
1 Introduction

Model-Based Diagnostics and Recovery : an Integrated Approach

Abstract
We describe an approach that integrates diag-
nostics and recovery using a single model and
suite of algorithms . We extend model-based di-
agnosis representations and algorithms to en-
able control and recovery given anomalous sen-
sor data . We show how we can use focusing
mechanisms to efficiently search the space of
diagnoses and of recovery actions . We use our
framework to prove results about the quality of
the recovery actions that can be computed, and
the complexity of computing these actions .

We introduce an approach that enables both diagnosis
and recovery to be performed using a single system
model for feedback-control systems . By diagnosis we
mean isolating the cause of anomalous sensor readings,
and by recovery we mean identifying appropriate control
actions that can modify the anomalous operating condi-
tions to achieve system objectives, if possible .

Typically, diagnosis and recovery tasks are performed
independently, with distinct models designed for each
task . For example, for diagnosis one of several model-
based diagnosis approaches can be used (GDE [de Kleer
and Williams,1989] or causal networks [Dar-
wiche,1995]), or for recovery one of several approaches
can be used (e .g ., [Johnson, 19961,[Rauch,1995]) .
We extend the causal network model-based diagnos-

tics approach [Darwiche, 1995,1998] to incorporate re-
covery . This extension provides this approach with a
powerful new set of capabilities, in addition to provid-
ing a way to accept inputs from existing external com-
ponents, such as control and planning components . Our
extension can be used for any model-based diagnosis
system that uses assumables for mode specification and
a focusing algorithm for computing least-cost diagnoses,
e.g ., the class of approaches described in [Dressier and
Struss,1996] .
Only simple modifications to a diagnostic model are

necessary to enable computation of recovery actions . We
need to specify a set of control actions, together with an
algebra that defines relationships among these controls ;
e.g ., to specify the least-cost settings we can use (a) fi-
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nice state automata to characterize the allowable
weighted transitions from one control setting to another
or (b) a partial ordering over control settings . We assign
a partial ordering over control settings to facilitate a
best-first search algorithm in searching for least-cost
settings . In [Darwiche and Provan,1996], diagnosis
models were developed for control systems for domains
such as factory automation . We augment that approach
by assigning weights to control actions and defining an
algorithm to compute the least-cost control actions
given a system fault .
Using this approach we can define two "views

	

e-
pending on the task .
1 .

	

Diagnosis/Control : this is the view when the system
is operating nominally . Given anomalous sensor
readings, the system will compute a least-cost mode
assignment to "explain" those sensor readings .

2 . Reconfiguration : when a diagnosis D is computed,
the system uses a dual reconfiguration model to
compute a least-cost control action given the input
of the fixed mode assignment D. Hence, we do not
need to pre-program all control conditions for
anomalous states ; they can be computed using this
recovery algorithm .

Note that we do not address the planning that may be
necessary should the goal not be satisfiable under a
given fault scenario ; we focus entirely on the diagnosis
and recovery aspects .
Our contributions are as follows :

1 .

	

We describe how t9 extend a "traditional" diagnos-
tic model with information necessary to perform re-
covery actions given a fault, such that we have a
single integrated model for both diagnosis and re-
covery . This enables recovery capabilities similar to
[Williams and Nayak,1996], but using standard
model-based diagnostic approaches .

2 . We describe how to use a traditional model-based
diagnostic inference algorithm with focusing to effi-
ciently compute least-cost recovery actions ; as such,
this framework allows us to provide guarantees for
recovery similar to those possible for diagnoses .

3 .

	

We have used an open architecture such that several
additional representations and algorithms can com-
municate with the diagnostic/recovery system using
CORBA/COM protocols .
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The remainder of the paper is organized as follows . In
Section 2 we introduce a simple rocket engine example
that we use throughout the document . In Section 3 we
summarize our diagnostic approach, and show how we
extend it for computing recovery actions . In Section 4
we apply our diagnostics and recovery approach to the
rocket engine . We conclude by discussing related work
and summarizing our contributions .

2

	

Simple Engine Example
This section introduces a simple engine example that
will be used throughout the document . This rocket en-
gine subsystem is intended solely for illustrative pur-
poses, and abstracts elements common to many rocket
engines, such as the Space Shuttle main engine . We use
a simplified model to illustrate the concepts proposed in
this document .

2 .1

	

Engine Schematics
This engine subsystem is configured as shown in Figure
1 . This figure shows that there ark two inputs, liquid
oxygen (LOX) and hydrogen (H,), that are fed into the
nozzle after their pressure has been increased via
pumps . The LOX and H, are burned, and the subsystem
produces a desired thrust to drive the rocket .

For each of the LOX and HZ inputs, there is a redun-
dant channel ; we call the primary channel the A-
channel, and the redundant channel the B-channel . If
there are problems delivering sufficient LOX and H, at

Fieure 1 : Schematic for rocket engine example
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a high enough pressure via the A-channel, the B-
channel can be used, in conjunction with or instead of
the A-channel .

There are a number of valves on this subsystem to
regulate the gas flow . We assume that each valve has a
sensor to measure the inlet pressure . Hence the LOX
and HZ inlet-pressures into the subsystem and the valve
settings are the control parameters for the subsystem .
The components that can fail are the valves, the

pumps, and the nozzle . We assume that all other com-
ponents cannot fail .

2 .2

	

Engine Functionality
This section outlines the functionality of this engine .
We use a qualitative representation of functionality
based on multi-valued propositional relations .
The entities defined in this model are :

"

	

Physical components : valve, sensor, nozzle ;
"

	

Pressures : LOX-pressure, Hz-pressure ;
" Thrust .
We assume that all valves, as well as all sensors, func-
tion identically . Table 1 provides the possible values for
some of these entities :

Table 1 : values for entities in functional model

Table 2 summarizes the mode assignments for entities
we are interested in diagnosing :

Table 2 : Mode assignments for entities to be diagnosed

Any pressure Pv downstream of a valve has functional
relationship as follows :
Pv = i;(inlet-pressure, Valve-setting, Valve-mode) .

Any pressure Pp downstream of a pump has functional
relationship as follows :
Pp = ,(inlet-pressure, Pump-setting, Pump-mode) .

The thrust T is a function of the LOX and H, inlet-
pressures and nozzle-mode :
T = i;(LOX-inlet-pressure,H,-inlet-pressure, nozzle-
mode) .

Figure 2 shows a causal network model of this system,
identifying these causal relationships . Table 3 presents a
table describing some of the relations for pump pres-
sure, Pp. This table shows how specific values of Pp are
obtained by the values of the variables on which it de-
pends .
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Possible Values
Valve (closed, 25%-open, 50%-open, open)
Sensor ( high, nominal, low, very-low }
Pressure (high, nominal, low, very-low)
Thrust 100%, 75%, 50%,0%J

Mode Assignments
Valve (nominal, stuck-open, stuck-closed )
Pump nominal, low-output, failed}
Nozzle (nominal, minor-leak, major-leak}



Table 3 : Subset of Relations for Pump Pressure

3

	

Diagnostics and Recovery Framework
This section reviews the causal network model-based
diagnosis framework, and then describes how we extend
this framework to incorporate recovery . In summary, we
add to the diagnosis framework a control specification,
in addition to a control algebra that allows us to focus
our search on the least-cost control actions necessary to
recover from anomalous states .

3 .1

	

Model-Based Diagnostics
The well-known model-based diagnosis framework of

Reiter [1987] using the triple (SD,COMP,OBS), where
SD is a system description, COMP is a set of compo-
nents, and OBS is a system observation . We use a
variation of this formalism, as described below .
We define a system description SD for a diagnostic

model using the tuple (V,A,T) :
Definition 1 : A system description is defined using a
tuple (V,A,`P), where VUA is the set of system vari-
ables, and `F is a quantification of the variables, i .e ., a
set of multi-valued propositional sentences constructed
from VUA.
We specify the details of this definition as follows .

Definition 2 [System Variables] : We partition the sys-
tem variables into two sets : V is a set of atomic propo-
sitions, A is a set of distinguished atomic propositions
called assumables. The atomic propositions V describe
the entities in the model, which include system compo-
nents . The assumables are the variables describing the
operating characteristics of the components that we
want to diagnose .
We further partition the atomic propositions V into a

set O of observable variables, and a set U of unobserv-
able variables : V = UUO . The observable variables are
the variables that represent sensors and actuators, i .e .
components whose values we can measure (sensor) or
components whose values we can set (actuator) . A sys-
tem observation OBS is an instantiation of the values of
the observables .
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If each element of A consists only of binary-valued
variables, i .e ., OK and broken (or -,OK), then we say
that A is mode-less . If the elements of A can have finite
domains, e .g ., [OK,failed-high,failed-low}, then we say
that A has modes, and we are performing diagnosis with
modes . In this case each system failure-mode can ex-
hibit multiple normal and multiple fault modes .
Definition 3 [Quantification] : `P is a set of proposi-
tional sentences constructed from atoms in V and A.
More specifically, we associate with each variable X in
V a subset Tx of sentences in `P, such that X is the con-
sequent of each sentence in Tx, and the antecedents of
each sentence in Tx are defined using the parents of X
in an underlying directed acyclic graph G . This graph
defines the causal relations among the variables .
The equations define a set of constraints over the pos-

sible values of each variable . We can specify a model in
a number of ways, such as using logic [de Kleer and
Williams,1989], constraints [Struss,1992], or causal
networks [Darwiche,1995] . In this paper we define the
system model using causal networks, which specify a
graph G and quantification consisting of a set of multi-
valued propositional clauses .

Model-based inference is as follows : given SDUOBS,
find the failure-mode specification A* such
SDuOBSuA* does not entail l. Here A* is an assign-
ment of mode values to all system failure-modes (or
more generally behavioral modes) . Computing the value
of A* is an NP-hard task, since it searches over all sub-
sets of mode-instantiations . Since straightforward
search of the space of diagnoses can be of exponential
size, we apply a focusing algorithm to conduct a best-
first search over the space of diagnoses [Darwiche,
1995] . This focusing algorithm assigns a set E of costs
to the fault modes, and then uses an algebra to perform
the best-first search over the diagnosis space . E is de-
rived from the failure history, e .g ., component reliability
data . Following [Darwiche,1995], we can characterize
the algebra using the triple where ® is a cost
addition operation and ?® is a cost total ordering satis-
fying :

" ® is commutative, associative and has a zero
element ;

"

	

j>_® i iff i®k=j for some k .
An example of this is (Z,+,>_) .

Th_- full specification for the diagnosis task requires
the tuple (`Y, OBS, Dx-Alg,

	

where
"

	

`Y is the system model,
"

	

OBS is the input observation,
"

	

Dx-Alg is the diagnosis inference algorithm, and
"

	

characterizes the focusing algorithm .

3 .2

	

Extensions for Recovery
We extend the causal network approach to diagnostic
inference by creating a dual causal network for recovery .
This involves reconfiguring some nodes in the network,
but preserving the structure of the network . We define a
recovery network by partitioning the observables O into
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PP P;� Pump-setting Pump-mode
High High nominal nominal
High' Nominal
Nominal Low
low Very-low
High High High-speed nominal
High Nominal
High Low
Nominal Very-low
High High nominal Low-output
Nominal Nominal
Low Low
Very-low Very-low



a set x of control variables and a set S of sensors . In the
diagnostic model, we have observables xuS; for a re-
covery model, we now have observables AuS.
We introduce the notion of a dual model to represent

the recovery model . Table 4 shows the relationship be-
tween the primal (diagnosis) model and the dual (recov-
ery) model . The key change is that we have swapped
some observables (the control variables x) and assum-
ables A. We now assign a different set E' of costs to the
control variables, and then use a different algebra to
perform the best-first search over the control space .

Table 4 : Relationship between primal and dual models
We can characterize the control algebra using the

triple where O is a cost addition operation
and ?o is a cost total ordering satisfying the properties
defined in the previous section . There are many ways
that we can define this control algebra, and we outline

two now .
One option is to compute the costs of control settings

using E', and then use the same focusing algebra as
done for diagnostic focusing . Our goal is to compute
minimal-cost control settings that satisfy the goal O. In
a cost assignment, we assign cost as an inverse function
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of component life : a cost of 0 means long life, whereas
larger costs mean relatively shorter life . For example, in
Table 5, the weights are assigned as follows : an open or
closed valve has long life (weight 0), whereas the life-
time of the valve decreases the more it is partially
opened, due to the force of fluid exerted on the valve
mechanism .

Table 5 : Cost assignment to valve settings

This situation assumes that transitions between any set-

tings are possible . If, however, we want to constrain
possible transitions between valve settings, then we can
use a weighted automata model, as shown in , Figure 3,
or causal network fragments, using either a full tempo-
ral logic, or a simplification thereof. In Figure 3, all
transitions k ;, i=1, . .,4, have weight 0, and the other

322

Valve
Settin

,,Z I closed 25%
open

150%
open

;open

Cost 0 1 2

Variables
Obs . Unobs .

Assum-
ables

Graph
Structure

Diagnosis
~AlyS

us U A G
Recover U G



transitions have weights as shown in the figure, e.g .,
transition a2, which has weight 1, is denoted by a2/1 . In
the full temporal logic [Darwiche and Provan,1996], we
have temporally-indexed variables and can model vari-
ables over discrete time steps . For computing reconfigu-
ration, we can use a simplification of this approach,
assuming that we only need to know the previous and
current value of a variable . Specifically, if we denote the
valve by yariable V, and define a variable VT for the
previous value, we can model the transitions of the
Valve states using equations such as :

[V`=closed] A a

	

=> [V=25%-open]
[V" =closed] A ;~i

	

==> [V= closed]
[VT =25%-open] A R

	

=* [V=50%-open]
[V" =25%-open] A k2

	

=> [V=25%-open].
In this approach the transitions ((x, ki, etc .) correspond
to variables taking on particular values .
Using this approach, the allowable transitions add an

extra constraint to the focusing algorithm for recovery .
In other words, when searching for a least-cost control
action, the search is constrained to the allowable set of
transitions from any given place in a transition diagram .
In Figure 3, given that a valve is closed, we can only
keep the valve closed (transition Xi) or open it to the
25%-open state (transition (x) . Three transitions (a,(3,y)
are required to move the valve from the closed to the
open state .
We also require the notion of a control goal, and a

means of encoding that in the model . For our example,

Figure 4 : Algorithm Architecture
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the goal is the required thrust for the rocket, and the
thrust is a function of the LOX and H2 inlet-pressures,
as well as the mode of the nozzle :

Thrust = (LOX-inlet-pressure, H2-inlet-pressure,
nozzle-mode) .

If Thrust can take on the values 1100%, 75%, 50%,
0%1, then we can see that a control goal of at least 75%
thrust means that unacceptable values are 50% and 0% .
This information is critical input to the recovery algo-
rithm .
The full specification for the recovery task requires

the tuple (`Y, GOALuA*, Dx-Alg, (E',OO ,?©)~, where
"

	

'Y is the system model,
"

	

GOALuA* is the control goal together with the
current setting of (faulty) assumables,

"

	

Dx-Alg is the diagnosis inference algorithm, and
"

	

characterizes the focusing algorithm .

3 .3 Diagnosis and Recovery Algorithm
The algorithm for this integrated approach is as

shown in Figure 4 . The steps are as follows :
1 .

	

Start the algorithm given a goal O and set of in-
put observations .

2 . Run the diagnosis algorithm .
"

	

If no anomaly is detected, return to 1 .
"

	

If an anomaly is detected, identify the anoma-
lous assumables A; c A and reconfigure the
network .

3 . Network reconfiguration .
" Replace A ; by Ay, such that Ay is nominal,

A'=[(A\A;)v A,,], and A'uO is not contradic-
tory, i .e ., we satisfy the goal O . We set the
observables O'=Sv AT,

"

	

Map control variables x into assumables : A'=x .
4 . Recovery Algorithm .

"

	

Run the recovery algorithm with inputs : (il) the
dual network, and (ii) focusing based on the
control algorithm . The output is a new control
setting x' .

If x' meets the goal O goto 1 .
If x' does not meet goal O, send the model to
the planner,, to revise the goal to O' .

5 . Planner
"

	

Revise O to O' according to domain priorities .

3 .4 Guarantees for Recovery Algorithm
This section summarizes the guarantees that we can
make for the recovery algorithm . Note that these results
are derived using a modified diagnosis inference proce-
dure as described by Darwiche[1995,1998] .
Lemma 1 : Given a recovery model (`I', GOALuA*, Dx-
Alg, (E',OO,?o)~, the focusing algorithm is guaranteed to
compute all sound, minimal recovery actions, if any
exist .
Lemma 2:
1 .

	

Computing the set of recovery actions is NP-hard .
2 .

	

Using a causal network representation, in the worst
case computing the set of recovery actions is linear
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in the number of network nodes and exponential in
the maximum graph width of the causal network .

One key approach that we can use is to pre-compute a
representation R for the set of all recovery actions,
cache that function, and then compute recovery actions
on a case-by-case basis using the focusing algorithm
[Darwiche,l998] . We call this diagnostic compilation .
This means that the NP-hard task of generating R is
performed only once, and particular recovery actions are
computed efficiently as below:
Lemma 3 : Given a representation R for the set of all
recovery actions, computing a particular recovery action
given an instantiation of assumables A' can be done in
time O(/RI /O1), where /81 denotes the time for per-
forming the O operation followed by a minimization .

4

	

Diagnosis and Recovery for Rocket
Engine Subsystem

In this section we show how we can apply our diagnosis
and recovery approach to the rocket engine example .

v .

4 .1 Subsystem Models
Figure 2 shows the full causal network that corresponds
to our example : assumables are depicted as boxes, unob-
servables as light-shaded ovals, and observables as dark-
shaded ovals . For the purposes of clarity of explication,
we focus on a subset of the model, the A-channel of the
LOX system . Figure 5 shows the diagnostic causal net-
work for this portion of the model . In this figure, the
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solid arcs represent the causal relationships for the sys-
tem, or plant model ; the dotted arcs represent the causal
relationships for the control actions . For example, the
setting for LOX-inlet-pressure is determined (through
feedback control) by the Goals (encoded in the Thrust
node) and the current value of the VI-sensor .

Next, Figure 6 shows the recovery causal network for
this portion of the model. Notice that in the recovery
causal network, the assumables and control nodes have
swapped roles .'

4 .2 Diagnosis and Recovery Scenario
We now briefly describe a few diagnosis and recovery
scenarios for the LOX lines of this rocket engine .
Cost-Based Recovery : The first set of scenarios use the
cost-based control algebra . Table 6 summarizes these
scenarios .

Table 6 : Diagnostic/Recovery Scenarios for Cost Alge-
bra

In the first scenario, we want to achieve >_75% Thrust
using nominal control settings . Both sensors read nomi-
nal, yet the observed thrust is only 50% . The minimal
diagnosis in this case is that there is a minor leak in the
nozzle . If we run the recovery algorithm on the dual
network, we compute a recovery action of setting the
LOX inlet-pressure to be high .

In the second scenario, we want to achieve >_75%
Thrust using nominal control settings . Sensor SIA reads
nominal and SZA reads low, and the observed thrust is
only 50% . The minimal diagnosis in this case is that
PumpA is operating at low output . If we run the recovery
algorithm on the dual network, we compute a recovery
action of setting the LOX inlet-pressure to be high .
(Note that we could also have used the B-channel to
obtain the desired thrust, but that would have led to a
higher-cost recovery action .)

In the third scenario, we want to achieve ?75%
Thrust using nominal control settings . Sensor SIA reads
nominal and SZA reads very-low, and the observed thrust
is only 25% . The minimal diagnosis in this case is that
PumpA has failed . If we run the recovery algorithm on

1 For technical reasons, assumables cannot have parents, so we
assign to the control nodes parents that play the role of assum-
ables .
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Scenario 1 2 3
Thrust Goal >75% >_75% >75%
Obs . Thrust 50% 50% 25%
Control VIA=open V IA= open V IA= open
Settings VZA= open VZA= open VzA= open

P;~=nom Pi� =nom P ; � =nom
Sensor S IA=nom . SIA=nom . SIA=nom .
Settings SZA=nom . SZA=low SZA=v-low
Min . Dx . Nozzle= PumpA= PumpA=

minor leak low output failed
Recovery P ; � = high Pi � = high V I B= open

V213= open



the dual network, we compute a recovery action of set-
ting the VI B and V,B valves to nominal, thereby using
the redundant B LOX channel .
Transition-Based Recovery: The second set of scenar-
ios use the weighted transition-based control algebra .
Table 7 summarizes these scenarios .

Table 7 : Diagnostic/Recovery Scenarios for Transition
Algebra

The recovery actions for first and second scenarios
are identical to those for the cost-based case . However,
we will compute a different result for the third scenario .
This is because we are constrained to a transition from
the B-channel valves being closed to these valves being
opened 25%, as shown in the valve transition chart in
Figure 3 . Note, however, that we can compensate for
this partial opening by setting the LOX inlet-pressure to
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be high as well .

5 Related Work
This section compares and contrasts our approach to
previous work on this and related topics .
This approach is most closely related to the Living-

stone system described in [Williams and Nayak,1996] .
This approach shares with Livingstone the computation
of system state (or assumable binding) and recovery ac-
tions, called mode identification and mode reconfigura-
tion, respectively, in [Williams and Nayak,1996] . Liv-
ingstone is defined using a transition logic, and its algo-
rithms are related to, but different from the MBD algo-
rithms . We show how we can use a standard MBD ap-
proach to achieve the same purposes as Livingstone .
Another important distinction is that in our approach we
can compile the model representation such that all diag-
noses and recovery actions can be pre-computed and
efficiently generated on-line in real time given sensor
data . This compilation approach [Darwiche,1998] uses
knowledge of the specified assumables and observables
to pre-compute much of the diagnostic inference . The
compiled diagnostic representation can be evaluated in
(at worst) time linear in the size of the representation .
Note, however, that the expression can be exponential in
certain model parameters, such as graph width . -

There have been several other approaches to recovery,
e.g ., [Johnson, 1996],[Rauch,1995] . The main difference
between our approach and these other approaches is that

2 For many applications, we have had significant success in re-
ducing the size of the compiled expression by rewriting the model
such that the resulting model parameters ensure a relatively small
compiled representation.
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Scenario 1 2 3
Thrust Goal ?75% >_75% >_75%
Obs . Thrust 50% 50% 25%
Control VIA= open VIA= open VIA= open
Settings V2A= open V2A= Open VZA= open

Pi � =nom P ; � =nom Pi � =nom
Sensor SIA=nom . SIA=nom . SIA=nom .Settings

S2A=nom . S =low S2A=v -low
Min . Dx . Nozzle= PumpA= PumpA=

minor leak low output failed
Recovery P;,, = high P;~ = high V,B= 25%

- VZB= 25%
Inflo= high
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Controller Inputs

Figure 7 : Generic Architecture for Diagnosis and
Recovery System
our approach is based on MBD representations and al-
gorithms, and aims to integrate both diagnosis and re-
covery .

6 Summary and Future Work
This document has proposed a novel approach to inte-
grating diagnostic inference and recovery within a sin-
gle formalism . We have shown how to extend a model-
based diagnostic approach to incorporate control and
recovery actions . We applied the modeling formalism
and algorithms for a particular model-based approach,
causal networks, to a simple rocket engine example .
This new approach allows us to develop analytical re-
sults for recovery similar to those already developed for
diagnostic inference .
More generally, we have designed our implementation

such that it can be integrated with several other repre-
sentations and algorithms using CORBA/COM proto-
cols . Figure 7 shows how we can inter-operate with a
variety of other inputs, from sensors, controller mod-
ules, planners and failure-model modules.
Although the control/reconfiguration actions cur-

rently generated by our approach are limited to the next-
step actions, the "horizon" of the control actions can be
extended by modeling the underlying systems as tempo-
ral causal networks [Darwiche and Provan,l996] . Based
on a standard propositional temporal language, a tempo-
ral causal network models temporal relationships among
system components in terms of variables with discrete
time indices . We plan to further explore this approach
in future work .
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