
Model-Based Programming using Golog and the Situation Calculus

Abstract

This paper integrates research in robot programming and rea-
soning about action with research in model-based reasoning
about physical systems to provide o new capability for model-
based reasoning systems, which we term model-based pro-
gramming . Model-based programs are reusable high-level
programs that capture the procedural knowledge of how to
accomplish a task, without specifying all the system-specific
details . Model-based programs must be instantiated in the
context of a model of a specific system/device and state of
the world. The instantiated programs are simply sequences
of actions, which can be performed by an appropriate agent
to control the behavior of the system . The separation of con-
trol and model enables reuse of model-based programs for
devices whose configuration changes as the result of replace-
ment, redesign, reconfiguration or component failure . Addi-
tionally, the logical formalism underlying model-based pro-
gramming enables verification of properties such as safety,
program existence, and goal achievement. Our model-based
programs are realized by exploiting research on the logic pro-
gramming language Golog, together with research on repre-
senting actions and state constraints in the situation calculus,
and modeling physical systems using state constraints .

I Introduction

Much of the research in model-based reasoning about
complex physical systems has aimed to combine a task-
independent, declarative representation of the behaviour of
some physical system, such as a circuit or an electromechan-
ical device, with a set of task-specific reasoning mechanisms
(e .g ., abductive reasoning, consistency-based reasoning) in
order to perform a particular task such as diagnosis. The
models t often capture the behavior and structure of the phys-
ical system and are commonly represented as a set of state
constraints .
One virtue of the model-based approach is ease of mod-

ification and reuse. Unlike its precursor, the expert system,
model-based reasoning systems enable a model of the de-
vice to be created once for multiple applications, and since
the representations are declarative, they are easily modified .
An arguable shortcoming of typical model-based reasoning

Throughout this paper, the term model is used in the model-
based reasoning or engineering sense, not in the semantic sense,
unless otherwise noted.

QR99 Loch Awe, Scotland

Sheila A. McIlraith
Knowledge Systems Laboratory

Stanford University
Stanford CA 94025
sam@ksl.stanford.edu

systems is that their declarative representations do not en-
able easy representation of the procedural knowledge and
heuristics of experts on how to perform a particular task.

In this paper, we are motivated by a growing class of
physical systems that have received less attention from the
model-based reasoning community - the class of complex
physical systems that are controlled by a human operator,
or by an embedded controller . The question we pose our-
selves is : How can we exploit rich declarative models to
facilitate programming complex physical systems, maintain-
ing the virtues of a model-based approach, while address-
ing its shortcomings with respect to representing procedural
knowledge. We answer this question by integrating research
from robot programming and reasoning about action with
research in model-based reasoning about complex physical
systems.
Themain contribution of this paper is to provide a new ca-

pability to the model-based reasoning community -model-
based programming2 Model-based programs are reusable
high-level programs that capture the procedural knowledge
of how to accomplish a task, without specifying all the
system-specific details. They are called model-based be-
cause, on their own, they are too abstract to be executed .
They must be instantiated in the context of a model ofa spe-
cific system/device and state of the world. The instantiated
programs are simply sequences of actions, which can sub-
sequently be performed by an appropriate agent to control
the behavior of the system . This separation of control and
model within model-based programming enables reuse of
model-based programs for devices whose configuration and
hence models changes as the result of e .g ., device replace-
ment, redesign, reconfiguration or device component failure .

To position our model-based programming work, it is also
worthwhile to discuss what model-based programming is
not. Model-based programming is not deductive program
synthesis (e .g ., (Smith & Green 1996), (Manna & Waldinger
1987)), nor is it model-based program synthesis from soft-
ware reuse libraries (e .g ., (Stickel et al . 1994)) . Whereas
deductive program synthesis uses deductive machinery to
synthesize a program from a specification, model-based pro-

2The term model-basedprogramming did not originate with us .
E.g ., (Williams & Nayak 1996), (Stickel et al . 1994), etc . each use
the term with different meanings from ours .

282



gramming starts with a program, and uses models and de-
ductive machinery to simply fill in some details . Model-
based programming is also not the derivation of decision
trees from models (e.g ., (Price et al. 1996)) . One can view
the generation of decision trees from models as inducing
some sort of procedural knowledge relating to a task, but
these "procedures" are system induced as opposed to user-
defined ; they are specific to the one model used to gener-
ate them; and they lacks the structure provided by model-
based programming language constructs . Finally, model-
based programming is not planning . There is some relation-
ship to planning which we will discuss in this paper, but a
model-based program is truly a program complete with typi-
cal program structure such as while loops and if-then-else's .

In (McIlraith 1998) we presented some very preliminary
thoughts on using the situation calculus to develop generic
procedures for model-based computing . Here we provide
a much richer development of the related idea of model-
based programming including discussion of how to verify
properties of programs within our formalism . In this pa-
per, we argue that the situation calculus and the logic pro-
gramming Golog together provide a natural formalism for
model-based programming . We take as our starting point
two separate entities : a set of state constraints in first-order
logic, that can describe the structure and behavior ofa phys-
ical system ; and a set of actions . In Section 2.1 we appeal
to a solution to the frame and ramification problems in the
situation calculus in order to provide an integrated repre-
sentation of our physical device and the actions that affect
it . This representation scheme is the critical enabler of our
model-based programming capability. With a representation
for our models in hand, Section 2.2 introduces the notion
of a model-based program, shows how to exploit Golog to
specify model-based programs, and shows how to generate
program instances from the program and the model using
deductive machinery . In control applications, it is often de-
sirable to be able to prove properties ofprograms . In Section
3 we show how the logical formalism underlying model-
based programming enables verification of properties such
as safety, program existence, and goal achievement . We
conclude with a brief discussion of experimentation, related
work, discussion and summary.

2 Model-Based Programming
Model-based programming comprises two components :

A Model which provides an integrated representation of the
structure and behavior of the complex physical system be-
ing programmed, the operator or controller actions that
affect it, and the state of the system . The model dictates
the language for the program .

A Program which describes the high-level procedure for
performing some task, using the operator or controller ac-
tions .

2.1

	

The Model
The first step towards achieving our vision of model-based
programming is to find a suitable representation for our

QR99 Loch Awe, Scotland

models . In this section we demonstrate that the situation cal-
culus will provide a suitable language for this task . Model-
based reasoning often represents the structure and behavior
of physical systems as a set of state constraints in first-order
logic . The first challenge we must address is how to integrate
operator or controller actions into our representation, in or-
der to obtain an integrated representation of our system . To
do so, we appeal to a solution to the frame and ramification
problems proposed in (McIlraith 1997), that automatically
compiles a situation calculus theory of action with a a set
of state constraints . We begin with a brief overview of the
situation calculus .

2 .1 .1

	

The Situation Calculus
The situation calculus language we employ to axiomatize
our domains is a sorted first-order language with equality .
The sorts are of type A for primitive actions, S for situa-
tions, .T for fluents, and D for everything else, including do-
main objects ((Lin & Reiter 1994), (Reiter 1998)) . We rep-
resent each action as a (possibly parameterized) first-class
object within the language . Situations are simply sequences
of actions . The evolution of the world can be viewed as
a tree rooted at the distinguished initial situation So . The
branches of the tree are determined by the possible future
situations that could arise from the realization of particu-
lar sequences of actions . As such, each situation along
the tree is simply a history of the sequence of actions per-
formed to reach it . The function symbol do maps an ac-
tion term and a situation term into a new situation term .
For example, do(turn-on(Pmp, So)) is the situation result-
ing from performing the action of turning on the pump in
situation So . The distinguished predicate Poss(a, s) denotes
that an action a is possible to perform in situation s (e.g .,
Poss(turn-on(Pmp), So)) . Thus, Poss determines the sub-
set of the situation tree consisting of situations that are pos-
sible in the world . Finally, those properties or relations
whose truth value can change from situation to situation are
referred to as fluents . For example, the property that the
pump is on in situation s could be represented by the fluent
on(Pmp, s) . The situatio

	

calculus language we employ in
this paper is restricted to primitive, determinate actions . For
the present, our language does not include a representation
of time or concurrency .

2.1.2

	

The Representation Scheme
Our representation scheme automatically integrates a set of
state constraints, such as the ones found in a typical model-
based diagnosis system description, SD (de Kleer, Mack-
worth, & Reiter 1992) with a situation calculus theory of ac-
tion to provide a compiled representation scheme . We sketch
the integration procedure in sufficient detail to be replicated .
We illustrate it in terms ofan example of a power plant feed-
water system .
The system consists of three potentially malfunctioning

components : a power supply (Pwr); a pump (Pmp) ; and a
boiler (Blr) . The power supply provides power to both the
pump and the boiler. The pump fills the header with water
(wtr-enter head), which in turn provides water to the boiler,
producing steam. Alternately, the header can be filled man-

28 3



ually (Man-Fill) . To make the example more interesting,
we take liberty with the functioning of the actual system and
assume that once water is entering the header, a siphon is
created . Water will only stop entering the header when the
siphon is stopped . The system also contains lights and an
alarm, and it contains people . The plant is occupied at all
times unless it is explicitly evacuated . Finally we have stip-
ulated certain components of the plant as vital . Such compo-
nents should not be turned off in the event of an emergency .

Power Plant Feedwater System
This system is typically axiomatized in terms ofa set of state
constraints . The following is a representative subset . 3
-AB(Pwr) A -AB(Pmp) A on(Pmp) D wtr -enters-head

on(Man-Fill) D wtr-entershead
-wtr-entershead Aon(Blr) D on(Alarm)

AB(Blr) :) on(Alarm)

~(on(Pmp) n on(Man-Fill))
Pwr 54 Pmp 54 Blr,4 Aux-'wr 0 Alarm 36 Man-Fill

We also have a situation calculus action theory . One com-
ponent of our theory of action is a set of effect axioms that
describe the effects on our power plant of actions performed
by the system, a human or nature . The effect axioms take
the following general form :

Poss(a, s) n conditions D fluent(g, do(a, s)) .

Effect axioms state that if Poss(a, s), i .e . it is possible
to perform action a in situation s, and some conditions are
true, then fluent will be true in the situation resulting from
doing action a in situation s, i .e . the situation do(a, s) .

The following are typical effect axioms .
Poss(a, s) n a = turn-on(Pmp) D on(Pmp, do(a, s))

Poss(a, s) n a = blr-blow D AB(Blr, do(a, s))

In addition to effect axioms our theory also has a set of
necessary conditions for actions which are ofthe following
general form :

Poss(a, s) D necronditions

QR99 Loch Awe, Scotland

These axioms say that if it is possible to perform action a in
situation s then certain conditions (so-called nec-conditions)
must hold in that situation .

3Note that for simplicity, this particular set of state constraints
violates the no-function-in-structure philosophy. This characteris-
tic is not in any way essential to our representation .

The following are typical necessary conditions for actions .
Poss(blr-blow, s) D on(Blr, s)
Poss(blr-fix, s) D ~on(Blr, s)

We now have axioms describing the constraints on the sys-
tem state, and also axioms describing the actions that affect
system state . Unfortunately, these axioms on their own yield
unintended interpretations . That is, there are unintended (se-
mantic) models of this theory . This happens because there
are several assumptions that we hold about the theory that
have not been made explicit . In particular,
Completeness Assumption: we assume that the axioma-

tizer has done his/her job properly and that the state con-
straints, effect axioms and necessary conditions for ac-
tions capture all the elements that can affect our system .

Causal Structure : we assume a particular causal structure
that lets us interpret how the actions interact with our state
constraints, i .e . how effects are propagated through the
system, and what state constraints preclude an action from
being performed . The causal structure must be acyclic .
We make these assumptions explicit and compile our as-

sumptions, state constraints and theory of action into a fi-
nal model-based representation . The compilation process
is semantically justified and further described in (McIlraith
1997) .

Multilile

	

Unique
(Logical) Mvdets

	

Intended Mrxiel

The Compilation Process
The resulting example axiomatization is provided below. We
will refer to this collection of axioms as a situation calculus
domain axiomatization . It comprises :

" successor state axioms,
" action precondition axioms,
" axioms describing the initial situation, So,
" unique names for actions and domain closure axioms
for actions (not included), and

" the foundational axioms of the situation calculus which
are domain independent (not included) (Reiter 1998) .

The first element of the domain axiomatization after com-
pilation is the set ofsuccessor state axioms . Successor state
axioms are of the following general form .

Poss(a,8) D (fluent(do(a,s))
an action made it true
V a state constraint made it true
V it was already true

n neither an action nor a state constraint
made itfalse]

284

Completeness Causal
Assumption Structure

Successor
State State
Constraints Axioms

Compiler
ActionEffect A7doms & PreconditionNec. Cords Actions Axioms



Le., if it is possible to perform action a in situation s, then
fluent will be true in the resulting situation if and only if
an action made it true, a state constraint made it true, or it
was already true and neither an action nor a state constraint
made it false .

Here is the complete set of successor state axioms for our
example .

Poss(a, s) D [on(Pmp, do(a, s)) _
a = turn-on(Pmp)
V (on(Pmp, s) A a :~ turn-off(Pmp))]

	

(1)

Poss(a, s) D [on(Aux-Pwr, do(a, s))
a = turn-on(Aux-Pwr)
V (on(Aux-Pwr, s) A a. :A turn-off(Aux-Pwr))] (2)

Poss(a, s) D [on(Blr, do(a, s)) _
a = turn-on(Blr)
V (on(Blr, s) A a 54 turn-off(Blr))]

Poss(a, s) D [on(Alarm, do(a, s)) _
a = turn-on(Alarm) V AB(Blr, (do(a, s))
V (-wtrenterhead(do(a, s)) A on(Blr, do(a,
V (on(Alarm, s) A a i4 turn-off(Alarm)]

	

(4)

Poss(a, s) J [AB(Blr, do(a, s)) _
a = blr-blow V (AB (Blr, s) A a z~ blr-fix)]

	

(5)

a = pmp-burn-out
V (AB(Pmp, s) A a y- pmp-fix)]

	

(7)

Poss(a, s) D [on(Man-Fill, do(a, s))
a = turn-on(Man-Fill)
V (on(Man-Fill, s) A a 0 turn-off(Man-Fill))] (8)

Poss(a, s) D [wtrenterhead(do(a, s))
on(Man-Fill, do(a, s))
V (-AB(Pwr, do(a, s)) A -AB(Pmp, do(a, s))

A on(Pmp, do(a, s)))
V wtrenterhead(s) A a -~4 stop-siphon]

	

(9)

Poss(a,s) D [lights -out(do(a, s))
AB(Pwr, do(a, s)) A -on(Aux-Pwr, do(a, s))] (10)

Poss(a, s) D [steam(do(a, s))
(wtrenterhead(do(a, s)) A -AB(Pwr, do(a, s))

A ~AB(Blr, do(a, s)) A on(Blr, do(a, s)))] (11)

Poss(a,s) D [occupied(do(a,s))
(occupied(s) A a :A evacuate)]

	

(12)

QR99 Loch Awe, Scotland

Observe that these successor state axioms can be further
compiled by substituting successor state axioms for fluents
relativized to situation do(a, s) . For example, among other
axioms, Axiom (5) could be substituted into Axiom (4) .

In addition to the successor state axioms there is a set of
action precondition axioms that capture the necessary and
sufficient conditions for actions . They are of the form :

Poss(a, s) _ nec-conditions

For example,

A implicit conditionsfrom state constraints

Poss(blr-blow, s) _ -wtr-enter-head(s) A on(Blr, s)

	

(13)
Poss(pmp-burn-out, s) _ on(Pmp, s)

	

(14)
Poss(blr-fix, s) - -on(Blr, s)

	

(15)
Poss(turn-off(Alarm), s) _

(wtr-enterh,ead(s) V -on(Blr, s)) A -AB(Blr, s)

	

(16)
Poss(turn-on(Man-Fill), s)

~on(Alarm, s) A -on(Pmp, s)

	

(17)
Poss(turn-on(Pmp), s) - -on(Man-'ill, s)

	

(18)
Poss(turn-on(Alarm), s) _ true

	

(19)
. . . (20)

Our axiomatization will have some knowledge regarding
the initial situation of the world . This will include what is
known of the truth value ofpredicates and fluents relativized
to So, for example :

It will also include the state constraints relativized to the
initial situation . We repeat only a few here for illustration
purposes .

-AB(Pwr, So) A -AB~Pmp, So) A on(Pmp, So)
D wtr-enterhead(So) (27)

on(Man-Fill, So) D wtrenterhead(SO) (28)
wtr enterhead(So) A -AB(Pwr, So) A -AB(Blr, So)

Aon(Blr, So) D steam(SO) (29)
-wtr-enterhead(So) A on(Blr, So) D on(Alarm, So) (30)

AB(Blr, So) D on(Alarm, So) (31)
. . . (32)

We have demonstrated that the situation calculus provides
a suitable representation for the model-based programming
models .

Definition 1 (Model) A model-based programming model,
M is a situation calculus domain axiomatization on the sit-
uation calculus language C .

We henceforth refer to the model of our power plant feed-
water example as MSD .

285

vital(Pwr) A vital(Aux-Pwr) A vital(Alarm) (21)
Poss(a, s) D [AB(Pwr, do(a, s)) _ a = pwr-failure -vital(Pmp) A-vital(Blr) A-vital(lllan-Fill) (22)

V (AB(Pwr, s) A a 54 turn-on(Aux_Pwr) occupied(So) (23)
A a :A pwr-fix)] (6) -on(Pmp, So) A -on(Blr, So) A -on(Man-Fill, So) (24)

-AB(Pwr, So) A -AB(Pmp, So) A -AB(Blr, So) (25)
Poss(a, s) D [AB(Pmp, do(a, s)) -on(Aux-Pwr, So) A on(Pwr, So) (26)



2.2

	

The Program

With the critical model representation in hand, we must now
find a suitable representation for our model-based programs .
Further, we must find a suitable mechanism for instantiat-
ing our model-based program with respect to our models .
We argue that the logic programming language, Golog and
theorem proving provide a natural formalism for this task .
In the subsection to follow, we introduce the Golog logic
programming language and its exploitation for model-based
programming .

2.2.1 Golog

Golog is a high-level logic programming language devel-
oped at the University of Toronto (Levesque et al . 1997) . Its
primary use is for robot programming and to support high-
level robot task planning (e.g ., (Burgard et al. 1998)), but
is has also been used for agent-based programming (e.g .,
meeting scheduling) . Golog provides a set of extralogical
constructs for assembling primitive actions defined in the
situation calculus (e .g ., turn_on(Blr) or stop_siphan in
our power plant example) into macros that can be viewed
as complex actions, and that assemble into a program .

In the context of our model-based representation, we can
define a set of macros that is relevant to our domain or to
a family of systems in our domain . The instruction set for
these macros, the primitive actions, are simply the domain-
specific primitive actions ofour model-based representation .
Hence, the macros or complex actions simply reduce to first-
order (and occasionally second-order) formulae in our sit-
uation calculus language . The following are examples of
Golog statements .

if AB(Pmp) then PMP_FIX endlf

while (3component) .ON(component) do
TURN_OFF(cornponent)

endWhile

proc PREVENTDANGER
if OCCUPIED then EVACUATE endlf

endProc

We leave detailed discussion of Golog to (Levesque et al.
1997) and simply describe the constructs for the Golog lan-
guage . Let 61 and 62 be complex action expressions and let
0 and a be so-called pseudo fluents/actions, respectively,
i .e ., a fluent/action in the language of the situation calculus
with all its situation arguments suppressed .

primitive action

	

a
test of truth

	

0?
sequence (61 ;62)

nondeterministic choice between actions

	

(61 162)
nondeterministic choice of arguments

	

7rx.8
nondeterministic iteration

	

S*
conditional

	

if0 then al
else 89

QR99 Loch Awe, Scotland

loop

	

while 0 do b
procedure

	

proc P(6)
b end

A Golog program is in turn comprised of a sequence of
procedures .
Each of the programming constructs listed above is sim-

ply a macro, equivalent to a situation calculus formula.
Golog also defines the abbreviation Do(8, s, s') . It says that
Do(d, .s, s) holds whenever s' is a terminating situation fol-
lowing the execution of complex action S, starting in situa-
tion s . Each of the programming constructs listed above is
simply a macro, equivalent to a situation calculus formula .
Do is defined for each complex action construct . Three

are defined below .

Do(a, s, s) = Poss(a[s], s) A s' = do(a[s], S)4

Do([dt ; b2], S, $') _ (1S*) .(Do(bt, s, s * ) ^ Do(b2, s* , s' ))
Do((7rx)6(x), s, s) _ (3x) .Do(8(x), s, s)

Definitions of the rest of the complex actions can be found
in (Levesque et al. 1997) but their meaning should be appar-
ent from the examples below . Before returning to our exam-
ple, we define what we mean by a model-based program .
Definition 2 (Model-Based Program, b for model M)
Given a model L7 in situation calculus language G, 6 is a
model-basedprogramfor modelM iffb is a Golog program
that only mentionspseudo actions and pseudofiuents drawn
from G.
We begin by defining a rather simple looking procedure

to illustrate the constructs in our language and to illustrate
the range of procedures Golog can instantiate with respect
to the example model, MSO .

proc SHUTDOWN
`d(x)[VITAL(x) V OFF(X)I?
(7rx)[[ON(x) A ~ VITAL(x)]? ; TURNOFF(X)I ;

SHUTDOWN
endProc

The procedure SHUTDOWN directs the agent to turn off
everything that isn't vital . If it is not the case that either ev-
erything is off or else it is vital, then pick a random thing that
is on and that is not vital, turn it off and repeat the procedure
until everything is either off or else it is vital .
From the simple procedures defined above, we can

define the following model-based program that dictates a
procedure for addressing an abnormal boiler.

if AB(Blr) then
PREVENTDANGER ; SHUTDOWN; BLR-'IX ; RESTART S

end if

	

(33)

°Notation : a[s] denotes the restoration of the situation argu-
ments to any functional fluents mentioned by the action term a .

5 Procedure not defined here.

286



This program on its own is very simple and seems unin-
teresting since it exploits little domain knowledge and thus
doesn't capture many of the idiosyncrasies of the system .
Instead, it illustrates the beauty of model-based program-
ming . By using nondeterministic choice, the program need
not stipulate which component to turn off first, but if there is
a physical requirement to turn one component off before an-
other, then it will be dictated in the model, M of the specific
system, and when the model-based program is instantiated,
111 will ensure that the instantiation of the program enforces
this ordering . This use of nondeterminism and exploitation
of the model makes the program reusable for multiple dif-
ferent devices without the need to rewrite the program . It
also saves the engineer/programmer from being mired in the
details of the physical constraints of a potentially complex
specific system .

It is important to observe that model-based programs are
not programs in the conventional sense . While they have the
complex structure of programs, including loops, if-then-else
statements etc ., they differ in that they are not necessarily
deterministic . As such they run the gamut from playing the
role of a procedurally specified plan sketch that helps to con-
strain the search space required in planning, to the other ex-
treme where the model-based program provides a determin-
istic sequence of actions, much in the way a traditional pro-
gram might . Unfortunately, planning is hard, particularly in
cases where we have incomplete knowledge . Computation-
ally, in the worst-case, a model-based program will further
constrain the search space, helping the search engines hone
in on a suitable sequence of actions to achieve the objective
of the program . In the best place, it will dictate a determin-
istic sequence of actions .

Indeed, what is interesting and unique about Golog pro-
grams and what makes them ideal for model-based program-
ming, is how they are instantiated with respect to a model .

Definition 3 (Model-Based Program Instance, A) A is a
model-based program instance of model M and model-
basedprogram b iffA is a sequence ofactions [a,, . . . , ate]
such that

M ~= Do(b, So, do([al, . . . , a�,], So)) .

Recall that the program itself is simply a macro for one
or more situation calculus formulae . Hence, generation of
a program instance can be achieved by theorem proving, in
particular, by trying to prove (3s) .Do(b, So, s) from model
M. The sequence of actions, [al, . . . , a�,] constituting the
program instance can be extracted from the binding for s' in
the proof. We can see that in this context, the instantiation of
a model-based program is related to deductive plan synthesis
(Green 1969) .

Returning to our example, instantiating the model-based
program (33) with respect to our example model MSD,
which includes some constraints on the initial situation So
as defined in Axioms (21)-(26), terminates at the situation
do(evacuate, So) . Consequently, the model-based program
instance is composed of the single action evacuate . (All the
other components of the system are off in the initial situa-
tion .) If the initial situation were changed so that all compo-
nents that could be on at the same time were on, the proof of

QR99 Loch Awe, Scotland

the program might return the terminating situation

do(turn-off(Pmp), do(turn-off(Blr),
do(turn-off(Alarm), do(evacuate, So))))

thus yielding the model-based program instance

evacuate ; turn-off(Alarm) ; turn-off(Blr) ;
turn-off(Pmp) .

To illustrate the power of Golog as a model-based pro-
gramming language, imagine that our system is more com-
plex than the one described by MSD, that the pump must
be turned off after the boiler, and that before the boiler is
turned off that there are valves that must be turned off. If
this knowledge is contained in the model MSD2, then this
same simple model-based program, (33) is still applicable,
but its instantiation will be different. In particular, to instan-
tiate this model-based program, the theorem prover will pick
a random nonvital component to turn off, but the precondi-
tions to turn off that component may not be true, if so it will
pick another, and another until it finally finds the correct se-
quence of actions that constitutes a proof, and hence a legal
action sequence .

In this instance, an alternative to SHUTDOWN would be to
exploit the knowledge of an expert familiar with the system,
and to write a system-specific shutdown procedure, along
the lines of the following, that captures at least some of this
system-specific procedural knowledge .
proc NEWSHUTDOWN

SHUTVALVES ;
TURNOFF(Blr);TURNOFF(Pmp);TURNOFF(Alarm)

endProc
proc SHUTVALVES

d(x)[VALVE(x) D OFF(x)]?
(7rx)[[VALVE(x) n ~ ON(x)]? ; TURNOFF(x)] ;

SHUTVALVES
endProc

Indeed, in this particular example, writing such a program
is viable, and NEWSHUTDOWN captures the expertise ofthe
expert and in so doing, Makes the the model-based instanti-
ation process more efficient . Nevertheless, with a complex
physical system comprised of hundreds ofcomplex interact-
ing components, correct sequencing of a shutdown proce-
dure may be better left to a theorem prover following the
complex constraints dictated in the model, rather than ex-
pecting a control engineer to recall all the complex interde-
pendencies of the system .

This last example serves to illustrate that model-based
programs can reside along a continuum from being under-
constrained articulations of the goal of a task, to being a
deterministic program for achieving that goal . SHUTDOWN
is situated closer to the goal end of the spectrum, whereas
NEWSHUTDOWN is closer towards a deterministic program .

3

	

Proving Properties of Programs
It is often desirable to be able to enforce and/or prove cer-
tain formal properties of programs . In our model-based pro-
gramming paradigm, we may wish to verify properities of a

28 7



model-based program we have written or of a program in-
stance we have generated . We may also wish to experiment
with the behavior of our model-based program by modify-
ing aspects of our modelM and seeing what effect it has on
program properties . A special case of this, is modifying the
initial situation So . Finally, rather than verifying properties,
we may wish to actually generate program instances which
enforce certain properties . Since our model-based programs
are simply macros for logical expressions, our programming
paradigm immediately lends itself to this task .
An important first property to prove is that a program in-

stance actually exists for a particular model-based program
and model . This proposition also shows that the program
terminates (Levesque et al. 1997).

Proposition 1 (Program Instance Existence) A program
instance existsfor model-basedprogram b andmodel M iff

M ~= (Ds) .Do(8, S4, s) .

Another interesting property is safety. Engineers who write
control procedures often wish to verify that the trajectories
generated by their control procedures do not pass through
unsafe states, i .e ., states where some safety property P does
not hold .
Proposition 2 (Program Instance Safety) Let P(s) be a
first-order formula representing the safety property. A pro-
gram instance; A = [a,, . . . , a�,] ofmodel-based program
dandmodel Menforces safety property P(s) iff

M V-- Do(8, So , do(A, So)) :) P(Aj,So).6

By a simple variation on the above proposition, we can
prove several stronger safety properties . For example, we
can prove that a model-based program enforces the safety
property for every potential program instance .
Proposition 3 (Program Safety) Let P(s) be a first-order
formula representing the safety property. A model-based
program, b and model M enforce safetyproperty P(s) iff

M ~= (Vs) .Do(b, So , s) D P(d, So),

wherefor each situation variable s = do([al, . . . , an], So),
d = [a,,- . . , an]-
A final property we wish to examine is goal achievement .

Since our model-based programs are designed with some
task in mind, we may wish to prove that when the program
has terminated execution, it will have achieved the desired
goal .
Proposition 4 (Program Instance Goal Achievement)
Let G(s) be a first-order formula representing the
goal of model-based program 8.

	

A program instance,
A = [a,, . . . , a�i ] of model-based program, 6 and model
Machieves the goal G(s) iff

M ~= Do(8, So , do(AT, So)) :) G(do(AT, So)) .

6Notation :

	

do(,~, So)

	

is

	

an

	

abbreviation

	

for
do(a_, (do(a~-1, . . . , (do(ai, So))))).
P(A, So) is an abbreviation for P(So) n P(do(al, So)) n . . . A
P(do(A, So)) .

QR99 Loch Awe, Scotland

Again, by a simple variation on the above proposition,
we can prove several other properties with respect to goal
achievement . For example, we can prove that a model-based
program is guaranteed to achieve its goal for every potential
program instance .
Proposition 5 (Program Goal Achievement) Let G(s) be
a first-orderformula representing the goal of model-based
program 6. 8 andmodel M are guaranteed to achieve goal
G(s) iff

M ~= (Vs) .Do(b, So, s) D G(s) .

There are many variants on these and other propositions,
regarding properties of programs . For example, up until
now, we have assumed that we have a fixed initial situa-
tion So, whose state is captured in our model, M. We can
strengthen many of the above propositions by rejecting this
assumption and proving Propositions l, 3, 5 for any initial
situation . This can be done by replacing So by initial situa-
tion variable so and by quantifying, not only over s, but uni-
versally quantifying over so . Clearly, many programs will
not enable the proof of properities for all initial situations,
but the associated propositions still hold .

Finally, exploiting Proposition 2 and Proposition 4, it is
trivial to see how we can use theorem proving to generate
a model-based program instance Athat enforces the safety
condition and/or achieves the program goal, rather than gen-
erating a model-based program instance and then verifying
that it enforces/achieves certain properties . The sequence of
actions comprising A will simply be the bindings for the ter-
minating situation (do(A, So)) . This said, we note that if
we have used Propositions 3 and 5 to show that all program
instances of th model-based program enforce the safety con-
dition and achieve the goal, then there is no need to stipulate
these conditions when subsequently generating a program
instance .

4

	

Related Work
The work presented here is related to several different re-
search areas. In particular, this research is related in spirit
only to work on plan sketches such as (Myers 1997). In
contrast, plan sketches are instantiated through hierarchical
substitution . Further, plan sketches generally don't exploit
the procedural programming language constructs found in
our model-based programming language . Model-based pro-
gramming is also related in spirit to various types of pro-
gram synthesis and model-based software reuse (e.g ., (Smith
& Green 1996), (Manna & Waldinger 1987), (Stickel et al.
1994)) and to model-based generation of decision trees (e.g .,
(Price et al. 1996)) . We refer the reader back to Section 1
for a discussion of the relationship. As noted in Section 2.2,
model-based programming is also related to deductive plan
synthesis (e.g ., (Green 1969)), since this provides part of the
mechanism for program instantiation .

Needless to say, model-based programming is intimately
related to cognitive robotics, agent-based programming, and
robot programming, particularly in Golog. This work drew
heavily from the research on Golog . A major distinction
in our work has been the challenge of dealing with large

28 8



numbers of state constraints inherent to the representation
of complex physical systems, and the desire to prove certain
properties of our programs . In the first regard, our work is
related to ongoing work at NASA on immobots (Williams &
Nayak 1996), and in particular to research charged with de-
veloping a model-based executive such as has recently been
initiated by (Williams & Gupta 1999) .

Finally, this work is related to controller synthesis and
controller programming from the engineering community .
Comments on the distinction between model-based pro-
gramming and program synthesis also hold for controller
synthesis . With respect to controller programming, typical
controller programming languages do not separate control
from models . Hence, programs are system specific and not
model based . As a consequence they are harder to write,
much more brittle, and are not amenable to reuse.

5

	

Summary and Discussion
This paper synthesizes several subfieids of AI, exploiting re-
search in robot programming, reasoning about action, and
model-based reasoning about physical systems . The particu-
lar class of physical systems driving this research is the class
of systems that are controlled by an external agent such as
a human or an embedded controller. The question we posed
to ourselves was how we could exploit the benefits of rich
declarative models, which have been used with great suc-
cess in other aspects of model-based reasoning, to actually
program physical devices . Clearly model-based program-
ming supports programming a variety of tasks related to the
diagnosis, control, maintenace and reconfiguration of phys-
ical systems . With the very recent exception of (Williams &
Gupta 1999), none of the research on model-based reason-
ing about physical systems has addressed this issue . In that
regard, this work is an important step .
The main contribution of this paper was to propose and

provide a new capability for model-based reasoning about
physical systems - model-based programming . Specifi-
cally : we envisaged the concept of model-based program-
ming ; proposed a representation and compilation procedure
to create suitable models of physical systems in the situa-
tion calculus ; proposed and demonstrated the effectiveness
of Golog for expressing model-based programs themselves;
and proposed theorem proving as a model-based program
instantiation mechanism. We also provided a set of propo-
sitions that characterized interesting properties of programs
that could be verified or enforced within our model-based
programming framework .
The merits of model-based programming come from the

exploitation of models of system behavior and from the sep-
aration of those models from high-level procedural knowl-
edge about how to perform a task . Model-based programs
are written at a sufficiently high level of abstraction that
they are very amenable to reuse . Also, they are easier to
write than traditional control programs, ridding the engi-
neer/programmer of keeping track of the potentially com-
plex details of a system design, with all its subcomponent
interactions . Further, because of the logical foundations of
model-based programming, important properties of model-

based programs such as safety, program existence and goal
achievement can be verified, and/or simply enforced in the
generation of program instances .

There are several weaknesses to our approach at this time .
We hope to address some of these in future research . The
first is inherent in Golog - not all complex actions compris-
ing our Golog programming language are first-order defin-
able . Hence, in its general form, our model-based program-
ming language is second order. However, as observed by
(Levesque et al. 1997) and experienced by the authors, first
order is adequate for most purposes . The second problem is
that the Prolog implementation of Golog relies on a closed-
world assumption (CWA) which has suited our purposes, but
is not a valid assumption in the general case . We have exper-
imented with several applications, including a furnace leak
test system (Probst 1996) . Finally, not all physical system
behavior can be expressed as logical state constraints . This
is a weakness of our current model representation . We will
need to extend our model representation language to include
ODE'S . We will do so by exploiting related work in the sit-
uation calculus (Pinto 1994) .

6 Acknowledgements
I would like to acknowledge the Cognitive Robotics Group
at the University of Toronto for their work on the develop-
ment of Golog . I would also like to thank the reviewers of
this paper for their excellent comments .

References
Burgard, W. ; Cremers, A . ; Fox, D . ; Haehnel, D . ; Lakemeyer, G . ;
Schulz, D . ; Steiner, W. ; and Thrun, S . 1998 . The interactive mu-
seum tour-guide robot . In Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAA 1-98) . To appear.
de Kleer, J . ; Mackworth, A. ; and Reiter, R . 1992 . Characterizing
diagnoses and systems . Artificial Intelligence 56(2-3):197-222 .
Green, C . C . 1969 . Theorem proving by resolution as a basis for
question-answering systems. In Meltzer, B., and Michie, D ., eds.,
Machine Intelligence 4 . New York : American Elsevier. 183-205 .
Levesque, H . ; Reiter, R . ; Lelsp&ance, Y., Lin, F. ; and Scherl, R .
1997 . GOLOG: A logic programming language for dynamic do-
mains . The Journal ofLogic Programming 31 :59-84.
Lin, F., and Reiter, R . 1994 . State constraints revisited . Journal
ofLogic and Computation 4(5):655-678 . Special Issue on Action
and Processes .
Manna, Z ., and Waldinger, R . 1987 . How to Clear a Block : A
Theory of Plans . Journal ofAutomated Reasoning 3:343-377 .
McIlraith, S .

	

1997. A closed-form solution to the ramifica-
tion problem (sometimes) . In Proceedings of the Workshop on
Nonmonotonic Reasoning, Action and Change, Fifteenth Interna-
tional Joint Conference on Artificial Intelligence .
McIlraith, S . 1998 . Towards generic procedures for model-based
computing . In Proceedings of the Ninth International Workshop
on Principles ofDiagnosis, 217-224 .
Myers, K .

	

1997.

	

Abductive completion of plan sketches.

	

In
Proceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI-97), 687-693 .
Pinto, J . 1994. Temporal Reasoning in the Situation Calculus .
Ph.D . Dissertation, Department of Computer Science, University



of Toronto, Toronto, Ontario, Canada . Also published as Tech-
nical Report, Dept . of Computer Science, University of Toronto
(KRR-TR-94-1), Feb. 1994 .
Price, C. ; Wilson, M. ; Timmis, J. ; and C.Cain . 1996 . Generating
fault trees from fmea . In Proceedings ofthe Seventh International
Workshop on Principles ofDiagnosis, 183-190.
Probst, S. 1996. Chemical Process Safety and Operability Anal-
ysis using Symbolic Model Checking . Ph.D. Dissertation, Depart-
ment of Chemical Engineering, Carnegie Mellon University .
Reiter, R. 1998 . KNOWLEDGE IN ACTION: Logical Founda-
tionsfor Building Dynamic Systems. In preparation.
Smith, D., and Green, C. 1996 . Towards Practical Application of
Software Synthesis. In Proceedings ofFMSP'96, the First Work-
shop on Formal Methods in Software Practice, 31-39.
Stickel, M. ; Waldinger, R. ; Lowry, M. ; Pressburger, T. ; and Un-
derwood, I . 1994. Deductive composition of astronomical soft-
ware from subroutine libraries. In Proceedings of the 12th Con-
ference on Automated Deduction. , .
Williams, B., and Gupta, V. 1999 . Personal communication. Pa-
per to appear in this proceedings .
Williams, B., and Nayak, P 1996 . Immobile robotics : Al in the
new millenium. AlMagazine 16-35.

nono i � , .t, AlAia Crntlanrl


