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Abstract

A new methodology is proposed in this paper in or-
der to study semiqualitative models of dynamic sys-
tems . It is also described a formalism to incorporate
qualitative information into these models . This qua-
litative information may be composed of. qualitative
operators, envelope functions, qualitative labels and
qualitative continuous functions .
This methodology allows us to study all the states of
a dynamic system : the stationary and the transient
states. It also allows us to obtain behaviours patterns
of semiqualitative dynamic systems . The main idea
of the methodology follows : a semiqualitative model
is transformed into a family of quantitative models .
Every quantitative model has a different quantitative
behaviour, however they may have similar qualitative
behaviours .
A semiqualitative model is transformated into a set of
quantitative models. The simulation of every quanti-
tative model generates a trajectory in the phase space .
A database is obtained with these quantitative beha-
viours. It is proposed a language to carry out queries
about the qualitative properties of this database of
trajectories . This language is also intended to classify
the different qualitative behaviours of our model . This
classification helps us to describe the semiqualitative
behaviour of a system by means of hierarchical rules
obtained by means of machine learning.
The completeness property is characterized by statis-
tical means . A theoretical study about the reliability
of the obtained conclusions is presented .
The methodology is applied to a logistic growth model
with a delay .

Introduction
In science and engineering, knowledge about dynamic
systems may be quantitative, qualitative, and semi-
qualitative . When these models are studied all this
knowledge should be taken into account . In the litera-
ture, different levels of numeric abstraction have been
considered . They may be: purely qualitative (Kuipers
1994), semiqualitative (Kay 1996), (Ortega, Gasca and
Toro 1998x) and (Berleant and Kuipers 1997), nu-
meric interval (Vescovi, Farquhar and Iwasaki 1995)
and (Corliss 1995), and quantitative .
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Different approximations have been developed in the
literature when qualitative knowledge is taken into
account : distributions of probability, transformation
of non-linear to piecewise linear relationships, Monte-
Carlo method, constraint logic programming (Hickey
1994), fuzzy sets (Bonarini and Bontempi 1994), causal
relations (Bousson and Trave-Massuyes 1994), and
combination of all levels of qualitative and quantita-
tive abstraction (Kay 1996), (Ortega, Gasca and Toro
1998b) and (Gasca 1998) .
In this paper, qualitative knowledge of dynamic sys-

tems may be qualitative operators, envelope functions,
qualitative labels and qualitative continuous functions.
The paper is organised as follows : firstly, the pro-

posed methodology is explained, that is, the trans-
formation techniques of a semiqualitative model into
a family of quantitative models, and the stochastic
methods applied to obtain a database of quantita-
tive trajectories . Secondly, the kind of qualitative
knowledge we are using is introduced and the con-
cept of semiqualitative model is defined . Thirdly,
the query/classification language on this database is
described . The language allows us to classify this
database, and in such case, a labeled database is ob-
tained . Machine learning algorithms are applied in or-
der to obtain the different qualitative behaviours of
the system . This behaviour is expressed by means
of a set of hierarchical qualitative rules . In forthco-
ming papers, these machine learning algorithms will be
describe in detail . Finally, a theoretical study about
the reliability of the obtained conclusions is presented .
This methodology is applied to a logistic growth model
with a delay.

Proposed Methodology
There is enough bibliography that studies stationary
states, however, the study of transient states is also
necessary. For example, it is very important in pro-
duction industrial systems in order to carry out opti-
mizations about their efficiency . Stationary and tran-
sient states of a semiqualitative dynamic system may
be studied with the proposed methodology. It is shown
in figure 1 .
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Figure 1 : Proposed methodology

Let S be the semiqualitative model obtained from
a dynamic system with qualitative knowledge. A fa-
mily of quantitative models F is obtained from S by
applying some transformation techniques. The quali-
tative knowledge and its transformation techniques are
described below .

Stochastic techniques are applied to choose every
quantitative model M E F. This model M is quanti-
tatively simulated obtaining a trajectory. A trajectory
contains the values of the parameters and the values
of all variables from their initial value until their final
value. Therefore, every trajectory stores the values of
the transient and the stationary states of M.

These quantitative trajectories are stored into a
database . We propose a language to carry out queries
about the qualitative properties of the set of trajecto-
ries included in the database . A labeled database is
obtained when these trajectories are classified accor-
ding to some criteria. Qualitative behaviours patterns
of the system may be automatically obtained from
this database by applying machine learning based on
genetic algorithms . This algorithms are described in
(Aguilar, Riquelme and Toro 1998) .

In the following sections, we are going to describe
the steps of the proposed methodology in detail .
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Semiqualitative models
In this paper, we focus our attention on those dynamic
systems where there may be qualitative knowledge in
their parameters, initial conditions and/or vector field.
They constitute the semiqualitative differential equa-
tions of the system .
A semiqualitative model may be composed by quali-

tative knowledge, arithmetic and relational operators,
intervals, predefined functions, (ln, exp, sen. . . . ) and
numeric literals .
A semiqualitative model S is represented by means

of

-t(.~, x, q, t),

	

x(to) = xo,

	

-to (q, xo)

	

(1)

being x E If?" the state variables, q the parameters, t
the time, i the derivative of the state variables with
repect to the time, 4) the interval constraints among
i, x, q, t, and 4:,o constraints with the initial conditions .
The equations (1) are transformed into a set of

constraints among variables, parameters and intervals
when the proposed methodology is applied. The inte-
rest of this paper is focused on those systems that can
be expressed as (2) after the transformation rules have
been applied

i = f(x,P,t),

	

x(to) = xo,

	

P E Ip,

	

xo E to

	

(2)

wherep includes the parameters of the system and new
parameters obtained from the transformation rules, f
is a function, and Ip, Io are real intervals. Equation (2)
is a family F of dynamic systems depending on p and
xo.

Qualitative knowledge
Qualitative knowledge about a model may be com-
posed of qualitative operators, qualitative labels, en-
velope functions and qualitative continuous functions.
In this section, the representation and transformation
techniques of this qualitative knowledge are described.
The representation of the qualitative knowledge is

carried out by means of operators which have asso-
ciated real intervals. It simplifies the integration of
qualitative and quantitative knowledge, and it also fa-
cilitates the incorporation of expert knowledge in the
definition of the range of qualitative variables and pa-
rameters (Gasca 1998) .

Qualitative operators

Qualitative parameters and initial conditions are repre-
sented by means of qualitative operators. Every qua-
litative operator op is defined by means of an interval
lop which is supplied by the experts.

Unary qualitative operators

	

Every magnitude of
the problem with qualitative knowledge has its own
unary operators defined.

Let Uz be the unary operators for a variable x, i. e.,
Ux = {VNx , MNx ,LN.,APOx,LP_,MPx ,VPx } . They
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Figure 2: Envelope function

denote for x its qualitative labels : very negative, mode-
rately negative, slightly negative, approximately zero,
slightly positive, moderately positive, and very positive
respectively .
The transformation rule for a unary operator is

ON(e)

	

_

	

e-r

f

0
rEI,

Table 1: Transformation rules

*Operators related to the quotient «, - <, ^" ,
Vo, Ne, . . . . The applied transformation rule is

0pb(el,e2)

Envelope Functions
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ei-e2*r=0
rEIb

being r a new generated variable, and I,, the interval
associated with operator op,, which is established in
accordance with ('Dav,6-Massuyes, Dague and Guerrin
1997) .

Binary qualitative operators

	

Let el , e2 be two
arithmetic expressions . A binary qualitative operator
6(el, e2) denotes the qualitative order relationship bet-
ween el and e2 . These operators are classified into

*Operators related to the difference >_, =, <.

	

The
following transformation rules are applied

being r a new variable and Ib the interval associated
to opb in accordance with (Trave-Massuyes, Dague and
Guerrin 1997) .

An envelope function y = g(x) (figure 2) represents the
family of functions included between two defined real
functions: a upper one 9 : IR --+ IR and a lower one
9 : IR -+ IR . An envelope function is represented by
means of

y=h(x)

	

h= ( P 1 ,+,P 2 ,+,P 3 ,+,P4 ,-, P S ,-, P 6 1

Y

Figure 3: Qualitative continuous function

y = 9(x) (9(x),9(x), I),

	

`dx E I : g(x) < 9(x)

	

(5)
being I the definition domain of g, and x the indepen-
dent variable .
The transformation rule applied to (5) is

g(x) = ag(x) + (1 - a)g(x)

	

with

	

a E [0,1]

	

(6)

where a is a new variable . If a = 0 =~- g(x) = g(x) and
if a = 1 ~ g(x) = g(x). Any other value of a in (0,1)
stands for any included value between g(x) and g(x) .

Qualitative continuous functions
A qualitative continuous function y = h(x) (figure 3)
represents a constraint involving the values of y and
x according to the properties of h . It is denoted by
means of

y = h(x),

	

h = {Pi, si, P2, . . .sk_l, Pk }

	

(7)

being Pi the points of the function . Every Pi is de-
fined by a couple (di, ei), being di and e; the quali-
tative landmarks associated to the variables x and y
respectively. These points are separated by the sign
si of the derivative in the interval between two con-
secutive points . A monotonous qualitative function is
a particular case of these functions where the sign is
always the same sl = . . . = sk_i .

The qualitative interpretation (figure 4.a) for every
Pi = (di, ei) of y = h(x) is

if x=dicey = ei
si=+lei <y<ei+1

if di <x<di,+1

	

si= - yeti >y>ei+1
Ill si=0~y = ei

(g)
The transformation rules of a qualitative continuous
function are applied in three steps: normalization, ex-
tension and transformation .
1. Normalization

This step is used to complete and to homogenize the
definition of any function .
A qualitatitive continuous function is continuous by
definition . Therefore, it verifies the following pro-
perties:

ei=e2 = el - e2=0

el < e2 el - e2 - r=0
r E 1-00 , 0]

> el-e2-r=0el e2 r E [0, oo]
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Figure 4: Qualitative interpretation of a function

" a function that changes its sign between two con-
secutive landmarks passes through a landmark
whose image by the function is zero,
a function whose derivative changes its sign bet-
ween two consecutive landmarks passes through a
landmark whose derivative is zero .

Using these properties, the definition of any function
(7) is always enriched with :

" the points cutting the axes,
" the points for which the sign of the derivative
changes, that is, a maximum or a minimum of
h, and

" the extreme points (+oo, -oc), therefore, for any
qualitative function (7) the first landmark is dl =
-oo and the last is dk = +00-

The new landmarks keep an order relationship with
the old ones .

2 . Extension The definition of any function (7) is also
enriched by means of an automatic process which
incorporates new landmarks. This step is carried
out to diminish the uncertainty of the function since
the area of the rectangle is reduced (figure 4.b) .
Let k be the number of points of a qualitative func-
tion h, if a new point is included between each two
consecutive points of h, then 2k - 1 points are ob-
tained for h . If this process is repeated i times, then
the number of points that define a qualitative func-
tion h is

i-1

2ik -

	

2i

	

(9)
i=o

This number is important for the algorithm
Choose H that is explained below.

3 . Transformation Steps 1 and 2 complete and en-
rich the definition of a qualitative function . This
third step obtains the representation of h as a set of
quantitative functions.
A segment of a qualitative function h is a sequence
of consecutive points {P�,, . . .,P� } of h separated
by those points whose landmark ei = 0 or where
si-1 ~4- si . The segments divide a function into
monotonous regions in which landmarks ei have the
same sign .
A qualitative function h is transformed into a set
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Database generation T
T :={}
for i=1 to N
M := ChooseModel(F)
r := QuantitativeSimulation(M)
T :=TUr

ChooseModel (F)
for every interval parameter and

qualitative variable p of F
v := ChooseValue(Domain(p))

Figure 5: Qualitative function transformation

of quantitative functions H whose behaviours are in
accordance with the definition of h . The Choose H
algorithm is applied to obtain H. It divides h into
its segments and it applies stochastic techniques to
choose quantitative functions that are included in
H. The applied techniques are similar to Monte-
Carlo method, however, they are guided to satisfy
the constraints of h . The following heuristic applies
a random uniform distribution to obtain the values
for every landmark . First, the values that separate
the segments are selected . Next, the values in eve-
ry segment are selected . The obtained values must
verify the order relationship among the landmarks.
Therefore, they constitute a sorted sequence of num-
bers . There are two examples of transformation of
qualitative functions in figure 5.

Generation of trajectories database
Theaimof this section is to show the waywe obtain the
trajectories database T of a semiqualitative model S.
A family ofquantitative models F is obtained when the
transformation rules are applied to S. It depends on
a set of interval parameters and qualitative variables
p and functions H defined by means of quantitative
points .

Every trajectory r E T is obtained by simulating
each particular quantitative model 1L7 which has been
selected by means of stochastic techniques . In this
paper, numeric simulation is carried out by means of
Runge-Kutta method with variable step .
The applied algorithm is
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Substitute p by v in M
for every function h
H:=Choose H(h)
Subsitute h by H in M

where N is the number of simulations to be carried
out . It is defined in accordance with section Theoretical
study of the conclusions . Therefore, N is the number
of trajectories in T.

Query/classification language

We propose a language to carry out queries and to
classify with labels the database T. Therefore, this
language allows us to classify the behaviour patterns
of the system .

Abstract Syntax of the language
Let T be the set of all trajectories r stored in the
database . The abstract syntax of the proposed lan-
guage is

Table 2: Abstract syntax

A query Q on the database T may be a quantifier
b', 3, Ar applied on T, or a basic query [r, P] that eva-
luates to true when the trajectory r verifies the proper-
ty P. This property may be formulated by means of
the composition of other properties using the boolean
operators A, V, - and its result is the application of
these operators among the partial properties .
A basic property Pb may be : a predefined property

Pd, a boolean function f applied to a list L of points
or intervals which verify the formula F, or a quanti-
fier operator b', 3 applied to the values of a particular
trajectory for atime t . This time corresponding either
to an instant of time, to a temporal range, or a set of
temporal ranges related by a logical formula.
A defined property Pd is that one whose formula-

tion is automatic. They are queries commonly used
in dynamical systems . There are two predefined : EQ,
which is verified when the trajectory ends up in a sta-
ble equilibrium; and CL that it is verified when it ends
up in a limit cycle.
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Figure 6 : Trajectories space

A formula F may be composed of other formulas
combined by means of boolean operators &, 1,! and its
result is the application of these operators among the
partial formulas .
A basic formula Fb may be: a boolean expression eb,

or if a numeric expression e belongs to an interval I,
or a unary u or binary b qualitative operator .

Classification
A classification rule is formulated as a set of basic

queries with labels and possibly other expressions . A
classification problem is proposed in accordance with
the following abstract syntax :

[r, PA] =:>A, eA1, . . .

	

[r, PB] =>B, eBi . . . .

Semantics of the language

A

	

Trajectories space

" Trajectory of T

0 trajectories space that
verifies Q for a domainA

The semantics of every proposed statement is trans-
lated into a query on the database . A query [r, P] is
true when trajectory r verifies property P. Let be a
query with a quantifier . Its semantics depends on its
related quantifier . If it is `d, a boolean value true is
returned when all the trajectories r E T verify P. To
prove that an existentially quantified statement is true
is necessary to find at least one trajectory r E T that
verifies the property P. If the quantifier is Nthen the
number of trajectories of T that verify P is returned .

Let Vt : Fl o F2 be a basic property. This property is
true if during the time that Fl is satisfied, all the values
of r verify F2. On the other hand, if the quantifier is
3 then it evaluates as true when at least a value of r
that satisfies Fl, also satisfies F2. In order to evaluate
a formula F, it is necessary to substitute its variables
for their values . These values are obtained from T.

Let [r, PA] #. A, eAi be a classification rule . A tra-
jectory r E T is classified with the label A if it veri-
fies property PA . It is also included into the database
for this trayectory the result of the evalutation of eAi .
This process is repeated with every classification rule .

Theoretical study of the conclusions

In this section, it is analysed if the obtained conclu-
sions are applicable to the real system, that is, if the
following affirmations would be concluded: "all the be-
haviours of the system verify the property P", or "there
is a behaviour of the system that verifies the property
P17 .

Q: b' r E T o [r,P P: Pb
3rETo[r,P] I P A P
/Vr E T . [r, P] I P V P
[r, p] I ~ PPb

: Pd Pd : EQ
f(L(F)) I CL
Vt :FeF
3t :F9F

F : Fb Fb : eb
F&F I eEI

I F I F i u(e)
I !F I b(e, e)



Firstly, it is necessary to answer the following ques-
tion : what is the necessary condition to ensure that all
the behaviours of the system verify a property P?.
Let Vol(s) be the volume of a space s . Let A be

the trajectory space of the system, an let fZ be the
space of those trajectories of 0 that verify P (figure 6) .
Therefore, our goal is to solve the question what is the
condition that should be verified in order to guarantee
that Vol(0) = Vol(Q) ?. In a schematic way, we are
interested in knowing the condition to guarantee that
the following implication is true

brETe[r,P]=!~ VrE0 " [r,P]

	

(10)

where a is the confidence degree . Statistical techniques
are necessary to carry out this implication .

Let p be the probability that a trajectory r verifies
a property P and q = 1 - p. Therefore p is

Vol(Q)
p Vol(0)

Let a group of n trajectories be, and let x be a random
variable whose value is n if the n - 1 first trajecto-
ries verify P, and the n - th does not . Let a be the
confidence degree . The expression

a = Probability(x > n)

	

(12)

is the probability that the n first trajectories verify P
and there is a trajectory that does not verify P among
the rest of trajectories of 0 .

Therefore the probability p verifies

Proof:
The expected value of a random variable x, denoted
E[x], is defined as follows

00

Replacing the geometric sum by its value, we obtain

E[x] =
p

(1 pp), - 1 1
p

	

(16)

On the other hand, and if we apply the inequality of
Chebyshev

00

	

00

	

00

E[x] _

	

xp(x) >

	

Y'
,npn-1 = n E pn-1

x=1 x=n+1 x=n+1

Replacing the sum by its value, it is obtained

E[x] > n Probability(x > n)

	

(18)
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(13)

(17)

exponential

	

axymlofic behavia

Figure 7 : Logistic growth curve

Replacing E[x] by its obtained value in (16), and ma-
nipulating the expression

The obtained result (13) means that : given a confi-
dence degree a, if we want to ensure that a property P
is true for a dynamic system with a probability p, it is
necessary to obtain at least n trajectories verifying it.
Next table shows several examples for the values of

a,p, and n

Table 3 : Examples for a,p and n
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In the same way, and applying the generalized De Mor-
gan laws for logic, an existentially quantified query
3r E 0" [r, P] may always be formulated as the univer-
sally quantified query ~dr E 0 " [r, -,Q] . Therefore, the
previous study may also be applied for the existential
quantified queries .

Application to a logistic growth model
with a delay

It is very common to find growth processes in which
an initial phase of exponential growth is followed by
another phase of approaching to a saturation value
asymptotically (figure 7) . These are given the following
generic names: logistic, sigmoidal, and s-shaped pro-
cesses . This growth is exhibited by systems for which
exponential expansion is truncated by the limitation of
the resources required for this growth . This behaviour
is due to a positive feedback that is dominant in the

a=0.05 a=0.01
p=0.6 n=50 p=0.5 n=200
p=0.8 n=100 p=0.9 n=1000
p = 0.98 n = 1000 p = 0.99 n = 10000
p = 0.998 n = 10000 p = 0.9999 n = 106

1
n(1-p)

> >
-

Probability(x n) (19)

By (12)
1

n(1-p)
> a
-

(20)

It follows that

1 > 1-p=~. p> 1- 1 (21)
na na

E[x] = E npn-l q (14)
n=1

if we carry out symbolic manipulation in (14)
00

E[x] = q E npn (15)
p n=1
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Figure 8: Logistic growth model

initial phase, and a negative feedback that is dominant
in the final phase.

In the literature, these models have been profusely
studied . They abound both in natural processes, and
in social and socio-technical systems. They appear
in the evolution of bacteria, in mineral extraction,
in world population growth, and in economic deve-
lopment. Learning curves also show this type of be-
haviour.
The same thing happens with some diffusion pheno-

mena within a given population, such as epidemics or
rumors . Other examples of this behaviour are a popu-
lation that grows in a habitat with limited resources,
a technological innovation that is being introduced, or
a new product that is being put on the market . In all
these cases, their common behaviours are shown in fi-
gure 8. There is a bimodal behaviour pattern attractor:
A stands for normal growth, and O for decay. It can
be observed how it combines exponential with asymp-
totic growth . This phenomenon was fist modeled by
the Belgian sociologist P. F. Verhulst in relation with
human population growth . Nowadays, it has a wide
variety of applications, and some of them have just
been mentioned.
Let S be the qualitative model. If we add a delay in

the feedback paths of S, then its differential equations
are

i=x(nr-m),
__

	

y = delay,(x),

	

x> O,

	

r = hi(y),
hl _- J(-oo, -oo), +, (do, 0), +, (0, 1),

+, (di, eo), -, (1, 0), -(+oo, -oo)}

being n the increasing factor, m the decreasing factor,
and hl a. qualitative function with a maximum point
at (xl, yo) (see figure 9) .
The initial conditions are

xo E [LP, MP.,],
_ LPx(m),

° LP.,(n),
T E [MP" VPT]

where LP, MP, VP are qualitative unary operators for
x, T variables.
We would like to know

1 . if an equilibrium is always reached
2. if there is an equilibrium whose value is not zero

ORgq I nrh Awp Rnntlnnri

h = {( -o),-w ),+,(d o '0),+,(0, 1),+,(d 1 , e

	

+(0,-W) 1

Figure 9 : Qualitative function hl

3. if all the trajectories with value zero at the equili-
brium are reached without oscillations .
4. To classify the database in accordance with the be-
haviours of the system .
The methodology is applied to this model. Firstly,

it is necessary to define the intervals associated with
every qualitative operator :

LPx = [0,1]

	

MP. = [l, 3]
MP, = [0.5,4]

	

VP, = [4,10]

Next, the described transformation rules are applied
to S, and it is obtained the following set of constraints

i = x(n r - m),
y = delay, (x), x > 0, r =Hl (y)

	

(22)
Hi , xo E [0, 3], m, n E [0,1], r E [0.5,10]

where the set Hl has been obtained by applying Choose
H to hl . The algorithm Database generation T returns
the trajectory database T .

Applying the proposed language, the proposed
queries are formulated as follows:
l .VrETe[r,EQ]
2 . 3r E T * [r, EQ A 3t : t - tf *!APO., (x)]
3.VrET9[r,EQA3t :t-tf .APO,,(x)A

length(i = 0) = 0
The list of points where i = 0 is the list with the ma-
ximum and minimum points . There are no oscillations
when its length is 0.
The answers to the proposed questions were :

1 . True, all trajectories of Treach astable equilibrium.
Therefore, we conclude there is no cycle limit.
2 . True, some trajectories of T reach an equilibrium
whose value is not zero . Therefore this is the first be-
haviour we have obtained . We know it as recovered
equilibrium.
3. False, there are at lest two ways to reach this equi-
librium: with oscillations (this behaviour is called as
retarded catastrophe) and the other way is without os-
cillations (that it is called as decay and extinction) .
In short, we have found the three possible behaviours

patterns of the system (figure 10) and therefore, the
proposed classification may be carried out as follows

[r, EQ A length(i = 0) > 0 A



equilibrium recovered

t

retarded catastrophe

decay and extinction

Figure 10: Logistic growth model with a delay

Elt : t - tf" !APOx (x)]

	

recovered,
[r, EQ n length(- = 0) > 0 A

3t : t - tf * APO-,(x)]

	

retarded,
(r, EQ n 3t : t = tf e APOx (x)] extinction,

The database T is labeled with three labels : recov-
ered, retarded and extinction . All trajectories of T
are labeled just by one label. Therefore, we may
conclude that all patterns behaviours of the model
have been classified . The results obtained with this
methodology are in accordance with others appeared
in the bibliography (Aracil et al . 1997) and (Karsky,
Dore and Gueneau 1992) where the results are con-
cluded by means of a mathematical reasoning. This
cirscumstance encourages us to continue developing
this methodology and to apply it to other systems with
qualitative and quantitative knowledge.

Conclusions and further work
In this paper, a new methodology to automatize the
analysis of dynamic systems with qualitative and quan-
titative knowledge has been presented. This methodo-
logy is based on a transformation process, application
of stochastic techniques, quantitative simulation, and
definition of a query/classification language.
The simulation results are stored into a quantita-

tive database that may be queried and classified by
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means of the proposed language . Once the database is
classified, genetic algorithms may be applied to obtain
conclusions about the dynamic system .

There is enough bibliography that studies stationary
states of dynamicsystems. However, the study of tran-
sient states is also necessary either for natural and en-
gineering systems.

In the future, the query/classification language must
be enriched with operators for comparing trajectories,
types of equations, etc. Dynamic systems with cons-
traints and with multiple scales of time are also one of
our future points of interest .
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