Using Inter-Behavior Contradictions for Modeling and Diagnosis

A. C. Cem Say

Department of Computer Engineering
Bogazigi University
Bebek 80815, Istanbul, Turkey
say@boun.edu.tr

Abstract
We present a technique for determining certain pairs of
qualitative simulation predictions to be mutually
contradictory. This leads the simulator to produce more
informative outputs, which results in improved
performance in reasoning tasks like model revision and
diagnosis.

Introduction

Qualitative simulation programs, which enable the rep-
resentation and use of incomplete knowledge, provide
useful tools for analysis, design, and diagnosis of dy-
namic systems. (Kuipers 1994) The utility of such a
program depends directly on the extent and correctness
of its predictions about the considered system. We pres-
ent a technique for making qualitative simulators give
more precise information about the interrelationships
among the predicted system behaviors. Our technique
exploits the fact that alternative behavior pairs can
sometimes be automatically proven to be mutually con-
tradictory, meaning that they can not be exhibited by the
same physical system. This knowledge can be used to
improve performance in qualitative reasoning tasks like
diagnosis and modeling.

Preliminaries

The qualitative simulator used in our work is a version
of QSIM (Kuipers 1994) enhanced with the generalized
corresponding value (Say and Kuru 1993) feature. A
brief overview is given below.

QSIM’s input is a system model and an initial state
written in the qualitative format. The variables’ values
and certain relationships in the model are represented
incompletely, usually corresponding to infinitely many
real numbers and “quantitative” functions, respectively.

The “important” values that a variable may take are
represented by landmark symbols in an ordered list (the
quantity space). Magnitudes are points or intervals in
the quantity space. The direction of a variable is the sign
of its time derivative; i.e. — (dec), 0 (std), or + (inc).

The state of a system is the collection of the
magnitudes and directions of its variables.

The system model consists of the quantity spaces and
the constraints that represent the relationships among
the variables. The examples in this paper contain the
constraint types:

(d/dt x y) = x()=u0)

QR99 Loch Awe, Scotland

(M+ x y) W0 =fx(1), />0
(constant x) x()=0

The constraints may possess associated tuples of
corresponding values (CV’s). A CV tuple is a collection
of the magnitudes that can be taken on by the
constrained variables at the same time. For example, the
constraint
(M+ liquid-amount pressure-at-bottom)
describing a liquid tank would have the CV tuple <0,0>,
since an empty tank has zero liquid pressure. Magni-
tudes appearing in CV tuples can be intervals as well as
points. (Say and Kuru 1993)

During simulation, candidates for the next system
state which do not satisfy the constraints are filtered out.
Due to the incompleteness of the available knowledge,
QSIM may predict several successor states for a given
system state, building a tree of states as its output. The
initial state is the root of this behavior tree. The paths
from the root to the leaves are the behaviors. All
mathematically possible behaviors are predicted.
(Kuipers 1994)

New landmarks are introduced during simulation by
inserting a new symbol to the quantity space when a
variable “stops” while it has an interval magnitude.
Similarly, new CV tuples are linked to the constraints as
the sets of constrained variables are seen te have new
collections of values as the simulation proceeds. So, in
general, states which are nearer to the leaves of the tree
have more CV tuples associated with them than states
which are nearer to the root.

mom

Identifying Contradictory Behaviors

The Idea

Consider the simple model M1 consisting of the
constraints

((constant v))

((d/dt x1 v))

((M+ x1 x2) (inf inf) (minf minf))

where both x/ and x2 have the quantity space

{-e=, 0, =}, and v has a negative landmark called v0. Let

the initial state be

(v = <v0, std>, xI = <(0, =), dec>, x2 = <(0, =), dec>).
One system with this model is shown in Fig. 1: There

is a long road built in the north-south direction on a

desert. The position of an object on the road is measured

178

relative to a specific “zero point,” north being the
positive direction. We have a long wall on the eastern
side of the road. At some point to the west of the road, a
very powerful light source illuminates the whole area, A
car is going south with constant speed. x/ is its
displacement and v is its velocity. x2 is the displacement
of the shadow of the car on the wall from the wall’s zero
point, which is at the same latitude as the road’s zero
point. We are not interested in what happens after the
car or the shadow reaches the zero point.

W all

Car
m Shadow

§x.?

Lcsm P

0

Figure 1: One possible car-shadow system
(corresponding to prediction B3)

This simulation produces the predictions

Bl: The car and its shadow reach zero simultaneously
(meaning that the light source is at the latitude of
the zero points.) The CV tuple <0, 0> has been
appended to the M+ constraint.

B2: The car reaches the zero point before the shadow
(meaning that the light source is to the south of the
zero point.) The tuple <0, (0, ==)> has been ap-
pended to the M+ constraint.

B3: The shadow reaches the zero point before the car
(meaning that the light source is to the north of the
zero point.) The tuple <(0, o), 0> has been ap-
pended to the M+ constraint.

As described in (Kuipers 1994), if QS]M makes n
different predictions, namely Bl, B2, ..., Bn, given a
model M and an initial state Qstale(ro), this can be
viewed as the proof of the theorem

MaQstate(t;) — (B1vB2v...vBn). (1)

But we can state more than a simple disjunction about
the relation among the three behaviors of the car-
shadow system, in the following sense: If we see that
one actual “run” of this system from this initial
qualitative state produces, say, Bl, we can be certain
that all other runs will also produce B1. This is because
each behavior predicted by QSIM in this simulation
entails a different assumption about a system property
which is not given in the input model, namely the
latitude of the light source relative to the zero point. The
three leaves of the behavior tree correspond to three
different specializations of the input model. If we have
evidence that the actual system model is of the kind that
produces one behavior, we can legitimately erase the
others from our list of predictions for future runs. The
alternative predictions here are contradictory to each
other. In this sense, the theorem that can be proven for
this particular system is

ORA99 | orh Awe Scotland

M1 AQstate(ty) —
(B1vB2vB3)A(Bl1— B2 NBl- B3 A(B2— B3)

(It should be noted that some QSIM users employ M+
constraints to stand for time-dependent interactions
between the two variables. Such an interpretation would
violate the “standard” assumption we make in the
previous paragraph about the existence of a unique and
time-invariant underlying function, and the stronger
conclusion about the behavior interrelationships would
not be derivable.)

Even when the simulation does not involve different
model specializations in different branches, predictions
may contradict each other. Consider the modified system
M2:

{ (constant v))
((d/dt x1 v))
((d/dt %2 v))

The road now has two lanes, with one car on each
lane. The cars go south with the same speed. x/ and x2
are the positions of those cars. (Fig. 2) The initial state
is now
(v = <v0, std>, x] = <xlinit, dec>, x2 = <x2init,dec>),
where x/init and x2init are positive landmarks.

I g

xlg x2§

Car2

0

Figure 2: One possible realization of the initial state of
the two-cars system

In this simulation, QSIM predicts three behaviors,
describing the cases where Carl reaches the zero point
before, afier, or at the same time as Car2. No branch of
the tree contains any new CV’s. So the model at each
leaf is exactly the same as the model at the root. But it is
easy to see in this case that each particular behavior
rules out a/l the others when observed. Two behaviors
with different orderings of the cars can not be exhibited
in two different runs starting from this same initial state,
which is an exact description of the world under
consideration, without any intervals providing “slack.”
(Note that we are making the “standard” assumption
that each landmark symbol in the input represents a
single specific, albeit usually unknown, real number.) So
QSIM can prove

M2AQstate(ry) —
(B1vB2vB3)A(Bl— B2 mwBl-= B3 a(B2— B3).
for this simulation.
If, on the other hand, the initial state of the two-cars
syslem were
(v = <v0, std>, xI = <(0, o), dec>, x2 = <(0,), dec>),
we could only say

M2AQstate(t;) — (B1vB2vB3)

about this system, since all three possible orderings of
the cars correspond to this qualitative state, and
observing, say, Carl “win” in a particular behavior
would not justify us to conclude that it will always win
when the system is started up in another “quantitative”
state corresponding to Qstate(t,).

The Algorithm

Our method (Fig. 3) is based on the ideas introduced in
the previous section: Checking the initial state to see if it
is an exact description, and checking the list of CV
tuples accumulated at each leaf of the behavior tree for
consistency with the corresponding CV tuples of all the
other leaves.

A qualitative state is exact if it can only match a sin-
gle point in phase space. (Note that, in general, we
would not be able to determine which particular point
that is, given the information available to the reasoner.)
A variable appearing in the first place of a d/dt con-
straint is a phase variable. The algebraic manipulator
used in the exact state identification routine scans the
entire constraint set and attempts to show that every
variable in the model is either:

a) A phase variable,

b) A constant, or,

¢) Another function that can be defined solely in terms
of the phase variables.

If the model allows the derivation of such expressions

for each variable, then an assignment of point values to

the phase variables would completely determine the

system state, since all other magnitudes and derivatives

of any order are functions of the magnitudes of the

phase variables. The value true is assigned to the

Boolean variable InitialStatelIsExact only when

this expression derivation succeeds and all phase

variables are seen to be at point magnitudes.

The Boolean function CrossCheckOK uses the
QSIM algorithm’s constraint filters to check each CV

if InitialStatelIsExact

tuple of one behavior against all the tuples of that con-
straint in the other behavior. If an inconsistency is
found, these two behaviors represent different speciali-
zations of the input model and can never be exhibited by
the same physical system. (Note that CV inconsistencies
can be detected on “precise” constraints like add or
mult, (Kuipers 1994) as well as the inherently incom-
plete M functions. The difference between the speciali-
zations deemed to be contradictory in such cases is in
the assumptions they entail about the relative magni-
tudes of the numbers represented by the landmarks in
the CV’s. (Say 1998)) The quantity spaces have to be
passed as arguments to CrossCheckOK because all of
the QSIM CV consistency control routines involve op-
erations which compare two values of the same variable,
and such comparisons can only be performed if the
variable’s quantity space is known. Since states belong-
ing to different branches can have different sets of
landmarks for the same variable, CrossCheckOK’s
first job is to produce “unified” quantity spaces for each
variable appearing in the constraint under consideration.
New landmarks which cannot be placed unambiguously
in the unified quantity space (this happens when both
behaviors have discovered different landmarks lying in
the same interval of the initial quantity space,) are re-
placed by the narrowest interval which contains them
and which is bounded by nonproblematic landmarks
before being passed to the comparison routine. For in-
stance, assume that two predictions Bi and Bj have
modified the initial quantity space {0, =} of variable x
to

{0, new x I, new x 2, oo}

and

{0, new x_1, new x 3, oo}

respectively. When these behaviors are being cross-
checked, the incomparable landmarks are eliminated to
obtain the unified quantity space {0, new_x_I, =}. Any
appearance of, say, new_x 2 in a CV tuple will be re-
placed by (new x_1,e0) during the subsequent controls.

“then Mark all prediction pairs as contradictory

else
begin

(* The QSIM tree contains n behaviors *)

for i =1 to n-l1
for j=1i+1 to n

for each constraint Cg{d/dt,constant} in the system model

begin
CL1
CL2
LL1
LL2

C's CV list for the final state of Behavior i;
C's CV list for the final state of Behavior j;:
the set of final quantity spaces for Behavior i;
the set of final quantity spaces for Behavior j;

if not(CrossCheckOK(CLl,CL2,LL1,LL2))
then Mark Behaviors i and j as contradictory; Jump to next j

end
end;

Use the contradiction marks to write the prediction formula

Figure 3: The contradiction detection algorithm

QR99 Loch Awe, Scotland

180

The contradiction detection algorithm outputs a Boo-
lean expression (the prediction formulia) describing the
discovered interrelationships among the behaviors. See
(Say 1998) for examples on the detailed execution of
both stages of the algorithm.

Discussion

Correctness. Contradiction recognition based on exact
initial state identification is a sound technique (i.e. the
behavior pairs that it marks are indeed contradictory,)
since, by our definition, an exact qualitative state corre-
sponds to a single point in phase space, determining the
future system behavior completely. (A rigorous proof
would also include a demonstration of the correctness of
the algebraic manipulator used to derive expressions for
the non-phase variables.) Since this algebraic manipu-
lator’s capabilities are limited, this routine may “miss”
some exact states by failing to come up with the neces-
sary expressions for one or more variables, even when
this could be achieved through a more complicated se-
ries of rewrites. Therefore, some contradictions may go
unnoticed by this routine, meaning that it is an incom-
plete procedure.

The CV cross-checking technique, on the other hand,
is both sound and complete: Two behaviors are marked
as contradictory only if they contain CV tuples which
fail to satisfy a QSIM constraint. (See (Kuipers 1994)
for the correctness of the QSIM constraint filters.) No
such CV contradiction can be missed, because of the
exhaustive nature of the algorithm of Fig. 3.

Application Style and Complexity. Although we im-
plemented the procedure of Fig. 3 as a postprocessor to
QSIM, it can just as well be applied in an incremental
manner to the partial behavior tree after each recording
of a new CV tuple by a newly created state during
simulation. (In that case, the algorithm has to be modi-
fied to skip behavior pairs whose prefixes have already
been marked.) It is easy to find individual examples in
which either of these methods outperforms the other one
from the point of view of execution time, this being a
matter of the tree’s shape and CV structure.

Contradiction detection’s computational complexity is
quadratic in the number of leaves in the tree. Cross-
checking a behavior pair takes O(c.d?) time, where c is
the number of constraints, and d is the depth of the tree,
which is the worst-case number of CV tuples.

Intractable Branching and Contradiction Detection.
One common complaint about qualitative simulators in
general, and “landmark generation” approaches like
QSIM in particular, is that they generate “too many”

predictions. Since the contradiction finder makes use of
CV tuples discovered during simulation, one may be led
to think that it is fundamentally a landmark generation
technique, and intractable branching could overwhelm
any gains that would be expected from it as the problem
size is increased. Fortunately, this is not the case: It is
possible to record and use CV tuples even when the
simulator is not able to generate any new landmarks. In
fact, no behavior contradiction in any of the examples in
this paper involves a CV tuple containing a newly gen-
erated landmark. We claim that our approach is a posi-
tive contribution because it utilizes previously unused
information in the simulation environment and im-
proves the predictive accuracy.

We examined how the number of discovered contra-
dictions (and hence the “use” to which they can be put,
as will be explained in the next section) grows in rela-
tion to the number of behaviors by incrementally in-
creasing the number of landmarks causing branching in
the ball-shadow system of Fig. 4 and running the pro-
gram. (This simulation branches depending on the order
in which landmarks in the quantity spaces of the ball
and shadow position variables are crossed. See (Say
1998) for the details.) As Table 1 indicates, the percent-
age of the prediction pairs marked as contradictory
actually increases as the tree becomes bigger: The
method seems to be more productive when there hap-
pens to be more branching.

< Light source

O Ball

-
0 Shadow

Figure 4: The ball-shadow system

Applicability

The contradiction identification applications proposed
below only make use of the CV cross-checking tech-
nique. Since exact matching of a collection of observed
real values to a previously recorded one is impossible in
practice, the identification and use of exact qualitative
states is not included in the following discussion.

System “Complexity” Number of Number of Percentage of Pairs Marked as
(Number of nonzere landmarks Predictions | Contradictions Contradictory
in input)
“Basic” system with one landmark each 11 32 58
An extra landmark for one variable 23 176 70
An extra landmark for each variable 61 1536 84

TABLE 1. Behavior and Contradiction Counts in Successively More Detailed Runs of the Ball-Shadow System

QRAO9 | och Awe Seotland

44

BEHAVIOR # 1

c(Na,P) c(ADH.P) time
cn eq,dec ca _eq.dec Io
(cn* cn_eq).dec | (ca*ca eq).dec | (to, 1))
cn* dec (ca*ca eq)dec | t,
(0,cn*),dec (ca*ca eq).dec | (1, 12)
(0,cn*),dec ca*,dec t;
(0,cn*),dec (0,ca*),dec (L, t3)
new cn 1std new ca 1std 3

BEHAVIOR # 2

c(Na,P) c(ADH,P) time
cn eg,dec ca eq,dec ty
(cn*.cn eq),dec | (ca*ca eq)dec | (fy, 1;)
(cn*.cn _eq),dec | ca*dec 1
(cn*.cn_eg).dec | (0,ca*)dec (1, t)
cn* dec (0,ca*),dec 1
(0,cn*),dec (0,ca*),dec (3, 13)
new cn_2,std new ca 2std 9

Figure 5: Two behaviors of the hypothalamus-pituitary gland subsystem during the onset of SIADH

Diagnosis with Multiple Experiments

Kuipers (1994) describes how the contrapositive of the
“theorem” proven by QSIM can be used to refute candi-
date system models in a diagnosis application: (1) can
be transformed to

Qstate(ro)AETAEEA... ABn — M.)

So we conclude that M is not a correct model of our
system if an observed behavior starting with Qstate(ty)
does not match any of the predictions B1 through Bn. If
each observed trajectory of the system is matched with at
least one prediction, M cannot be overruled, since the
antecedent of (2) is false in this case.

The additional information contained in the predic-
tion formulae written by the contradiction finder can be
used for improved diagnostic reasoning: We know that
each contradictory behavior pair <Bi,Bj> embodies a
statement of the form

(MABi — Bj).
When we rearrange this implication, we obtain

(BinBj —» M). 3)
So if we make two separate observations Obs; and Obs,
of two behaviors of the same system at different time
intervals, and if these observed trajectories uniquely
match the distinct predictions Bi and Bj from the QSIM
output for this system, and if Bi and Bj are shown to be
contradictory by the postprocessor, then we can soundly
deduce that either our observation record or the pre-
sumed model for this system is wrong. Note that the
original QSIM-based diagnosis framework is unable to
recognize a faulty model when it observes two or more
trajectories, each matching a prediction. The contradic-
tory QSIM predictions under consideration do not even
have to be the simulation results of the same initial state
in our approach, since Qstate(fs) does not appear in the
implication that we use.

We will now give an example for this kind of diagno-
sis. A model of the healthy water intake/excretion bal-
ance mechanism in the human body (see (Kuipers 1987)
for the details) contains the constraint
(M+ c(Na,P) c(ADH,P)),
representing the hypothalamus’ function of sensing the
concentration of sodium in the blood plasma, and
“commanding” the pituitary gland to secrete a commen-
surate amount of antidiuretic hormone (ADH). The

QR99 Loch Awe, Scotland

disorder known as the Syndrome of Inappropriate Se-
cretion of AntiDiuretic Hormone (SIADH) gradually
disrupts this M+ constraint, eventually resulting in a
constant value for c(ADH,P). Assume that, in addition
to their healthy equilibrium wvalues, the variables
¢(Na,P) and c(ADH,P) have one extra landmark each,
named cn* and ca* respectively. QSIM predicts (among
others) the two behaviors shown in Fig. 5 for the healthy
system’s response to suddenly increased water intake
(e.g. a transfusion). The variables decrease and simulta-
neously settle on new landmarks in both behaviors. The
only difference from the point of view of the hypothala-
mus-pituitary gland subsystem between these behaviors
is the order in which the landmarks ¢n* and ca* are
crossed,

This behavior pair is contradictory with the constraint
(M+ c(Na,P) c(ADH,P)), as would be noticed by a
cross-checking of their generalized CV’s. If we make
two observations of this system, responding to separate
transfusions, which uniquely match these two behaviors
respectively, we can drop the healthy model and con-
sider the fault models in our library.

Note how we stress that each observed trajectory has
to be matched to a single prediction for diagnostic rea-
soning to be valid. Consider the behavior Bi appearing
in (3). If a single observation matches both Bi and an-
other prediction Bk, (because of incomplete information
provided by the observation procedure,) we only know
that (Bi v BK) is true, and there is insufficient informa-
tion for the application of (3).

Modeling

Model revision is the task of modifying a qualitative
model in response to undesirable features of its simula-
tion output. This issue is becoming increasingly impor-
tant as qualitative simulators are being used for bigger
problems, where the complexity of the behavior tree may
be a negative factor for many users. Learning how to
prepare “good” models is not very easy, but there are
simulation tools that provide help for model revision. As
Clancy, Brajnik, and Kay (1997) point out, one way of
decreasing the ambiguity of a simulation is to incorpo-
rate CV tuples in an appropriate manner in the model.
Contradictory behavior information can be used to in-
telligently determine where a new correspondence is
necessary: Intuitively, each contradiction found by the
CrossCheckOK routine indicates that a constraint in

182

the system model lacked some CV tuples whose addition
would eliminate some behaviors from the simulation
output. Since no system which can exhibit two contra-
dictory behaviors can exist, it is meaningful to try to
enrich the model until no such contradictory pairs re-
main in the simulation output. The contradiction finder
can therefore be viewed as a modeling aid that suggests
which parts of the model under construction need to be
improved. (The program specifies the constraint that
caused the contradiction for each pair in its output.)

The qualitative modeling scenario would then look
like this: The modeler prepares a QSIM model of the
observed (or planned) system according to her initial
understanding of its mechanism. She then runs QSIM
(augmented with the contradiction detection postproces-
sor) with this model once for each distinct initial state
that matches the observations (or specifications.) Ex-
amining the behavior tree and the contradiction infor-
mation, the modeler can incorporate the appropriate CV
tuples that would eliminate some of the contradictory
behaviors to the model if she has justification to select
one alternative over another. If the CV tuples are miss-
ing because of a genuine lack of information about the
system, new observations or “experiments” aimed at
discovering a more precise description of the relation-
ship among the variables involved in the problematic
constraint can be arranged. Such observations may even
lead to the refutation and removal of the constraint un-
der consideration, as discussed earlier.

Qualitative system identification (Say and Kuru 1996)
is onc way of automating the model construction task.
Qualitative system identification programs take as input
a list of possible qualitative behaviors of the system
under consideration, and present a constraint model for
the system. The capability of checking two separate
behaviors for consistency, given a model, has interesting
implications for these programs as well. All state-of-the-
art qualitative system identification programs (see the
list in (Say and Kuru 1996)) fail to recognize that the
system exhibiting the behaviors of Fig. 5 can not have
the constraint (M+ c(Na,P) c(ADH,P)) in its
model. A contradiction detector working on the com-
bined input/output sets of such a program would notice
the CV inconsistency when it attempted to cross-check
these two behaviors.

Related Work and Conclusion

Clancy, Brajnik, and Kay (1997) present a set of tools
and methods to help users of qualitative simulation
perform model revision. Their techniques include using
temporal logic trajectory constraints for restricting the
simulation to a subset of behaviors having a desired
property, focusing the view on a specified subset of the
system variables, and analyzing why certain branches
occur in the produced tree. Contradiction detection fits
nicely in this framework, pointing at correspondences
that could have been “turned on” in the initial model.
Falkenhainer and Forbus® (1991) use of composi-
tional modeling allows their program to intelligently
urn on or off certain fragments of the model to effi-
Ciently give relevant responses to queries. Our technique

0ORAQ9 | nch Awe. Scotland

works at the much lower level of individual CV's and
simply checks the exhaustive list of model specializa-
tions produced by the simulator against each other.

Our discussion of diagnosis presumed the existence of
a routine for processing sensor data to observe trajecto-
ries and matching them to the predictions. This meas-
urement interpretation task is an important problem by
itself; see (DeCoste 1991) for a detailed account.

Dvorak’s (1992) MmMIC program for monitoring dy-
namic systems uses template (2) to refute a hypothesized
system model when observation of a single trajectory
fails to match any of that model’s predictions. The
originality of our approach to using the prediction for-
mula for diagnosis is that it utilizes contradictions be-
tween several observations to refute the model.

Shults and Kuipers (1997) describe how QSIM trees
can be queried about high-level behavioral features
using temporal logic. The extension of their language
for accommodating queries about contradictory behav-
iors of various specializations of the model is on our
agenda.

Having been implemented in the QSIM framework,
the contradiction finder is easily integrable with the
recent technical advances in qualitative simulation, (e.g.
the complete solution of the problem of chatter (Clancy
and Kuipers 1997)) improving the power and applica-
bility of the overall reasoner.

The address say@boun.edu.tr can be contacted to
obtain source codes of our programs described here.

Acknowledgments

1 thank Ivan Bratko and the anonymous referees for
their helpful comments and suggestions. This work was
partially supported by the Bogazi¢i University Research
Fund. (Grant no: 99A101)

References

Clancy, D. J.; Brajnik, G.; and Kay, H. 1997. Model
Revision: Techniques and Tools for Analyzing Simula-
tion Results and Revising Qualitative Models. In Proc.
Eleventh Int. Workshop on Qualitative Reasoning, Cor-
tona, Italy. 53-65.

Clancy, D. J., and Kuipers, B. J. 1997. Static and Dy-
namic Abstraction Solves the Problem of Chatter in
Qualitative Simulation, In Proc. Fourteenth Nat'l Conf.
Artificial Intelligence.

DeCoste, D. 1991. Dynamic Across-Time Measurement
Interpretation. Artificial Intelligence 51:273-341.
Dvorak, D, L. 1992. Monitoring and Diagnosis of Con-
tinuous Dynamic Systems Using Semiquantitative
Simulation. Ph.D. diss., University of Texas at Austin.
Falkenhainer, B. and Forbus, K. 1991. Compositional
Modeling: Finding the Right Model for the Job. Artifi-
cial Intelligence 51:95-143.

Kuipers, B. J. 1987. Qualitative Simulation as Causal
Explanation. /JEEE Trans. Systems, Man, and Cyber-
netics 17:432-444.

Kuipers, B. J. 1994. Qualitative Reasoning: Modeling

183

and Simulation with Incomplete Knowledge. Cambridge,
Mass.: The MIT Press.

Say, A. C. C. 1998. Identifying and Using Contradictory
Behaviors in Qualitative Simulation., Technical Report,
CMPE-98-QR1, Al Lab., Bogazigi University.

Say, A. C. C,, and Kuru, S. 1993. Improved Filtering for
the QSIM Algorithm. /EEE Transactions on Pattern
Analysis and Machine Intelligence 15(9):967-971.

Say, A. C. C,, and Kuru, S. 1996. Qualitative System
Identification: Deriving Structure from Behavior. Artifi-
cial Intelligence 83:75-141.

Shults, B. and Kuipers, B. 1997. Proving Properties of
Continuous Systems: Qualitative Simulation and Tem-
poral Logic. Artificial Intelligence 92:91-129.

QR99 Loch Awe, Scotland

184

