predicts an uncer-
tain equilibrium point

xe,l = 20 .0, xe,2 E [240.6 300.8] .

	

(18)
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Our system then deduces the feedback loop represen-
tation of (17)

Y

0 0

	

1 1 -1 0
0

	

0 I
z +

I 0

	

0

	

0

	

1

	

u

1

	

1

	

0

	

l _] T

0 0 1 0
z

u

	

=

	

- [ f2 (YI), f2(Y2), fz,3(Y3), f,,4(Y4)
]T

(19)
with the sectors [0.0285 0.39] for fM, [0 .1164 0 .1164]
for f2, [0.0064 0.0064] for fzs, and [1 1] for f4 and
calculates the quadratic Lyapunov function

v(Z) = ZT [
-0.0247

	

0.0083
-0.0247 ] Z .

	

(2°)

The goal of our analysis is to evaluate whether the
system can overflow when filled from empty. Perform-
ing an attainable envisionment simulation without the
Lyapunov filtering methods cannot prove this as be-
haviors which cause an overflow are deduced. The
application of the described filtering methods, how-
ever, provides a set of behaviors where the fluid level
does not reach the maximal value.
The numerical bounds for the state variables for

t > to which can be drawn from the bounding-box Db

xl(t)E[0.0 54.8), x2(t)E(-71 .6 613 .0) .

	

(21)

allow QSIM to exclude the possibility of an overflow .
This is due to the fact that a selniquantitative state
with a fluid level x1E[43 .0 45.0] and an integral part
within the valid range x2E(-71.6 613.0) cannot be
reached in the course of a selniquantitative simula-
tion as the numerical ranges do not agree with the
information given by the SQDE (17) .
The obtained set of behaviors is described by an

attainable envisionment graph with 3 branches shown
in figure 5.

1
2
3

Figure 5 : Envisionment graph for the controlled tank

The graph describes a set of possible behaviors where
the fluid level reaches the set-point xs = xe ,l with-
out an overshoot (behavior 3), with one overshoot
(behavior 2), or the fluid level exhibits a decreas-
ing oscillation around the set-point (behavior 1) and
can reach the set-point after any finite number of
half-cycles . The corresponding semiquantitative time-
plots are shown in figure 6.

Furthermore, our method allows the application of
semiquantitative simulation for the analysis of oscilla-
tory 3rd order systems for the first time . We analyzed
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(a) behavior 1

several Yd order systems and experienced an immense
increase in complexity of the simulation when moving
from the analysis of2nd order systems to 3rd order sys-
tems resulting in a high demand on system memory3 .
The simulation predicts a large set of possible behav-
iors for the systems (e.g . for a spring-mass system
controlled via integrating state-feedback we obtained
an attainable envisionment graph with 183 branches) .
The interpretation of such a large set of behaviors is
difficult and it is not yet clear whether it is possible
to gain additional insight from it as many behaviors
are surely spurious.

Conclusion

This paper demonstrated how methods from modern
nonlinear control theory can contribute to ongoing
research in semiquantitative simulation. The simi-
larities between the descriptions of the system used
in semiquantitative simulation and nonlinear control
theory allows the application of powerful methods
from the latter . In this way it is possible to formulate
a method which can calculate Lyapunov functions for
many systems of interest . This additional informa-
tion can be used with simple but powerful filtering
methods, which improve the reasoning capabilities of
the simulation engine . Compared to kinetic-energy
filtering, the advantage of our method is that we are
not limited to second order systems of a very specific
type and that the semiquantitative reasoning capabil-
ities can be improved . The application of the methods
described, which are implemented as an extension to
the QSIM simulation platform, is demonstrated by
example. Simulation studies with various systems
showed that filtering based on Lyapunov functions
performs very well with 2nd order systems andalso al-
lows the simulation of higher order systems. However,
simulating oscillatory 3rd order systems showed that
the application of semiquantitative simulation using

3Especially advanced methods such as Q3 and chat-
ter abstraction cause a high demand on system memory
which exceeds our current computing resources (we use
QSIM running under Allegro Common Lisp on a DEC
Alpha workstation 255 with 320 MB Ram and 400MB
swap-space) .
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-X1-FULL [43 .0 45 .0)

'XE1 (20.0 20 .0 ;

0 f0 G]

TO T1 T2 T3 T4

X1

(b) behavior 2

Figure 6: Semiquantitative time-plots of the fluid level x1 (t)

the current QSIM implementation is limited by the
immense demand on system resources and additional
research is required to overcome this difficulty so that
systems of the order n >_ 3 can be simulated success-
fully.

We shall give a brief summary of the underlying the-
ory (Boyd and Yang 1989) which can be used to find
a positive definite symmetric matrix P so that the
quadratic function

is a Lyapunov function for (2)-(3), i.e . its derivative
V(z) along the trajectories z(t) of (2) which is given
by

V(z) = zT(ATP + PA)z - 2zTPBf,(y)

	

(23)

is negative definite for all nonlinearities fz(y) which
satisfy the sector-condition (3).

Let us define the time-varying gains kj (t) for a
given trajectory z(t) of the system (2)-(3) by

f=

	

y (t))

	

54 0
ki(t) aj

	

yj (t)
yj (t) = 0

(24)
It is clear that the gains kj(t) are differently defined
for each trajectory, however, irrespective of the par-
ticular trajectory traced it is always true that

By using the time-varying gains we can rewrite (23)
by

V(z)

	

=

	

zT(ATP+ PA)z - 2ZTPB diag(k(t)) y

X1

~ XE1 [20.0 20 .01
.i- . . . .i . . . . .i '

Appendix

aj < kj (t) < ~3j .

- INF

- BOUND-0 [54.8 54 .81

- X1-FULL [43 .0 45 .01

0 [0 01

(c) behavior 3

V(z) = ZTPZ

	

(22)

.,p.

(25)

zT[(A - Bdiag(k(t)) C) TP +

+ P(A - Bdiag(k(t)) C)I z

	

(26)

where the vector k(t) := [ki(t), . . . , kp(t)] T can take
on values in the box Dk which is defined by the vector
pair a :_ [al, . . . , ap]

T, ,Q := [.:31, . . ., ~3p]T so that a 4
k(t) -,< /3 . If the right-hand side of (26) is negative
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definite for all time-varying gains satisfying (25) than
(23) is negative definite for all sector-nonlinearities
satisfying (3). In this way it is possible to reformulate
the problem of finding a quadratic Lyapunov function
for the nonlinear system (2) to the problem of finding
one for the linear time-varying system

z = (A - B diag(k(t)) C) z.

	

(27)

Let kill,...,k(2p) denote the 2p vertices ofDk which
can be used to define the vertex-matrices A(') of the
time-varying matrix A(t) := (A - Bdiag(k(t)) C) by

A(') := A-B diag(k(i)) C .

	

(28)

Than it is possible to show that (26) is negative
definite if and only if

(A(=) )TP + PA(') < 0, Vi = 1, . . . , 2p .

	

(29)

This matrix inequality provides a necessary and
sufficient condition for the existence of a quadratic
Lyapunov function for (2)-(3) and can be used to
define a linear matrix inequality (LMI) problem

find P
subject to

	

P > 0,
(A(i) )Tp + PA(') < 0, Vi

	

2P

which can be solved using semidefinite programming
methods (Vanderberghe and Boyd 1996) . The ad-
vantage of the LMI problem formulation is that it
provides a necessary and sufficient condition so that
solvers for semidefinite programs can either find the
quadratic Lyapunov function or provide evidence that
there does not exist one quadratic Lyapunov function
for all ODE systems which are defined by (2)-(3).

References
D. Berleant .

	

The Use of Partial Quantitative In-
formation with Qualitative Reasoning. PhD thesis,
Artificial Intelligence Laboratory, The University of
Texas at Austin, 1991 .

K. Bousson and L. Trave-Massuyes . Modeling per-
spective for qualitative simulation . In IFAC Sym-
posia on Intelligent Components and Instruments for
Control Applications, pages 217-222, Malaga, Spain,
1992 .

S. Boyd and Q. Yang . Structured and simultaneous
lyapunov functions for system stability problems . In-
ternational Journal of Control, 49:2215-2240, 1989 .
D. Clancy, G. Brajnik, and H. Kay. Model revision :
Techniques and tools for analyzing simulation results
and revising qualiative models . In Proceedings of the
11th International Workshop on Qualitative Reason-
ing (QR97), pages 53-65, 1997 .
D. Clancy and B . Kuipers. Static and dynamic ab-
straction solves the problem of chatter in qualitative
simulation . In Proceedings of the 14th National Con-
ference on Artificial Intelligence (AAAI-97), 1997 .

QR99 Loch Awe, Scotland

P. Fouche and B. Kuipers. Reasoning about energy
in qualitative simulation . IEEE Transactions on Sys-
tems, Man, and Cybernetics, 22(1):47-63, 1992.

M. Hofbaur. Analysis of control systems using qual-
itative and quantitative simulation . In Proceedings
of the 11th International Workshop on Qualitative
Reasoning (QR97), pages 115-120,1997.

H. Kay. SQSIM: A simulator for imprecise ode mod-
els . Technical Report TR AI96-247, Artificial In-
telligence Laboratory, The University of Texas at
Austin ., 1996 .

B. Kuipers. Qualitative simulation . Artif icial Intel-
ligence, 29:289-338, 1986 .

W. Lee and B. Kuipers. Non-intersection of trajec-
tories in qualitative pahse space: a global constraint
for qualitative simulation . In Proceedings of AAAI-
88, pages 286-290, 1988 .

L. Vanderberghe and S . Boyd. Sernidefinite pro-
gramming . SIAM Review, 38:49-95, March 1996 .

B . Williams . A theory of interactions : unifying qual-
itative and quantitative algebraic reasoning. Ar-
tificial Intelligence, 51:39-94, 1991 .

197


