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Abstract
Dynamic behavior of complex physical systems
is often nonlinear and includes multiple tempo-
ral scales . For efficient model analysis, singular
perturbation methods can be employed to de-
couple and analyze the fast and slow behavior
in two steps: (i) by assuming the fast behavior
quickly reaches a quasi steady state, and (ii)
by analyzing the slow behavior of the system .
The decoupling achieved by applying the quasi
steady state solution reduces the complex sys-
tem of ordinary differential equations (ODES)
to simpler ODEs. This process of abstract-
ing fast continuous behavior into algebraic con-
straints may cause discontinuous jumps in vari-
able values when configuration changes occur,
requiring the system variables to be reinitial-
ized correctly. The application of traditional
singular perturbation approach correspond to
discontinuous changes resulting from parame-
ter abstraction. This paper extends this no-
tion to analysis of discontinuous changes caused
by time scale abstraction. Deriving the ex-
plicit discontinuous jumps caused requires anal-
ysis of the interactions between model compo-
nents, therefore, they are configuration depen-
dent . Therefore, reduced order model com-
ponents (or fragments) may not be valid in
other configurations, and, therefore, may not
be directly usable in a compositional modeling
framework.

The pressure to achieve optimal performance and meet
rigorous safety standards in industrial processes, air-
craft, and nuclear plants, is necessitating more detailed
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Figure 1 : Primary aerodynamic control surfaces .

modeling and analysis of these systems. In embedded
systems, the inherently continuous physical process in-
teracts with digital control signals that have very fast
time constants. In general, complex systems exhibit
nonlinearities attributed to small parameters that man-
ifest as behaviors on very fast time scales . These fast
transients make it hard to simulate and analyze sys-
tem behavior. Sophisticated numerical simulation al-
gorithms that vary their time step to accommodate
multi time scale behaviors have been developed, but
the variable step size makes it hard to bound their
runtime computational complexity. This makes them
unsuitable for real-time analysis . As an alternative,
modeling methodologies have been developed recently
that combine continuous and discrete, i.e ., hybrid mod-
els into an integrated framework. The resultant sys-
tems have piecewise continuous modes of behavior evo-
lution with discrete transitions between the modes. Our
previous work includes hybrid modeling and analysis
of both embedded systems and abstractions of com-
plex nonlinear behavior in physical systems [11; 13 ;
15) .
As an example, consider the primary aerodynamic

control surfaces of the airplane in Fig. 1 [19] . Modern
avionics systems employ electronic fly-by-wire control,
where electronic signals generated by a digital proces-
sor are transformed into the power domain by electro-
hydraulic actuators . The primary flight control system
demonstrates the paradigm for hybrid modeling of em-
bedded control systems. At the lowest level in the con-
trol hierarchy, continuous PID control moves the rud-
der, elevators, and ailerons to set positions. Desired set-
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point values are generated directly by the pilot or by a
supervising control algorithm implemented on a digital
processor. Digital control may mandate mode changes
at different stages of a flight plan (e .g ., take-of, cruise,
go-around) . Detection of failures may lead to discrete
changes in system configuration. Model simplifications
created by discretizing fast, nonlinear transients produce
discontinuous variable changes.
To accommodate these scenarios, hybrid dynamic

modeling paradigms [l ; 5; 9; 15) abstract the detailed
continuous behavior represented as a system of com-
plex ordinary differential equations, cODE, into piece-
wise simpler sODEs. In the singular perturbation ap-
proach [7), the sODEs are derived by decoupling fast
and slow behavior in the CODE and assuming the fast
behavior has reached its steady state. In the qualita-
tive reasoning domain [20), QSIM [8) uses the fast and
slow decompositions to create a hierarchy of constraint
networks to simulate complex physical system behav-
ior that occurs at different temporal and spatial scales
across multiple time scales . Iwasaki and Bhandari (6)
have used relative magnitudes of coefficients in an in-
fluence matrix (i.e ., the A matrix) of a linear system
to determine "nearly decomposable" substructures. Ig-
noring the weak interactions (i .e ., the small parameters)
between the substructures results in simpler aggregated
systems that ignore insignificant small time constant dy-
namic effects on overall system behavior .
Our goal is to extend and generalize these approaches

to linear and nonlinear systems. We have shown that
small time constant effects cannot always be ignored in
analyzing dynamic system behavior . Abstracting fast
transients may lead to jumps in the system state vec-
tor variable values when configuration changes occur.
To address this, we have developed systematic modeling
methodologies where the task at hand is employed to
derive abstractions that simplify the system model and
abstract fast behaviors to occur at apoint in time [11 ; 13 ;
15). The resultant system model exhibits multiple modes
of operation [18], each with simpler piecewise continuous
behavior, but transitions between the modes may intro-
duce discontinuous changes in the system variables .
In this paper we demonstrate the effects of abstracting

fast continuous transients exhibited by complex systems,
into discontinuous changes of the continuous state vector
and its effect on compositionality of models . In previous
work [1l; 15], we have established the different semantics
involved with the discontinuous state vector changes cor-
responding to two kinds of behavioral abstraction: pa-
rameter abstraction and time scale abstraction. This
Paper demonstrates a systematic methodology for gen-
erating the simpler ODE models from the more complex
ODE models of system behavior . The simpler piecewise
ODE models are then compiled into hybrid automata to
facilitate efficient run time analysis of hybrid behavior .
Hybrid automata [1] extend traditional finite state

automata with a continuous dimension. Each discrete
4We (i .e ., mode) has an associated ODE that describes
continuous behavior evolution of the system in time .

Changes in values of continuous variables may result in
discrete events that cause state (mode) changes. Mode
changes may also cause abrupt changes in the continu-
ous state vector, and these are explicitly specified in the
state transitions of the hybrid automata.
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Hybrid Dynamic Systems
Hybrid dynamic systems combine discrete state changes
with continuous behavior evolution [1 ; 5; 9; 15]. Building
hybrid dynamic models of physical systems requires the
specification of three component parts [9 ; 11 ; 15] .

The Continuous Part
Differential equations form a common representation of
continuous system behavior . The system is described by
a state vector, x, and other variables called signals, s,
are derived algebraically, s = h(x). Behavior over time
is specified by a field f . Interaction with the environ-
ment is specified by input and output signals, u and y .
The dynamics of system behavior is expressed as a set
of ODEs, x = f(x, u) .

The Discrete Part
Discrete systems, modeled by a state machine repre-
sentation, consist of a set of discrete modes, a. Mode
changes caused by events, Q, are specified by the state
transition function 0, i .e ., ai+1 = 0(ai). A transition
may produce additional discrete events, causing further
transitions.

Interaction
In hybrid dynamic systems, a mode change from ai to
ai+i, may result in a field definition change from f« ;
to f,,, ; +� and a discontinuous change in the state vec-
tor governed by an algebraic function g, x+ = g; +' (x).
Discrete mode changes are caused by an event genera-
tion function .y associated with the current active mode,
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Abstracting Fast Mransients
Continuous behavior in physical systems can occur on
a hierarchy of temporal and spatial scales . To simplify
system models, parasitic dissipation and storage effects
are abstracted away but they may cause discontinuous
changes in system behavior . Parameter abstractions re-
move the corresponding small and large parameter val-
ues from the model. This has no immediate effect on
the system state vector, but may cause configurational
changes in the model that implicitly cause discontin-
uous state changes . Time scale abstractions collapse
the end effect of phenomena associated with very fast
time constants to a point in time causing discontinuous
changes in state vector values . In previous work [11 ; 12 ;
13], we have developed formal semantics for mode tran-
sitions. For parameter abstractions, mode switching is
governed by the a posteriori state vector value, whereas
for time scale abstractions they are governed by a pri-
ori state vector values . In this section, we formalize the
derivation of simplified models generated by parameter
and time scale abstractions .
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Parameter Abstraction
Parameter abstractions eliminate small' parameters in a
system model to achieve a reduced model that is simpler
to analyze. This is the basis of the singular perturba-
tion method [7] . A singular perturbation representation
formulates the system behavior model into a complex
system of ordinary differential equations (CODE) with
two time scales :

x = f(x, z, E, t), x (to) = xo , x E Rte,

	

(1)
Ez = g(x, z, E, t),

	

z (to) = zo, x E Rrn,

where e embodies small and large parameter values that
cause fast transients . The function f models the slower
dominant system behavior. Setting E to 0 reduces the
second equation to an algebraic form . Assuming that
g(x, z, 0, t) = 0 has distinct real roots, the fast behaviors
corresponding to z can be solved for algebraically, and
substituted in f . This results in a reduced-order quasi
steady-state model that embodies an BODE,

X = f(x, 4t,t), 0, t)> t(to) = xo ,

	

(2)

We apply this approach to the collision between two
bodies shown in Fig 2. A first order approximation of
the collision process includes two parameters : (i) C, that
models the elastic interaction between the bodies, and
(ii) R, that models the dissipative effects. If the mo-
mentum of the bodies, pi, and the displacement, q, of
the spring which models the elasticity parameter C, are
chosen as state variables, the dynamic behavior of the
system is described by the following ODE :

P1=-c-R(~-~)m, M2
p2=C+ R( P1 _ P2

MI

	

M2
)

	

(3)
tr=

P1 _ P2
MI M2

This singular system of equations can be reduced to a
second order system by applying the transformation

v = pi - p2

	

(4)
ml m2

resulting in a second order ODE:
-

	

i

	

-.L (-L

	

1
MI M2

	

C M, M2

(5)
In many cases, the detailed continuous transients

caused by the R and C parameters are not of interest
to the modeler. If these parameters are removed from
the model, a simpler system of equations would result,
but the state variables mayexhibit explicit discontinuous
jumps. Therefore, simplification requires computation
of the discontinuous jumps from the detailed continuous
transients . To apply singular perturbations, we assume
C to be small and R to be large and take R to be the
small E parameter. Therefore,

R

	

MI M2

	

RC m, M2
q

'Also, large, because the reciprocal of a large parameter
value is small.
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Figure 2: Collision of a body ml with velocity v
and a body m2 .

where v contains the fast behavior . Substituting R = 0
results in v = 0. Transforming this back to the original
state variables, yields 1-~ = 0, i.e ., v1 -v2 = 0 . This
is the equivalent of a perfect non elastic collision [13] .
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Time Scale Abstraction
Instead of eliminating the fast transient due to dissipa-
tive effects, if we were to reduce the effect of elasticity to
occur at a point in time, we get a time scale abstraction .
Consider the system of colliding bodies again (Fig . 2)
with detailed behavior given by Eq . (5) . If C is taken to
be the small E parameter, this gives

For c = 0, this yields q = 0, and, therefore, 4 = 0 which
requires v = 0. When C becomes small but not 0, the
solution of the system in Eq. (5) has eigenvalues with
imaginary components and the resultant dynamic be-
havior for the transient is :
v(t)=v(O)e-$(-1+

VC- R2(Ml
+m2)2)t) .

(8)
This shows that v = 0 is the steady state solution . How-
ever, in case of colliding bodies this behavior transient
is aborted long before steady state is attained, because
the v and q values generated by the transient cause the
two bodies to disconnect.
To analyze this in detail, consider the case of two

point masses . The collision process becomes active when
x1 >_ x2, where xl and x2 are the positions of body ml
and m2, respectively. The bodies disconnect when the
force between them becomes negative, i.e ., F12 < 0. At
this point, the state variable values (i .e ., the two body ve-
locities) constitute the final, a posteriori, values around
the discontinuous jump corresponding to the collision.
Since F12 = c < 0 at the disconnect point, this im-
plies q < 0 since C > 0 . The time point at which the
disconnect occurs is computed to be

At td, v has changed from v(0) to v(td) = Av(0) with
(cos(7r) = -1), therefore,

td =
a

	

R2(1 + i)m1 m2

16 2

a=-e_T ( m1 +1-)td

	

(10)



As the C parameter becomes very small, td does too,
and in the limit, v(td) -> v(0)+ . The discontinuous
change in v can then be represented by an algebraic
equation

v(0)+ = Av(0)

	

(11)

Transforming this back to the original state variables,
yields

This form is the well known Newton's collision rule [2],
where A is called the coefficient of restitution that de-
scribes the amount of kinetic energy loss in the collision .
If R = 0 in Eq . (10), A = -1 and this describes a per-
fect elastic collision with no loss of energy . Note that
C cannot be taken to equal 0, as this would remove all
elasticity and the corresponding ideal rigid body collision
has no mechanism for storing kinetic energy as potential
energy and returning it as kinetic energy. Therefore, this
immediately causes v = 0. Consequently, behavior does
not converge uniformly as C -4 0.

3.3 Summary

The previous two abstraction types demonstrate that
singular perturbation methods apply well in case of pa-
rameter abstraction, where small parameters are ab-
stracted away by setting their corresponding e in Eq . (1)
to 0.
When eigenvalues that have imaginary parts are ab-

stracted away, reversible behavior of the fast variables
around steady state is collapsed to a point in time . This
reversible behavior often corresponds to energy restitu-
tion during fast transients, and switching conditions may
abort these transients . Such energy restitution corre-
sponds to a time scale abstraction and requires a more
extensive analysis of the detailed fast behavior . If the
transient for the elastic collision was not aborted when
Fit < 0, then the fast behavior wouldshow a damped os-
cillation (corresponding to a spring-mass-damper model)
that also achieves x = 0, i .e ., the same gross behavior as
that of a nonelastic collision .
The difference between a parameter and a time scale

abstraction in this case depends on the presence of imag-
inary parts in the eigenvalues that are abstracted away .
Therefore, the criterion for applying a parameter ab-
straction corresponds to

4 -R2 (1+1) 2 <0.
C ml 7/b2

Otherwise, a time scale abstraction is applied.
A corresponding physical interpretation is that param-

eter abstractions relate to abstractions of behavior dom-
inated by dissipative (or resistive) effects, and time scale
abstraction relates to abstraction of behavior dominated
by capacitive and inductive effects.
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The Elevator System
Aircraft are safety critical systems and their control sys-
tems incorporate several forms of redundancy . Atti-
tude control in an aircraft is achieved by the elevator
control subsystem [4, 19]. This system may consist of
two mechanical elevators (Fig . 3) that are positioned by
electro-hydraulic actuators . When a failure occurs, re-
dundancy management may switch actuator systems to
ensure maximum control. Continuous feedback control
drives the elevator to its desired set point, while higher
level redundancy management selects the active actua-
tor.

Figure 4 shows the operation of one actuator . The
continuous PID control mechanism for elevator position-
ing is implemented by a servo valve. The output of the
servo valve controls the direction and speed of travel of
the piston in the cylinder by means of a spool valve mech-
anism, illustrated in Fig. 5. When the actuator is active
the spool valve is in its supply mode, and the control
signal generated by the servo valve is transferred to the
cylinder that positions the elevator . When the actuator
is passive, the spool valve is in its loading mode that dis-
allows control signals to be transferred to the cylinder .
In this mode, flow of oil between the chambers is allowed
through a loading passageway, otherwise the cylinder
would block movement of the elevator, canceling control
signals from the redundant active actuator . The piston
in the positioning cylinder and connected elevator flap
constitute the load . In the servo valve mechanism, the
feedback signal may be provided by the fluid pressure,
mechanical linkage, electrical signals, and a combination
of the three.

4.1

	

The Servo Valve

Figure 3: Elevator system .

The servo valve consists of a cylinder that connects its
supply side with its loading side . A piston inside the
cylinder can be adjusted to change the size of the orifices
between supply and loading, and, therefore, controls the
amount of oil flow from supply to loading. The amount
of oil flowing in, qs, has to equal the amount of oil flowing
out q1 . This oil flow is determined by the pressure drop,
Ps - pi, across the orifice that is opened by an amount

qs = (ps - pl)x
qs = qt
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(14)

pi + p2 + PI p2- = A( - ).
(12)

MI m2 M1 m,2

Written in terms of the body velocities,

vi - va = A(vl - v2)- (13)



a2

cylinder

4.2

	

The Spool Valve

A typical spool valve (Fig . 5) consists of a piston that
moves in a cylinder . A number of cylinder ports connect
the supply and return part of the hydraulic system with
the load . Cylindrical blocks called lands, connected to
the piston, can be placed at different positions to render
the servo valve mechanism and thus the actuator active
or passive. Figures 5(a) and (c) show two possible oil flow
configurations of the actuator . In Fig. 5(a) the control
signal passes through the spool valve to the load, i.e .,
the actuator is active . In Fig. 5(c) the spool valve causes
damping behavior, i.e ., the actuator is passive .
When the actuator is active, the spool valve is in its

supply mode, a2, and the control signal generated by the
servo valve is transferred to the cylinder that positions
the elevator . In this mode, the pressure on the supply
side of the valve, ps, equals the pressure on load side,
pt . Also, the oil flow from the supply, qs, equals the oil
flow to the load, qi . When the actuator is passive, the
spool valve is in its loading mode, ao, and control sig-
nals cannot be transferred to the cylinder . However, oil
flow between the chambers is possible through a load-
ing passageway with fluid flow resistance Rt, as shown
in Fig. 5(c) . When moving between supply and loading,
the spool valve passes through the closed configuration,
a,, where oil flow is blocked, as shown in Fig. 5(b) . This
is captured by the following equations:

p8 = pt

	

qt = 0

	

pt = qtR t
qe = qt

	

ai

	

q8 = 0

	

ao

	

q8 = 0
(15)

4.3

	

The Pressure Relief Valve

Figure 4: Hydraulics of one actuator.

In addition to the servo-spool valve configuration of
Fig. 4, consider a pressure relief valve (Fig. 6) as a safety
device connected to the positioning cylinder . This valve
is normally closed (mode ao), but it may open (mode
al) when the pressure in the elevator positioning cylin-
der, i.e ., the input pressure to the relief valve, pr, ex-
ceeds a threshold value, pth . This may happen because
of a rapid buildup in pressure in the positioning cylin-
der, caused by changes in the elevator velocity, ve . The

QR99 Loch Awe, Scotland

(a)

	

(b)

	

(c)

Figure 5 : A typical spool valve .

cylinder

Figure 6: A pressure relief valve may prevent high
pressure .

pressure and flow relations in the two modes are

ao :

	

{ qr = 0

	

al :

	

{ pr = g,Rl

	

(16)

When the relief valve is open, it allows an oil flow, qr,
through a fluid path with resistance R t .

4.4

	

Modeling the Elevator Dynamics

The dynamics of the elevator are studied in terms of the
movement of the piston in the positioning cylinder, ex-
pressed as the velocity, ve. The behavior can be derived
by composing models of the servo valve, spool valve, re-
lief valve, and the positioning cylinder . We express this
as a second order system with two state variables: (i) p,,
the pressure of the oil in the cylinder, and (ii) ve , the el-
evator velocity.

Ccpc = qin + qr - qe
qe = Apve
ApFe = pc + Rc(qin + qr - qe )
me ve = Fe

(17)

Cc models the elasticity effects and Re models the dissi-
pative effects of the oil in the positioning cylinder . The
variables qi,b and qr represent the inflow of oil into the
cylinder from the servo and relief valves, respectively,
and q e represents the oil flow due to movement of the
piston . The value of qe is a function of AP, the area of
the piston and ve , the elevator velocity. The force ex-
erted on the piston is a function of pe, and the product
of internal dissipation of the oil, R, and the overall flow
rate . Newton's Second Law relates the elevator veloc-
ity to the force exerted on the piston . In state equation
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form, Eq . (17) is :
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Figure 7: Continuous transients when switching to
the closed mode.

closed

Figure 8: Continuous transients when switching to
the loading mode.

Consider a scenario where a sudden pressure drop is
detected in the hydraulics supply system of an elevator
actuator . Redundancy control moves the spool valve of
this actuator from supply to loading and the spool valve
of another actuator from loading to supply to take over
the control actions . When the spool valve of an actuator
moves to its closed mode, oil flow into and out of the po-
sitioning cylinder is blocked. This implies that the cylin-
der piston that controls elevator position cannot move,
and the elevator stops moving as well . In more detail,
the internal dissipation and small elasticity parameters
of the oil cause the elevator velocity to change contin-
uously during the transition . The continuous transient
behavior between supply and closed is shown in Fig. 7.
How quickly the system reaches 0 velocity in the closed
mode depends on the elasticity and internal dissipation
parameters of the oil. Typically, soon after the closed
mode, the spool valve starts opening and goes into the
loading mode . The effect on elevator velocity for the de-
tailed continuous behavior when switching from supply
to loading is shown in Fig. 8.
The elasticity and dissipative effects of the oil define

the transient and the final elevator velocity, before the
second actuator becomes active . The details of the con-
tinuous transients are not of much interest for analysis of
the control behavior . Model simplification by parameter

and time scale abstractions results in removal of small
elasticity and large dissipative effects. At the same time,
configuration changes in the system (e.g ., the spool valve
moving into the closed mode) may cause discontinuous
changes in the oil inflow into the cylinder . The result-
ing fast transient affects the elevator velocity, ve , and
these effects need to preserved across the configuration
changes. A detailed analysis of the transient behavior,
its simplification by parameter and time scale abstrac-
tion, and the resultant hybrid automata that describes
overall system behavior is presented in [14] .
We systematically derive the simpler models for the

hybrid automata and the transition conditions using the
methods based on singular perturbation described in
Section 3 and replace the detailed continuous transients
defined by Eq . (18) by an equation that captures the
fast continuous change as an instantaneous discontinu-
ous jump . We analyze the transient about the point
where the spool valve closes, and the relief valve is also
closed, i.e ., qi,, = q, . = 0. The determinant of the eigen-
value equation corresponding to this behavior is given
by

R2 4
2 -

	

,me meCc
(19)

indicating that there are two types of transients . The
first can be attributed to the large oil dissipation param-
eter, R,, which results in the determinant being positive
with real eigenvalues . The second can be linked to the
small oil elasticity coefficient, Ce , which results in a neg-
ative determinant and complex eigenvalues.
In case of real eigenvalues, the elevator dynamics can

be computed to be

ve(t) =e-2mt(kie 1V

	

7-$)t
+k2e ~1~

	

-~)t
e

(20)
where kl and k2 are constants that depend on v,(0) and
p,(0). Like before, the restitution coefficient for the oil,
affected by the spool valve closing, i .e ., as , can be com-
puted by determining the value of td at the point when
the ports are opened again. If x is the displacement
of the piston in the spool valve, the piston may first
block the ports when x = 0 and open them again when
x > xth, where xth is a parameter depending on the
particular type of spool valve. The value of td is then
determined by xth andthe speed with which the piston is
moved by an external control signal . The corresponding
time interval during which the oil flow into the cylinder
is 0 results in an elevator velocity change as a function
of v, (0) and p,(0) .

In case of complex eigenvalues, the elevator dynamic
behavior is governed by

2
ve(t)=e-~t(klcos(2(II

moC,

	

mo 2)t)
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(21)

2
+k2sin(2(

m C

	

mc2)t))

	

(22)
e c

	

e

0 A_
pc

1 - -s-R
] I vern,Ap me

(18)i i
Ce C

]
qin

mAy TneAp qr
.



supply

qs=%
spool valve

positioning
cylinder

	

4,4 of /ve	v e

4.5

	

AScenario

positioning

0 = gin+gr - qe
qe = Apve
ApF, = PC
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Figure 9: Individual hybrid automata for the spool
valve, positioning cylinder, and relief valve.

where kl and k2 are constants depending on v,(O) and
p,(0) . Again, the change of elevator velocity at td can be
computed as a function of v,(0) and p,(0).In this case,
the elevator velocity may reverse much like the velocity
of a bouncing ball reverses .

Fig. 9 explains the phenomena. When the spool valve
goes from supply mode (a2) to closed mode (a,), caus-
ing qs, and, therefore, qin, in the positioning cylinder
to change discontinuously, the fast transient that affects
ve can be simplified by parameter and time scale ab-
straction, and ve goes through an instantaneous change
in velocity given by ve + = A9 ve. Because the behavior
of the spool valve around x = 0 is abstracted away, the
spool valve switches into its closed mode when the piston
in the valve reaches 0 from the right, x < 0, or from the
left, x > 0. Immediately after the discontinuous changes
due to this mode are effected, qg = qs, the spool valve
switches out of the closing mode.

If the oil is assumed to be incompressible, the cor-
responding simplified ODE for elevator velocity in the
positioning cylinder is calculated by setting C, = 0:

(23)

The number of equations and unknowns are still the
same, though the sODE is first order, whereas the cODE
was second order.
To compute variable values for this system, the equa-

tions of all components in their active mode are gathered
and solved with respect to the unknown variables, i.e .,
exogenous and state variables. If the actuator is active,
the servo valve equations, the spool valve equations in
mode 02, the pressure relief valve equation in mode ao,

and the simplified equations for the cylinder are gath-
ered, and sorted to establish computational causality.

Now, consider the scenario with the relief valve. Note
that the abrupt change in velocity from ve to ve +, as
the spool valve goes from its supply mode, a2, to the
loading mode, ao, through the intermediate closed mode,
al, will cause a fast pressure buildup. In the reduced'
order model, this buildup is governed by a discontinuous
change of ve , and, therefore, ve 54 ve . The meve = pe
equation causes an impulse force, Fe , and corresponding
pressure pe .

In a component oriented modeling approach, this pres-
sure impulse will always cause the relief valve to open
because of its infinite magnitude, no matter how small
the ve - ve difference . The more detailed model of the
cylinder includes small elasticity and dissipation param-
eters, and they are employed to compute a more realis-
tic value of the maximum pressure generated. This can
be included in the reduced order model, by replacing
the meve = Fe equation with the algebraic constraint
K,(ve - ve) providing the value for Fe . K, is a damping
coefficient that captures the (R,C,) effect . Using this
first order approximation, the pressure buildup can be
described as

pe =ApKc (v e+ - ve),
If the value of pe exceeds the critical value, pth, this
causes a further discontinuous mode change in the relief
valve, which goes from closed (ao) to open (a1) . In this
case, the abrupt change in elevator velocity is governed
by a restitution coefficient defined by the complex ODE
model of the relief valve. This coefficient of restitution,
A, ., can be derived in a manner similar to the derivation
for the spool valve, but the final elevator velocity, after
the mode transitions, is now given by ve+ = A,ve . The
simplified ODE model for ve in the supply mode with re-
lief valve open can also be derived similarly. Figure 9 de-
fines the individual hybrid automata for the spool valve,
the positioning cylinder, and the relief valve. In the next
section, we compose the individual automata into an in-
tegrated hybrid automata for real time simulation and
analysis of system behavior .
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The Hybrid Automata for the
Elevator System

Consider the scenario described in the previous section,
where the supervisory controller switches from the cur-
rent active actuator to a redundant one. We construct
the hybrid automata that models the behavior of the
actuator that goes from its active to passive mode by
switching the spool valve from supply (a2) to loading

(ao) . The goal is to replace the cODEs that describe
the system behavior including its transients by sODEs
and a discrete event generation function, -y, and state
mapping, g. Applying parameter and time scale ab-
stractions results in piecewise continuous models with
discrete transitions between the models . The effect of
the fast transients are reduced to occur at a point in
time, resulting in discontinuous changes in the elevator
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velocity, ve. The resultant sODEs, and the correspond-
ing discrete transition functions, 0, y, and g, (Section 2)
were derived systematically in the previous section.

5.1

	

Generating the Hybrid Automata

The complete hybrid automata is shown in Fig. 10 . The
modes are aij, where the subscript i, represents the
mode of the spool valve (2 - open, 1 - closed, and 0
- loading), and subscript j represents the mode of the
relief valve (1 - open, and 0 - closed) . The correspond-
ing sODEs are also subscripted accordingly. Initially,
the actuator is in mode ago. In the simplified hybrid au-
tomata, the detailed continuous behavior around x = 0 is
abstracted away, and the corresponding discrete events,
{QcloseiQspool,QloadiQrelief} are generated by monitor-
ing physical variables. Figure 10 shows the relevant g
functions for updating the state variable value, ve, along
with the event generation functions, y.

It is interesting to observe the role of the relief valve.
Normally, closing the spool valve causes an instanta-
neous change in the oil flow rate to 0. Therefore,
qs 54 qs and a rapid drop in the elevator velocity, ve ,
occurs before the valve opens again and goes into the
loading mode. The change in velocity is computed as,
ve+ = \sve . However, the change in velocity causes a
pressure transient, p+ = K,(ve + - ve), and if p+ > Pth,
Qrelief is generated causing the relief valve to open,
and the system goes into mode all, with ve + = Arve .
Therefore, ve+ = \sve is not executed and ve not af-
fected by mode alo. Once the state vector is updated,
qs+ = qs (i .e ., the a posteriori and a priori values are
the same), and Qload is generated causing the spool valve
to go into loading (mode aol) . If Qrelief did not occur,
ve+ = \sve remains valid, and after the state vector is
updated qs + = qs and the mode transition to aoo oc-
curs based on the event Qload . The stroked transitions
in Fig. 10 represent transitions where the y function is
applied after the state vector has been updated.

5.2

	

Composability of Models

In the process of building the simpler ODEs and the y
and g functions from the CODE models, one has to take
into account the interactions between the different com-
ponent subsystems . Therefore, the traditional notion of
composing the system model from individual component
models [3 ; 10] is restricted to model components that
contain detailed continuous transients instead of explicit
discontinuous jumps. When new components are added
to the system, one has to re-evaluate the detailed con-
tinuous interaction between the different states (modes)
of the overall hybrid automata based on the complex
ODEs to derive the discontinuous jumps. If the inter-
actions are analyzed systematically at compile time, as
was done for the actuator system, one can build efficient
hybrid automata that can be used for real time appli-
cations . We have applied this methodology to analyze
COrnputationally complex sliding mode simulations [17],
and to construct hybrid observers that track real time
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Figure 10 : Hybrid automata for the operation of
an actuator .

behavior of the elevator system [14] with promising re-
sults.
To clarify this further, note that A is a parameter that

describes the elevator velocity change because of damp-
ing parameters in the cylinder, but its value is deter-
mined by the time td during which the oil flow into the
cylinder is blocked . This blockage occurs in a configura-
tion where the spool valve and relief valve are closed .
However, these are separate model components, and,
therefore, utilizing knowledge about their individual be-
havior to simplify the cylinder model results in a model
component that is configuration specific . Consequently,
the cylinder model is only valid in this specific configu-
ration and new values for A have to be derived when it is
applied in a different configuration. For example, if an-
other spool valve is cascaded with the existing one, the
td may change, and, therefore, as in the cylinder model
differs .

This shows that composability of model fragments is
limited by the abstraction level of the fragments them-
selves . If the model fragments do not include explicit
discontinuous state vector value changes, composability
is preserved . This requires including small and large
parameter values to achieve complex ODES that incor-
porate fast transient behavior when mode switches oc-
cur. These fast transients are governed by contact behav-
ior [16] that can be abstracted away to achieve simpler
models . However, the contact behavior is the result of
interactions between connected model fragments, and,
therefore, the abstraction only holds for the specific con-
figuration .

6 Conclusions

In this paper we have developed a systematic method-
ology derived from singular perturbations for generating
simpler ODE models by applying time scale and param-
eter abstractions to complex nonlinear system models
that exhibit fast transient behavior . The key to this
methodology is the ability to decouple the fast tran-
sients from the slower behaviors, and solve for the fast
transients to obtain a quasi steady state solution . This
solution introduced to the original set of ODEs generates
a lower order set of ODEs, and this simplified behavior
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analysis . Enforcing the different semantics associated
with the two types of abstraction, allows the derivation
of discrete transition conditions between the modes of
continuous behavior . Compiling the sODEs and transi-
tion conditions into hybrid automata generates run time
models that can be used for real time simulation and
analysis of system behavior .
The apparent drawback of creating piecewise simpler

hybrid models is that the compositionality property is
lost when interactions between the component subsys-
tems have to be analyzed in advance to build the hybrid
automata. We will investigate this issue in greater detail
in future work .
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