Design Verification of Automotive Electrical Circuits

Alex McManus, Chris Price, Neil Snooke, Richard Joseph

{agm, cjp, nns, rij} @aber.ac.uk
Department of Computer Science,
University of Wales, Aberystwyth

United Kingdom

Abstract

Automotive engineers are under increasing pressure to
produce correct, safe designs in shorter time frames. We
present an algorithm for automating Design Verification
of automotive electrical circuits, building on the
qualitative simulator used by the AutoSteve system for
producing Failure Mode and Effects Analysis (FMEA).
Our system allows an engineer to use a specification (in
the form of a state chart) to verify the correct behavior of
a circuit design. Design Verification can be used to reveal
errors in the specification, sneak circuits, timing and
sequence errors, and we give early results for some of
these problems.

Introduction

Background

Automotive engineers are under increasing pressure to
produce correct, safe designs in shorter time frames.
These designs must meet stringent quality and safety
requirements. Vehicle designs have been increasing in
complexity for many years. In the electrical domain,
automotive circuits are often based around sophisticated
Electronic Control Units (ECUs), and complex features
such as Car Area Networks (CANs) are becoming more
common. As design complexity has increased, it has
become more difficult for designers to comprehend all
the possible ramifications of a failure within their design,
and to detect all of the possible interactions between
parts of the design.

There is a second trend in vehicle design in addition to
increasing complexity. It is a trend towards shorter
product design life-cycles. This has prompted a thrust
towards concurrent engineering, where design activities
are carried out concurrently wherever possible in order to
reduce development time and understand all of the
interactions between different aspects of the design.

In order to overcome these difficulties, engineers are
turning to computers for help. The AutoSteve system
helps produce Failure Mode and Effects Analysis
(FMEA) reports for electrical circuits effectively and
efficiently [1, 2, 3]. Further work has automated some
Sneak Circuit Analysis (SCA) [4]. Both of these tools
use the same underlying qualitative circuit simulator
QCAT. Using a qualitative simulator allows the analyses

QR99 Loch Awe, Scotland

to be performed early in the design process when
changes are less costly to make. Qualitative component
models also tend to be more reusable than the equivalent
models for a quantitative simulator such as SABER or
SPICE. QCAT allows engineers to attach functional
labels to the output states of circuits, to help generate
human-readable results |5].

Significant previous work in design verification was
done by Iwasaki and Chandrasekaran [6]. They use a
standard functional representation of the type in
Sembugamoorthy and Chandrasekaran [7] to describe
both the function of a system and how it is to be
achieved. They use the description of overall behavior to
verify that a qualitative simulation of a system achieves
the expected function, and achieves it in the expected
way. One problem with this approach is that the method
used to describe overall system behavior does not match
the kind of descriptions produced by engineers to
describe overall system behavior. This means that the
models are not easily available in industry. In the
automotive industry, engineers are moving towards using
techniques such as state charts [8] to produce a state-
based specification of the operation of a system.

This paper describes the use of QCAT to verify the
correctness of automotive electrical designs under
normal (non-failure) conditions. Currently, automotive
engineers perform design verification on an informal, ad-
hoc basis. This does result in some errors being missed.
We hope that an automated tool will help design
verification become a formal part of the automotive
design process.

Overview

Figure 1 shows an overview of the design verification
algorithm. The design verification tool requires that the
engineer specifies the required behavior of a subsystem
using a state chart. It then generates an attainable
envisionment from the subsystem circuit design
(schematic), which effectively results in another state
chart. The specification state chart is an abstract, high-
level description of the subsystem, which may include
nested and concurrent states. In contrast, the
envisionment is very low-level, flat and without
concurrency. This prevents direct comparison of the two
state charts.

153



Schematic
created

schematic

Envisionment
generated

y

state chart ‘ |

y

Requirements
spedfied
state chart
Specification Templates
normalised generated

| s

state chart

y

state chart

State charts
compared

Figure 1: Algorithm Overview

Two levels of normalization are performed so that these
state charts can be compared. The specification is
normalized to remove concurrent and nested states. It
produces templates that are used to guide the
normalization of the envisionment, which leads to a new
state chart at the same resolution as the specification. A
report is generated that describes any differences
between the specification and the design.

Section 2 describes how state charts are used to specify
the required behavior of a subsystem, and how the state
charts are normalized to remove concurrency and
nesting. Section 3 details how the envisionment is
generated, with section 4 showing how this is mapped to
the specification. Section 5 examines how the results are
generated, in a form that is meaningful to an engineer.
We present some early results in section 6.

QR99 Loch Awe, Scotland

Specification

The correct behavior of a subsystem is defined as a state
chart (a simple one is shown in figure 1). State charts are
expressive enough to capture complex behavior, and are
relatively easy for an engineer to define. Engineers using
AutoSteve already use state charts to manipulate the low-
level component structure, in order to implement
complex component behavior in the model definitions.

The state chart notation that we use is a slightly
simplified version of that proposed by Harel. Each state
specifies which subsystem functions should be active
when that state is active. The transitions between states
have conditions based on time delays or on the
subsystem interface (the inputs to the subsystem, such as
switch settings, etc.). The behavior of the subsystem
must be expressed in the structure of the state chart, and
s0 local variables are not allowed.

154



o aalt samchoe it TR SR

Figure 2: Two Specifications for an Exterior Lighting Subsystem

For a given subsystem, it may be possible to specifly its
behavior using different state charts. For example, figure
2 shows two specifications for a subsystem, the first one
decomposed by subsystem outputs, and the second by
subsystem inputs. To get a flat, uniform specification
that the envisionment can be mapped to, the state chart is
normalized. This involves the following operations:

1.All concurrency is removed. This is a matter of
merging all combinations of states and generating
the transitions between them. Clearly there is a
combinatorial explosion here, but if the behavior
were so complex that this became a problem, the
attainable envisionment would be computationally
infeasible.

2. Nested states are flattened. This involves merging the
active functions defined in the parent and child
states, and merging/redirecting the transitions
connected to them.

3. Unreachable states in the specification are removed (to
make it an attainable specification).

4. Redundant states are merged. If two states have the
same active functions and the same outgoing
transitions (condition and destination state), one of
them can be considered redundant.

For a given subsystem behavior, any correct and
complete specification will be normalized to the same
state chart (subject to the restriction on local variables).
A symbol table is maintained during the normalization

ADOA | Axbs Asars Camtlamsd

process, which allows a normalized state or transition to
be traced back to the original specification.

Envisionment

The design verification tool generates an attainable
envisionment of the subsystem schematic, usifig the
QCAT simulator. The basic algorithm is as follows:

initialize subsystemStatelList with the
initial subsystem state
for each state in subsystemStatelist
for each transition possible from
subsystem state
run QCAT and fire the transition
if the resulting state is a new

one then
add it to the subsystemStateList
end if
end for
end for

From each circuit state, the simulator must try every
possible combination of subsystem interface settings (the
state of the inputs into the subsystem, such as switch
settings etc.). Also, if the circuit features time delays,
these can lead to further transitions. The result of the
envisionment is effectively a state chart, at a higher
resolution than the specification.



Unfortunately, the computational complexity of
generating an envisionment is exponential, based on the
number of inputs to the subsystem and the number of
internal states. In practice however, envisionments of
realistically complex subsystems can be generated in a
few hours. The envisionment need not be regenerated
unless the circuit is changed.

Mapping Envisionment to
Specification

At this stage both the normalized specification and the
envisionment are flat state charts. The low-resolution
envisionment must be normalized to bring it to the same
resolution as the specification. In order to use the
specification to guide this normalization, a mapping is
created between the specification and the envisionment.
If the schematic correctly implements the specification,
the two state charts will be identical.

Template generation

A template is created for every state in the normalized
specification. This consists of all functions that are
achieved in that state and the interface settings of the
subsystem. The interface settings for a state are
calculated by:

1.Getting a combined exit condition for the state, by
ORing all exit transitions.
2. Negating this combined condition,

Once the state has become active it will remain so until
one of the exit conditions is satisfied — this means that
the entry conditions to the state are not relevant.

Merging states

Each envisionment state is compared with the set of
templates, and assigned to the template with the closest
match. For a template to match, the set of active
functions must also be active in the state. The match
value will be higher if the state also matches the
template’s interface settings. It is possible for a state to
match more than one template — if this is the case, the
connectivity of the state is used to try to resolve the
ambiguity. If the implementation of the subsystem is
sufficiently different to its specification, it is possible
that some of the envisionment states will not match a
template.

Each group of states that match to a template are merged
to produce a single state that has a direct correspondence
to a state in the normalized specification. Every state in
the group will have the same set of active functions (in
order to match the same template). The conditions of
multiple transitions between the same pair of states are
ORed together to give a single transition. Transitions
between states in the same group are discarded.

QR99 Loch Awe, Scotland

Interpreting Results

It is now possible to perform a direct comparison
between the normalized specification and the normalized
envisionment. Missing transitions, extra transitions and
transitions with different conditions are noted. If there
are a large number of discrepancies, this information can
be difficult for an engineer to interpret. Two approaches
to managing this complexity are used: analyzing the
entry and exit conditions of each state, and guiding the
engineer through a wizard-style user interface. '

Because the report discusses the discrepancies in terms
of the specification state chart, this makes it easier for
the engineer to understand the results.

Comparing the entry conditions to states

For each state in the specification, the transitions
entering the state are compared. By comparing the
transition’s condition in the normalized specification
with the condition in the normalized envisionment, it can
be determined under which circumstances entry to that
state is illegal or restricted (according to the
specification). The engineer need not compare the two
conditions explicitly.

Grouping these comparisons by state gives them a
logical ordering. If more than one transition entering the
state permits the same illegal entry, the discrepancies can
be coalesced into a single error. The example in

Figure shows the report from the cargo bag doors
subsystem. In this case, six discrepancies have been
coalesced into one illegal entry error and one restricted
entry error (which is a by-product of the illegal entry).

Wizard-style help in resolving problems

A wizard-style interface is being developed to guide the
engineer through the discrepancies between the two state
charts. For each of these, AutoSteve can simulate the
circuit and display the current flow using the engineer’s
ECAD package. Alongside this, it can show the
specification state chart with the active states
highlighted. The engineer can consider both of these, and
determine which one of them is correct. In many cases, a
single error can cause all of the discrepancies.

It has been noted above that if the subsystem behavior is
sufficiently different to the specification, it may not be
possible to map the envisionment states to the
specification. Again, the wizard-style interface will show
the circuit state of each envisionment state, and the
specification state chart with the potential matches
highlighted. This can assist the engineer in discovering
the cause of the problems.

156




+V

o0
EmergencyDoorSW
o {3\
NormalDoorSW
Cargo Door
0 O__
LandingGearSW

Landing Gear 1

Figure 3: Cargo Bay Doors Schematic

CargoDoors
_] fire if LandingGearSw = Closed
GearUp and EmergancyDoorSw = Open; GearDown
J*mexunamgamsw.opm; l it g B
A
fire if Ei yDoorSw = Open
fire if EmergedcyDoorSw = Open; and N = Open;
fire if (EmargencyDdprSw = Closed
fire if EmergancyPoorSw = Closed; or NormalDoorSw = Closed)
and LandingGearSw = Closed;
DoorOpen
A 4 h 4
EmergencyOpen ]< fre If LandingGearSw = Opan; SafeOpen
J fire if (EmergencyDoorSw = Closed or > ;
NormalDoorSw = Closed) and |_ functions: gear_down;
LandingGearSw = Closed;
| functions: door_open, ) ™

Figure 4: Cargo Bay Doors Specification

1.1. Illegal Entries to States

The following states may be entered illegally:
1. State SafeOpen, from all other states, when EmergencyDoorSw
= Closed and NormalDoorSw = Closed and LandingGearSw =

Open.
1.2. Restricted Entries to States!

Entry to the following states is restricted:

Figure 5: Extract from Cargo Bay Doors Report

QR99 Loch Awe, Scotland 157



Results

One application of design verification is to detect
problems caused by sneak-circuits. Typically, a problem
might be caused when a wire that was expected to
provide current in one direction is used in the opposite
direction, causing a sneak path. A good example problem
is given in Savakoor et al. [9] and pictured in Figure 3,
for the cargo bay doors of an aircraft. The cargo door
switch should only make the cargo door open when the
landing gear is down (i.e. when the aircraft is on the
ground). Operating the emergency switch for the cargo
doors can cause the landing gear to lower unintentionally
while the aircraft is in flight if the normal door switch is
also closed. Similar published examples also exist in car
electrical systems.

Figure 4 shows the specification for the subsystem, with
an extract from the generated report in

Figure . The report correctly identifies that the
DoorOpenGearDown state (where the door is open and
the landing gear is down) is illegally entered when both
door switches are closed. The restricted entry problems
in the other states follow from the same problem.

Limitations and Further Work

Limitations of QCAT

Ambiguities may arise in QCAT due to its qualitative
representation of resistance and current, and due to its
qualitative representation of time [10]. This might
prevent it from being able to generate an envisionment.

State Chart Expressiveness

Local variables are not permitted in the specification
state charts, so that the state charts can be statically
compared. This does prevent analysis of any subsystem
that cannot be expressed without local variables (for
example, some circuits that use counters). In practice
however, we have not found this to be a problem with
those circuits used in the automotive industry.

Interface Settings

Throughout the normalization processes, the transition
conditions are being compared and combined. The
prototype design verification tool represents the
conditions as truth tables, which means that the interface
settings must be enumerations. If the interface to the
subsystem could use real numbers, the manipulation of
the conditions would have to be through a theorem
prover, which would add another level of complexity to
the analysis. However, the use of enumerated settings is
consistent with the idea of qualitative circuit simulation.

QR99 Loch Awe, Scotland

Computational Complexity

R T = =]

Generating an attainable envisionment has aj
exponential complexity. Although we believe that oyr

current system will be adequate for the majority of
automotive subsystems, extending this to perform whole.
car design verification will not be practicable.

One interesting line of research for whole-car design
verification would be to analyze the topology of 3
schematic in order to generate a list of “interesting”
interface settings. These could then be used generate 3
partial envisionment. By comparing this to the
specification state chart, the system could check that the
schematic does not violate the specification. Clearly, it
would not be able to determine whether or not the
schematic is a complete implementation of the
specification, but this would have already been
performed at the subsystem level. This type of analysis
might provide sneak-circuit detection at a whole-car
level.

Defining a state chart that specifies the behavior of a
whole car would be an intimidating prospect, so we
intend to consider how the individual subsystem
specifications could be combined.

Conclusions

We have developed a system that can perform design
verification of automotive electrical subsystems.

Features of this system include:

* [t supports reusability, by allowing the engineer to re-
use the qualitative models developed for FMEA, and
the structural description normally entered in the
ECAD tool.

* It allows engineers to specify the behavior of a
subsystem using a familiar notation (state charts).

* [t presents results in terms of the original specification.

It guides engineers through the debugging process.

It successfully detects any discrepancy between the
specification and the implementation, including those
caused by sneak-circuits, sequence and timing errors. We
intend to develop a more robust version of this prototype,
and to obtain feedback from engineers using the system
for real design work.

Acknowledgements

This work has been supported by the UK Engineering
and Physical Sciences Research Council (grant number
GR/L20542), the Ford Motor Company Ltd., Jaguar
Cars, Transcendent Design Technologies and Integral
Solutions Ltd.

158



LS R LY

References

1.C. J. Price, D. R. Pugh, M. S. Wilson, N. Snooke,
“The Flame System: Automating Electrical Failure
Modes & Effects Analysis (FMEA)”, Proc. Ann.
Reliability and Maintainability Symp., 1995 Jan pp
90-95.

2.C. J. Price, “Effortless incremental design FMEA™,
Proc. Ann. Reliability and Maintainability Symp.,
1996 Jan pp 43-47,

3. C. J. Price, N. Snooke, D. R. Pugh, J. E. Hunt, M. S.
Wilson, “Combining Functional and Structural
Reasoning for Safety Analysis of Electrical
Designs”, Knowledge Engineering Review vol 12(3),
1997 pp 271-287.

4. C. 1. Price, N. Snooke, J. Landry, “Automated Sneak
Identification”, Engineering Applications of
Artificial Intelligence, vol 9(4), 1996 pp 423-427.

5.C. ). Price, “Function-Directed Electrical Design
Analysis”, Artificial Intelligence in Engineering, vol
12, 1998 pp 445-456.

6. Y. lwasaki, B. Chandresekaran, “Design Verification
through Function- and Behavior-Oriented
Representations”, Proceedings Artificial Intelligence
in Design Conference, eds. J. Gero & F. Sudweeks,
1992, pp 597-616.

7. V. Sembugamoorthy, B. Chandresekaran, “Functional
Representation of Devices and Compilation of
Diagnostic Problem-Solving Systems”, Experience,
Memory and Reasoning , eds. Kolodner & Riesbeck,
Lawrence Erlbaum, Hillsdale, New Jersey, 1986, pp
47-73.

8.D. Harel, A. Pnueli, J. P. Schmidt, R. Sherman, “On
the Formal Semantics of Statecharts”, Proceedings
2™ IEEE Symposium on Logic in Computer Science,
1987, pp 54-64.

9.D. S. Savakoor, J. B. Bowles, R. D. Bonnell,
“Combining sneak circuit analysis and failure modes
and effects analysis”, Proc. Ann. Reliability and
Maintainability Symp., 1993 Jan pp 199-205.

10. Snooke, N.A. “Simulating Electrical Devices with
Complex Behavior”. Al Communications. 1999.

FATSAA I - L Ao Pl o o



