
Abstract
Conflict-driven problem solvers such as GDE use previously
discovered conflicts to guide further search through the
candidate space. To do so, ATMS-based problem solvers
employ an inference engine that performs two
fundamentally different tasks : Checking a given assumption
set for consistency and predicting values for system
variables under given assumptions .l .ln this paper, we show
how separating the tasks of conflict search and prediction of
values leads to a problem solver that can guarantee
completeness and correctness of the consistency check for a
given assumption set, and how this can be used to
effectively guide the search for minimal conflicts . We
develop an inference engine based on aggregation of
relational models that can be shown to have the above
properties, provided that three basic operations on relations
are available . As a consequence, we can complement
conflict-driven diagnosis by a new paradigm called
consistency-driven search for conflicts . To illustrate these
points, we present a diagnostic algorithm that exploits and
implements these ideas by operating on binary aggregation
trees . We argue that this algorithm is especially suited for
the application in on-board diagnostic environments, where
the set of observable variables remains fixed.

1 . Introduction
The maturation of model-based diagnosis systems has led
to their application in fields that have quite different
requirements than the problems that have been tackled
initially. For example, if model-based diagnosis is to be
performed onboard as part of the control software in
automotive systems, a number of stringent requirements are
put on the diagnosis system :
" performance demands limit the time available for

reasoning. The search for a solution, i.e . diagnosis, must
be completed before legal or other restrictions require
the system to move to another state, e.g . shut down the
vehicle's engine ;

"

	

the application of recovery actions, e .g . reducing the
fuel injection pressure, requires the definitive

'This work has been conducted while staying at the Technical University
of Munich .

QR99 Loch Awe, Scotland

Conflict-Driven Diagnosis

using Relational Aggregations

Jakob Mauss'

DaimlerChrysler AG
Research and Technology FT3/EW

Alt-Moabit 96A
D-10559 Berlin, Germany

Martin Sachenbacher

Robert Bosch GmbH
Department FV/SLN
P.O . Box 30 02 40

D-70442 Stuttgart, Germany

identification of situations and thus completeness and
correctness of the diagnostic hypotheses ;

On the other hand,
" the set of observable variables corresponds to the

sensor readings available to the on-board control unit
and is more or less fixed, implying that measurement
selection is not an issue in on-board diagnosis.

It may thus be worth checking whether traditional
approaches to model-based diagnosis form a suitable basis
to fulfil such classes of requirements .
In consistency-based diagnosis, the set of diagnostic
hypotheses is computationally characterized using the
notion of conflicts. A conflict is a set of assumptions where
at least one must be false. The assumptions are about
behavioral modes of components . A candidate, i.e . a
diagnostic hypothesis, must not contain a conflict . Systems
such as GDE (de Kleer and Williams coupled with an
ATMS (de Kleer 1986) as inference engine exploit this
principle by using previously discovered conflicts to
constrain the search in the candidate space. In this
approach, conflicts are identified in the process of
constraint propagation through recording dependencies of
predicted values given the system description and the
observations .
Using such an approach for the on-board application
outlined above leads to several difficulties . First, GDE in
combination with an ATMS performs more than is actually
required . For example, even if no fault is present in the
system, a considerable amount of work would still be
required, namely for ,computing logical labels for the
predicted values . However, these predictions and its logical
labels are not further needed, since the insight that the
system is fault-free is the only relevant information in this
situation. Conceptually, there exists no distinction between
proving solvability or insolvability of a problem and
actually solving the problem, where the former task can be
significantly cheaper than the latter. For diagnosis, this
means the two tasks of determining diagnostic candidates
and predicting values for the system's variables are not
explicitly separated. As we noticed above, the latter task is
not helpful from the perspective of on-board diagnosis.
Predictions of variable values would only useful if further

302

required e.g . for selecting the next best measurement,
which is not an issue in this application .
Second, it is hard to achieve completeness and correctness
of diagnoses using constraint propagation and dependency
recording for predictions, as completeness of value
predictions and logical labels is intractable except for very
restricted cases . Thus, in general, none of the required
guarantees can be given for the resulting set of diagnostic
hypotheses . For the same reason, the search for conflicting
assumption sets is not guidable by a paradigm equivalent to
the search in the space of diagnostic candidates .
On the other hand, in (Reiter 1987) Reiter already
described how diagnoses can in general be computed on
the basis of a complete and correct consistency checking
procedure . However, in contrast to the specific approach
taken in (de Kleer and Williams , it is not further specified
how this procedure can be realized .

	

.
The contribution of this paper is twofold . First, building on
(Dressier and Struss 1994), we develop a consistency-
driven diagnostic procedure that employs a correct and
complete consistency checker (Section 2) . We show how
completeness and correctness properties of the checker can
be used to guide the problem solver's search for conflicts .
More precisely, it allows for complementing conflict-
driven diagnosis by a new paradigm called consistency-
driven search to guide the search for minimal conflicts .
Second, to implement our diagnostic procedure, we
develop a consistency checking algorithm that is based on
aggregation of relational models instead of prediction of
individual variable values (Section 3) . The consistency
check can be shown to be correct and complete, provided
that three basic operations on relations are available : join,
projection and check for emptiness of a relation . The
checker operates on so-called binary aggregation trees . If n
is the number of assumptions to be checked for
consistency, this allows for incremental consistency
checking in ld(n) join and projection steps, provided that
the aggregation tree is balanced .
In Section 4 on related work, we briefly sketch how
approaches such as in (Stumptner and Wotawa 1997) can
be cast as special cases of consistency-driven search . This
provides an insight why specialized diagnosis algorithms
such as TREE_DIAG (Stumptner and Wotawa 1997) can
under certain conditions perform better than standard
diagnosis algorithms such as GDE combined with an
ATMS.

2 . Diagnosis

QR99 Loch Awe, Scotland

representing the available observations and SD is the
system description consiting of
COMPS a set { C1 , CZ , . . . C� } of mode-valued variables

representing the n system components .
MODELS a set of first-order sentences modeling the

behavior of each component for each of its mutually
exclusive behavior modes . Each component has at least
two modes ok and unknown . The unknown model states
nothing, i .e . does not constrain the component's
behavior at all .

STRUCTURE a set of first-order sentences describing how
the components are connected with each other . A
connection between two components is established by
identifying certain variables of the corresponding
component models .

2!PREF The preference order, a partial ordering of the modes
of each component. For each component, the ok mode
is most preferred (maximal), and the unknown mode is
least preferred (minimal) .

A candidate (or diagnostic hypothesis) is an assignment of
a mode to each component in COMPS. An environment is
a subset of a candidate, i . e. a partial mode assignment. An
environment ENV is called a conflict, iff SD u OBS u
ENV is inconsistent . A conflict is minimal, iff none of its
subsets is a conflict.
The preference order ?PREF on modes induces a preference
order >_on candidates : for two candidates D and D':

D ?D'<--* V C E COMPS: val(D, C) >PREF val(D', C)

Definition (Preferred Diagnoses) : Given a diagnosis
problem (SD, OBS) and a candidate D, then D is a
diagnosis for (SD, OBS) iff SD u OBSuD is consistent .
D is a preferred diagnosis iff no other diagnosis is strictly
preferred over it .

The diagnosis problem consists of determining the set S of
all preferred diagnoses . A problem solver returning a set
PD of diagnoses is calledt correct, iff PD c_ S, complete,
iff S c_ PD, and correct and complete, iff PD = S.

2.2 Conflict-driven Diagnosis
Procedure 1, taken from (Dressier and Struss 1994),
computes a set PD of preferred diagnosis in a conflict-
driven way using minimal conflicts to guide the search for
consistent candidates.

computePreferredDiagnoses(SD, OBS)

303

2.1 Preliminary Definitions l . PD <-- 0

Following (Dressier and Struss 1994), we define a 2 . CONFL <- 0
diagnosis problem by a first-order theory, i . e . by a pair 3 . CANDIDATES E-- ({ (C, ok) I C E COMPS } }
(SD, OBS), where OBS is a set of first-order sentences 4 . while CANDIDATES # Q)

5 .
6 .
7 .
8 .
9 .
10 .
11 .

choose D E CANDIDATES
MC E-- minimalConflicts(SD, OBS, D)
if MC = 0

PD E- PD u (D1 11 D is a preferred diagnosis
else

CONFL F- CONFL uMC
SUCC <-- all preferred successors of D not
containing any ENVE CONFL as a subset
CANDIDATES (-- CANDIDATES u SUCC

end if
12 .
13 .
14 . end while
15 . return PD

Procedure 1 : Conflict-driven diagnosis

The function minimalConflicts(SD, OBS, ENV) returns a
set of conflicts, i .e . a set of inconsistent subsets of ENV.
Since supersets of such sets are also inconsistent, these
minimal conflicts are used to prune the candidate space . If
minimalConflicts does not employ a complete consistency
checker, the returned set of conflicts might be incomplete
or some conflicts might not be minimal . This results in
suboptimal pruning of the search space and it might lead to
an incorrect set of diagnoses, containing solutions that are
actually inconsistent with SD u OBS.

2.3 Consistency-driven search for conflicts
Asserting completeness to the consistency checker
overcomes the above shortcomings . Further, it allows us to
search the space of minimal conflicts in a consistency-
driven way, top-down, starting from a maximal
environment, i .e . a candidate . This strategy is best
illustrated using the subset lattice shown in Figure 1 .

(1,2,3,4)

(1,2,3) (1,2,4) (1,3,4) (2,3,4)

(1,21 (1,31 (2,3) 11,41 12,41 (3,4)

(1) 12) 13) (4)

Figure 1 : Subset lattice for minimal-conflict search

Assume we want to compute all minimal conflicts
contained in a given environment ENV = (1, 2, 3, 41 . If
consistent(SD, OBS, ENV) yields true, we know that ENV
cannot contain any conflicts . Hence, the consistent ENV
can be used to prune the search space for minimal conflicts
in quite the same way as conflicts are used to prune the
candidate space . Note that consistency-driven search relies
on the completeness of the consistency check, as conflict-
driven search relies on its correctness . If ENV turns out to

QR99 Loch Awe, Scotland

be inconsistent, we have to investigate all direct successors
of ENV in the lattice by recursive calls to minimalConflicts .
If none of these calls returns a minimal conflict, ENV must
be minimal itself and is returned as the only minimal
conflict . This leads to the (naive) Procedure 2 for
computing all minimal conflicts in ENV.

1 .
2 .
3 .
4 .
5 .
6.
7 .
8 .
9 .

minimalConflicts(SD, OBS, ENV)
if consistent(SD, OBS, ENV) return QJ
else
MC F- Q)
for i F- JENVJ down to 1
ENV;

	

ENV\ { i-th mode assumption in ENV }
MC <- MC u minimalConflicts(SD, OBS, ENV,)

end for
ifMC = 0 return (ENV) else return MC end if

end if

Procedure 2 : Computing minimal conflicts (Version 1)
If a candidate D is consistent, this is recognized by the first
call to minimalConflicts, without further recursive calls . In
particular, if there is no fault, computePreferredDiagnoses
will return the no-fault diagnosis after having checked only
one environment for consistency, namely the initial
candiate D. The response time of the diagnosis for that case
is basically equal to the time needed for the consistency
check in line 1 . This makes the consistency-driven
approach attractive for time-critical applications such as
on-board diagnosis . Procedure 2 computes in fact all
minimal conflicts . However, during search through the
subset lattice, there are unnecessary multiple calls to
minimalConflicts for the same environment . This can be
avoided by converting the lattice used for search into a tree
as shown in Figure 2 .
To convert the lattice, we assume thgt the mode
assumptions in a candidate D = (a,, . . . a�) are indexed
from 1 to n . Based on this, each environment ENV c D is
associated with an index : index(ENV) = min[index(a) (a E
D \ENV) and index(D) = n + 1, see Figure 2 . Constraining
the direct successors of ENVk to those subsets whose index
is smaller than k generates a subset tree : Every subset
ENVkcD has a unique-parent ENVk u {ad, where ak is the
mode assumption with minimal index inD \ ENVk .

1 1 12 (211 (3)1

	

(4)1

(1,2,3,4)5

{1,2>3}a

	

(1)3 (1,1,4)2 {2,3,4}1

(1,2)3 (1,3)2(2,3}1(1,4}2 {2,4} (3,4),

Figure 2 : Subset tree for minimal-conflict search

304

The conflict-driven left-to-right depth-first search through
the tree introduces a problem : If all of the direct successors
of an inconsistent environment ENVk are consistent, it
cannot longer be concluded thatENVk is a minimal conflict,
because some or all of its subsets might be ruled out by the
index check . A subset ENV�, has not been considered, if m
>_ k. However, assuming a left-to-right search through the
tree, these missing subsets have already been checked
before . So, ENVk is actually minimal, if it does not contain
a previously computed minimal conflict as a subset . To
implement tree search, we pass ENV, k = index(ENV) and
the set MIN as new arguments to Procedure 3 . MIN is the

14 . end if

Procedure 3 : Computing minimal conflicts (Version 2)

In summary, traversing the subset tree instead of the subset
lattice saves multiple computations on the same subset . As
a consequence, no minimal conflict is computed twice
during diagnosis . Also, the union MC u minConfl(. . .) can
be computed as a disjoint union now .

2.4 Caching maximal consistent subsets
Diagnosis usually comprises the examination of more than
one candidate . For computing minimal conflicts, we would
like to reuse information gathered during examination of
one candidate for all subsequent candidates . We note that
caching the information that an environment ENV is
inconsistent does not help us here. ENV contains at least
one minimal conflict used to prune the candidate space .
Hence, after the discovery of the conflicts, none of the
subsequent candidates will contain the conflicts or its
superset ENV. Therefore, minimalConflicts could never
make use of a cached inconsistency . However, for a similar
reason it can be seen that caching the information that a
certain environment is consistent makes sense . To do this,
we introduce a variable MAX, to be initialized with 0 at the

QR99 Loch Awe, Scotland

start of diagnosis, representing the set of all maximal
consistent environments discovered during calls to
minimalConflicts . An environment is maximally
consistent, if it is consistent and none of its supersets is
consistent . Procedure 4 integrates the consistency cache
MAX. With this extension, no environment will be checked
twice for consistency during diagnosis, thus the MIN and
MAX caches take over the functionality provided by the
ATMS in ATMS-based problem solvers .

minConflicts(SD, OBS, ENV, k, MIN, MAX)
1 . if ENVis subset of any environment inMAX return Q)

18 . end if

Procedure 4 : Computing minimal conflicts (Version 3)

3. A Complete Consistency Checker
In this section, we develop a procedure consistent(SD,
OBS, ENV) for checking the consistency of an environment
ENV. This checker can be used e.g . in Procedure 4, line 2 .
We prove that the procedure returns true if and only if SD
u OBS u ENV is consistent. The consistency checker is
tailored to the demands of consistency-driven search for
conflicts : It offers a convenient way for incremental (and
cheaper) consistency checks of the subsets of an conflict.
Since the consistency checker requires to map the problem
into a relational framework, we recall some basic
definitions on relations and relational operations used in
(Struss 1992) .

3.1 Preliminary Definitions
For a variable, x, dom(x) denotes its domain, i .e . a finite
or infinite set of possible values . A var-assignment is a
tuple (x, val) where x is a variable and val E dom(x) is its

305

set of minimal conflicts already computed during
examination of the predecessor of ENV.

minConfl(SD, OBS, ENV, k, MIN)

2 . else if consistent(SD, OBS, ENV)
3 . remove all subsets ofENV fromMAX
4 . MAX E- MAX tj { ENV)
5 . return

1 . if consistent(SD, OBS, ENV) return 0 6 . else
2 . else 7 . MCE--0
3 . MCF-0 8. for i F- ENV down to 1
4 . for i E- [ENV down to 1 9 . m E-- index(i-th mode assumption in ENV)
5 . m F-- index(i-th mode assumption in ENV) 10 . ifm<k
6 . ifm<k 11 . ENVi t- ENV \ { i-th mode assumption in ENV)
7 . ENVi F- ENV \ { i-th mode assumption in ENV) 12 . MC <-- MC
8 . MC E- MC u minConfl(SD, OBS, ENVi, m, MC) u minConflicts(SD, OBS, ENVi , m, MC, MAX)
9 . end if 13 . end if
10 . end for 14 . end for
11 . ifMC # 0 return MC 15 . ifMC ;6 Q) return MC
12 . else if E E MIN=> E(z ENV return { ENV) 16 . else ifEE MIN=:> E2ENV return { ENV)
13 . else return is end if 17 . else return 0 end if

assigned value . For a set A of var-assignments, vars(A) =
(x 13 val : (x, val) E A) denotes the set of variables of A .
An assignment is a set A of var-assignments such that
ivars(A)l = ~A1, i .e .' A assigns exactly one value to each
variable . For an assignment A and a variable x E vars(A),
the function val(A, x) yields the value that A assigns to x . A
relation r over a non-empty finite set X of variables is an
empty, finite, or infinite set of assignments such that for
each assignment A E r: vars(A) = X. vars(r) denotes the set
X over which r has been defined . We often use X, as a
shorthand for vars(ri) . A relation r is empty, denoted r = QJ

if it contains no assignments or only the empty
assignment . The relation graph induced by a set R of
relations is a graph with node set R and edges EcR x R,
with (rj, rk) E E <--* vars(rj) n vars(rk) # 0. The set R is
connected if the induced relation graph is connected .
The projection of an assignment A on a set X of variables
is defined as : 7t(A, X) = { (x, vat) E A I x E X } .
The projection of a relation r on a set X of variables is
defined as

T(r,X)= Yic(A,X)
AEr

The join rj >< rk of two relations over variables X; and Xk is
a relation r over X1 u Xk with
r=IAIvars(A)=Xj UXk An(A,X,)E r,An(A,Xk)E rk?

The aggregation of two relations w.r .t a set X of variables
is its join, projected on X:

agg(rj, rk, X) = n(r >< rk, X)

Note the generality of the concept of relations as defined
here . For example, a relation might be defined for variables
with finite domains (qualitative values) by explicitly
specifying its set r of assignments . E.g ., for two current
variables i l , i2 with dom(i l) = dom(i 2) 0, +}, a relation
rxcc might be represented as a table

rxcc. = ((0, 0), (-, +), (+, -) }

Join and project are then implemented as operations on
rows and columns of the table, and checking for emptyness
is trivial . For real-valued variables, a relation might be
represented as a set of equations . E.g ., for dom(i,) _
dom(i2) = IR

rxcc.=((it, i2) E DRZ Iii+i2=0}

In this case, joining two relations corresponds to union of
the corresponding equation sets, project corresponds to
symbolic variable elimination, and checking a relation r for
emptyness is non-trival : It corresponds to checking,
whether the equation set of r has a solution .
For example, for n linear equations in n variables and real-
valued coefficients . the complexity for the empty check is

QR99 Loch Awe, Scotland

O(n3). If the coefficients are given by intervals
(representing e.g . uncertain knowledge about parameters)
the problem becomes NP-hard .

3.2 A relational framework for diagnosis
In this section, we map the diagnosis problem into a
relational framework in order to solve it using the relational
operations defined above . This mapping is done by a
function that maps a diagnosis problem (SD, OBS) and a
given environment ENV into a set R of relations :

R = relations(SD, OBS, ENV) = (r,, r2, . . . r� }

such that n = 1ENV1, and each mode assumption a E ENV
corresponds to exactly one r E R such that replacing a in
ENV by another mode assumption affects only the
corresponding relation r. Further, the mapping has the
important property that

SD u OBS u ENV is consistent t_* ro = >< r # QS
rE R

That is, in our relational framework, testing an environment
ENV for consistency with SD u OBS reduces to testing
whether the relation ro resulting from joining all n relations
in R is empty . Note that :< is a commutative and associative
operation . Hence, ro does not depend on the strategy (order,
clustering) used for joining the relations .

relations(SD, OBS, ENV)
1 . R e- Q)
2.

	

ross E-- relation(OBS)
3 .

	

for k E- 1 to I ENV 1

4.

	

r k ~- relation(SD, ENV, k)

5 .

	

rk F- n;(rkX ross, vars(rk))
6 .

	

R~- RuIrk }
7 .

	

end for
8 . fork<-1toIRI
9 .

	

rk E- n(rk, vars(rk) \ (x I x E
10 . end for
11 . return R

	

-

vars(r;) =*j = k})

Procedure 5 : Mapping an environment into a relation setR

A mapping with the above properties can be implemented
as shown in Procedure 5. rk = relation(SD, D, k) is a
relational behavior model for Ck assuming that Ck is in the
mode assigned to Ck by ENV. Connections of Ck with other
components are established by sharing of variables
amongst the relations in R . If there is a connection between
CJ and Ck , then vars(rf) n vars(rk) will be non-empty . ross
= relation(OBS) represents the available observations as a
set of assignments to observable variables. In line 5 ., the

30 6

observations are compiled into the component models . In
line 9 ., the component models are minimized by
eliminating variables that do not occur in any other
relation . R does not depend on the preference order for
modes .

3.3 A Correct and Complete Consistency Checker
In this section, we develop a procedure consistent(SD,
OBS, ENV) for checking the consistency of an environment
ENV and prove that the procedure returns true if and only if
SD u OBS u ENV is consistent . We build on Procedure 5,
relations(SD, OBS, ENV), as given above .

Definition : A binary relation tree over a set R of relations
is a set T of nodes where root(T) E T and leaves(T) e_ T
have their obvious meanings . For each node v E T, tree(v)
e T is the subtree with root v . The functions left(v) and
right(v) return the left and right child of a non-leave node v
and r(v) yields a relation . For vk = root(Tk) E T, R(vk) = { r
r = r(v;), vi E leaves(Tk)) . In particular, R(root(T)) = R, i .e .
the leaves of a binary relation tree T over R hold exactly the
relations given in R .

Definition : A join tree T. over a set R of relations is a
binary relation tree over R where for all non-leave nodes v
E T> : r{v) = r~left(v)) x r~right(v)) .

Obviously, the root of T holds the join over all relations in
R . Hence, if R = relations(SD, OBS, ENV), then
SD u OBS u ENV is consistent <* r(root(T)) # 0.

This can be used to implement a correct and complete
consistency check for SD u OBS u ENV. Unfortunately,
for combinatorial reasons, this is feasible only for small
problems . Details depend on how relations are represented .
Note that r~root(T)) also represents correct and complete
predictions for all variables in R . If we are only interested
in proving or disproving emptyness of the root, then we
have done much more than required for that task : We have
computed all solutions for a set of equations, instead of just
proving or disproving the existence of a solution .
In fact, there is a way for a less expensive check by using
aggregation operations as defined above instead of joins .
Typically, each aggregation step eliminates some variables
such that the arity of the intermediate relations remains
small . Eliminated variables are not longer constrained by
further aggregation steps . Hence, predictions for eliminated
variables will be incomplete, except for the variables of the
last aggregation step. On the other hand, a join operation
does not eliminate any variables, hence, complete
predictions are derived for all variables . In short, as
mentioned in the introduction, computing a join over all
relations corresponds to computing a solution (the set of all

QR99 Loch Awe, Scotland

predictions), whereas aggregation of all relations
corresponds to checking for solvability (i .e . checking if the
resulting relation is empty) . Checking for solvability, i .e .
computing aggregations, can be considerable cheaper, than
solving the problem, i .e . computing the join, provided that
the intermediate relations resulting from aggregation
remain small . The intuition that they in fact remain small
stems from our previous work on series-parallel reduction
of resistive networks (Mauss and Neumann 1996) .
Replacing two resistor models by a single model of the
equivalent resistor is an aggregation operation : variables
only shared between the two resistors, e.g . the electrical
potential at the node between the two resistors, are
eliminated by the projection . The resulting relation is again
a resistor model . That is, the growth of the relation caused
by the join is exactly compensated by the subsequent
projection step. We suspect that this is a general pattern for
a large number of component models (beyond resistor
models) and system structures .

Definition : An aggregation tree Tag, over a set R of
relations is a binary relation tree over R where for all non-
leave nodes v E Tag, : r{v) = n(rj :< rk , X) where
rj = r(left(v)),
rk = r(right(v)), and X = Xj u Xk \ Xe,i�, with

X erm

Q) if v = root(Tags)

{x I x E vars(r) =:> r E R(v))

That definition states that a variable is eliminated from
relation rev), iff it is only involved in relations covered by
the subtree tree(v) e Tag, . As argued before, this
elimination rule can greatly reduce the size (i .e . arity) of
the relations associated with an aggregation tree. The
following proposition allows us to use an aggregation tree
instead of a join tree to prove or disprove consistency of
SD u OBS u ENV.

In order to state and prove the proposition, we define : An
r-tree To over Ro is a join tree over Ro where each node v E
To is associated with a second relation rag,(v), as defined
above for aggregation trees . That is, an r-tree is a more
general structure that represents both, a join tree and an
aggregation tree .

Proposition (consistency- and inconsistency-invariance
of join and aggregation) : Let To be an r-tree over a
connected set Ro of relations, with vo = root(TO) . Then

nvo) = QJ t* ragg(vo) = 0

To show this, we prove a stonger proposition P : Let T c_ To
be an r-tree over R e Ro with root v. Then P(T) holds, with

307

P: r�gq (v) = n(r(v), X) and X # fd

P states, that the root of an aggregation tree over R holds
the join over all relations in R, projected on a non-empty
(and hopefully small) set X of variables .

Proof: By induction over all subtrees of To
Base step : Consider the leave tree T = { v) c To . Then v is a
leave of T. Hence, by definition of r-tree, r(v) = rggg(v) _
7r(r(v), X) and X # 0.
Induction step : Consider a non-leave tree T c To with
root v. Let vL = left(v), vR = right(v) be the children of v and
TL = tree(VL),

	

TR = tree(vR)

	

be

	

its

	

subtrees .

	

Let

	

futher
XA = vars(ragg(v)),

	

XL = vars(ragg (VL))

	

and
XR = vars(rag,(vR)) . The above definitions are summarized
in Figure 3 .

left

Figure 3 : A node v and its children VL, v R in an r-tree

We show that P holds for T if P holds for TL and TR .
ragg(v)
=TC(ra gg(VL) >` ragg(VR) , XA)
= tz(T6(r(VL), XL) x Tt(r(VR), XR), XA)
= I[(n(r(VL) x r(VR), XL u XR), XA)
= It(lt(r(v), XLU XR), XA)

= JC(r(v), (XL u XR) n XA)
_ TE(r(v), X)

It remains to show that X $ 0.
Because P holds for TL , TR, we know that XL # 0, XR # O.
We have to consider : (1) T= To and (2) Tc To.
(1) T = To : In this case, v is the root of To . Hence, by
definition of aggregation trees
XA=XLUXR =X#0.

QR99 Loch Awe, Scotland

def. aggregation tree
P for TL and TR
def. of :< and n

definition ofjoin tree
definition of n

with X=(XLuXR)nXA

(2) T c T: In this case, by definition of aggregation tree
X=XLuXR\Xe,�» with
Xeii�, = {x I x E vars(r) => r E R(v))

Because R� is connected and R c Ro, there is at least one
relation r E R(v) connected to a relation r'E RO \R
Hence, vars(r) n vars(r) c_ X # 0.

	

Q

Based on the proposition above, Procedure 6 implements a
correct and complete consistency checker . For a given
problem description (SD, OBS) and an environment ENV,
consistent(SD, OBS, ENV) returns true t=> SD u OBS u
ENV is consistent . In contrast, a correct but incomplete
checker will only guarantee the ~= direction .

consistent(SD, OBS, ENV)
1 . R ,- relations(SD, OBS, ENV)
2 .

	

TE- an aggregation tree over R
3 .

	

if r(root(T)) = Q) return false else return true end if

Procedure 6 : A correct and complete consistency checker

3.4 Realization using Aggregation Trees
In this section, we present a realization of the consistency
check using aggregation trees as described above . We show
how the consistency-driven search paradigm can be further
exploited by an incremental consistency check : During
search, minimalConflicts first checks a given environment
for consistency . If found inconsistent, the environment is
reduced by one mode assumption a and checked again . The
procedure presented in this section exploits the fact that the
two aggregation trees T, and TZ needed for the two
consecutive checks are very similar : T, can be transformed
into TZ by just replacing the parent of the leave node v
(representing the assumption a) by the sibling of v, which
removes v (and, hence, the assumption) from the set of
leaves of tree T, .
As a consequence, only the relations of the nodes along the
path from v to the root have to be recomputed . For a
balanced aggregation tree, this reduces the number of
aggregation operations needed for a consistency check
from O(n) to O(ld(n)), where n is the size of the checked
environment .
To make this work for recursive calls, minimalConflicts has
to restore the tree, i .e . to undo changes, before returning .
Hence, the relations on the path from v to the root are
pushed on a stack before recomputing the relations, and
popped back afterwards .

minimalConflicts(V, root, k, MIN)

1 .

	

if r(root) :A 0 return QS
2 . else
3 .

	

MC F-- 0

30 8

4 .

	

for i<--I VI down to 1
5 .

	

m<- index(i-th mode assumption in R)
6 .

	

ifm<k
7.

	

vi = i-th mode assumption inR
8 .

	

VF <-- parent(vi)
9 .

	

vB <- sibling(vi)
10 .

	

replace VF by vB in the aggregation tree
11 .

	

for each node v in the path (parent(vB) . . . root)
12 . push(r~v))
13 .

	

r(v) <- agg(left(v), right(v), X)
14 .

	

end for
15 .

	

MC <- MCv minimalConflicts(R, root, m, MC)
16 .

	

for each node v in the path (root . . . parent(vB))
17 .

	

r(v) <- pop(r~v))
18 .

	

end for
19 .

	

replace vB by V F in the aggregation tree
20 .

	

end if
21 .

	

end for
22 .

	

ifMC # O

	

return MC
23.

	

else if E E MIN =:> E 2 V

	

return { V)
24 .

	

else

	

return 0

	

end if
25 . end if

Procedure 7 : Incremental computation of minimal conflicts

Procedure 7 returns all minimal conflicts contained in the
environment ENV, represented here by a set V of nodes .
Each node v E V holds a relation r(v) E R = relations(SD,
OBS, ENV) . We illustrate this using a small example with
four components C,, Cz , C3 , C4 as given in Figure 4 .

Figure 4 : A simple system structure with aggregation tree

Assume that (2, 4) is the only minimal conflict . After
initial construction of the aggregation tree, in order to
compute all minimal conflicts, we call

minimalConflicts({ 1, 2, 3, 4), root, k = 5, MIN= QS)

r(root) = r7 = 0 (indicated by a double circle in Figure 5) .
Hence, there must be at least one conflict in (1, 2, 3, 4) .
All 4 subsets have an index < k, so they are all checked
(see subset tree in Figure 2) . For each check, the tree is
modified by replacing a single node . Only the second of the
four recursive calls returns a non-empty conflict set 112,
4)) . Note the fourth call
minimalConflicts((2, 3, 41, root, k = 5, MIN = { (2,41))

QR99 Loch Awe, Scotland

The relation ilroot) = r13 is found to be empty, but none of
the examined subsets (there are no, due to the index k) are
inconsistent . So, {2, 3, 41 could be a minimal conflict .
However, final comparison with MIN in line 23 reveals that
(2, 3, 4) is subsumed by 12, 4), and hence 0 is output as
result of the fourth call .

{} ((2411 {} 1}

Figure 5 : Snapshots of minimal conflict computation
using an aggregation tree

To integrate Procedure ~ (incremental consistency check)
into Procedure 1 (conflict-driven diagnosis), we have to
compute an aggregation tree T representing the very first
candidate (no-fault) before line 4 of Procedure l . presents
and discusses algorithms for computing T. For each new
candidate chosen in the while loop of Procedure 1, T has to
be modified in an incremental way such that its leaves
correctly represent the current candidate . As we saw
before, for computing minimal conflicts, a stack suffices to
prevent multiple computations of relations . For the
candidate generator within Procedure 1, a more
sophisticated cashing strategy might be required to
guarantee optimal reuse of relations . Details are beyond the
scope of this paper .

30 9

4. Discussion and Related Work
In his seminal paper (Reiter 1987), Reiter developed the
idea of conflict-driven diagnosis based on consistency
checks only. However, Reiter did not propose a particular
consistency checker . He also reuses already discovered
conflicts, but not maximal consistent environments, as we
do .
The way minimal conflicts are derived here - by recurvisely
minimizing conflicting sets - offers further possibilities of
improvement . At certain points during the minimization of
a conflict set, information is available which elements of
the set must be part of the final minimal conflicts .
For instance, if a consistent set becomes inconsistent by
aggregating one more component relation, then this
component must participate in every minimal conflict in the
original inconsistent set . In the example above, element (4)
must participate in all minimal conflicts of the inconsistent
set 11, 2, 3, 4) after 11, 2, 3) has been found to be
consistent . Put in other words, (4) is a hitting set for all the
minimal conflicts in 11, 2, 3, 4) And thus one diagnosis for
(1, 2, 3, 4) .
The algorithm TREE DIAG in (Stumptner and Wotawa
1997) is an example of applying this principle . In this
paper, a method for diagnosing tree structured systems is
devised as follows : If the observed value of a component is
not equal to the output that has been computed using
correct behavior models for all the components
downstream, then it must be the case that either the
component itself is faulty (i .e . is a single fault) or it is
correct and components downstream must be faulty. This
leads to a recursive diagnosis algorithm called
TREE DIAG which, as shown empirically in the paper,
outperforms standard diagnosis algorithms such as Reiter's
HS-DAG (Reiter 1987) .
To see that TREE DIAG is an application of consistency-
driven search, note that the restriction to tree structure
provides the guarantee that consistency check is complete
and correct in all subtrees . Therefore it can be ensured that
subtrees of a tree structure where no inconsistencies have
been detected are indeed consistent . Thus, in a prediction
path in the tree leading to an inconsistency, the last
component must participate in every conflict in the
respective subtree, which means that it is a hitting set for
every minimal conflict, and thus a single fault candidate for
this subtree . That is, TREE_DIAG applies a special
instance of consistency-driven conflict search where
enforcing structural restrictions on the system model
guarantees a completeness property on the inferences,
which in turn can be used to prune the search space .
In his paper , El Fattah presents an elimination algorithm
for diagnosis based on a similar reasoning scheme by
aggregation, however limited to the case of finite-domain
relations . Mode variables of components are included in
the relations . If the projection step generates tuples which

QR99 Loch Awe, Scotland

only differ in their value for a mode variable, they are
replaced by one tuple containing the preferred mode. A
preferred diagnosis is thus synthesized step by step, while
our algorithm searches for preferred diagnoses by ruling
out inconsistent solutions . El Fattah also presents and
discusses various methods for constructing and aggregation
tree for a given system description .
Serial-parallel reduction (Mauss and Neumann 1996) is a
special case of aggregation for relations describing resistive
network elements . The aggregation of these relation types
yields exactly the same relation types as result . This feature
is termed "closure property" in (Ranon 1998) . A fixed set
of aggregation operations is thus sufficient to successively
reduce a resistive network to one single element and
organize it in an aggregation hierarchy .

5. Conclusion
We presented a diagnosis framework that is able to
guarantee completeness and correctness of diagnoses and
can perform fault detection in a linear number of
aggregation steps, and is thus capable of meeting the
stringent requirements for the application in on-board
environments .
This was achieved by replacing prediction by the more
general concept of relational aggregation, which has the
feature (or, one could say, comes at the cost) of not
performing prediction of values for individual system
variables . Prediction of a variable's value is in fact still
possible in our framework, but would require projecting the
join of all relations on individual variables, which can in
general be very expensive . But as we saw earlier, such
value predictions are not required for on-board diagnosis .
They would only be helpful for measurement selection,
which is not an issue in this application (note that for the
task of probe selection, there exist more efficient solutions
anyway, e.g . (de Kleer and Raiman 93)) .

Acknowledgments
We would like to thank Ulrich Heller for valuable
contributions and the anonymous reviewers for helpful
comments . This work was supported in part by the German
Ministry of Education and Research (#01 IN 509 41) .

References
Dressier, O., Struss, P. 1994 . Model-based Diagnosis with
the Default-based Diagnosis Engine : Effective Control
Strategies that Work in Practice . In Proceedings of the
European Conference on Artificial Intelligence ECAI-94,
677-681, John Wiley & Sons .

	

'
El Fattah, Y . 1998 . An Elimination Algorithm for Model-
based Diagnosis . In 9`h International Workshop on
Principles ofDiagnosis Dx98, Cape Cod, USA, 47-54 .

31 0

de Kleer J . 1986 . An assumption-based truth maintenance
system . Artificial Intelligence, 28 :127-162 .

de Kleer J ., Raiman O. 1993 . How to diagnose well with
very little information . Working Papers of the 4'"
International Workshop on Principles of Diagnosis Dx93,
University of Wales at Aberystwyth .

de Kleer J ., Williams B . C . 1987 . Diagnosing Multiple
Faults . Artificial Intelligence, 32(1):97-130 .

Mauss J., Neumann B. 1996 . Qualitative Reasoning about
Electrical Circuits Using Series Parallel-Star Trees .
Workshop Notes of the 10th International Workshop on
Qualitative Reasoning QR-96, AAAl Press, pp . 147-153 .

Ranon R. 1998 . The closure properties of functional flow-
based approaches and their relevance to diagnosis .
Proceedings of the 13th European Conference on Artificial
Intelligence ECAI-98, Brighton, UK.

Reiter R. 1987 . A theory of diagnosis from first principles .
Artificial Intelligence, 32(1):57-95 .

Struss P . 1992 . What's in SD? Towards a Theory of
Modeling for Diagnosis . Readings in Model-based
Diagnosis, Morgan Kaufmann Publishers, pp . 419-450 .

Stumptner M., Wotawa F . 1997 . Diagnosing Tree
Structured Systems . Proceeedings of the 15th International
Joint Conference on Artificial Intelligence IJCAI-97, 440-
445, Nagoya, Japan

QR99 Loch Awe, Scotland

