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Abstract

A new technique is presented to identify intervals
for parameters and initial conditions for nonlinear
dynamic systems based on an imprecise mathe-
matical model and measurements of system vari-
ables. This technique employs a fuzz interval
qualitative simulator for interval dynamical mod-
els and a qualitative description of measured sig-
nals, the episodes. These are based on the sign
of the variable and of its first and second deriva-
tive . Episodes describe in a very simple and intu-
itive form the dynamic behaviour of the measured
variable . By combining this qualitative with nu-
merical information, a structure and parameter
identification can be done in an very intuitive and
explainable way.
This technique is used within a tool, TAM-C,
to model and assess chemical processes involving
exothermic chemical reactions .
Two applications of this technique are given :
modelling ofa chemical reaction system and safety
assessment of an exothermic chemical process.
Theexamples are based on real industrial and lab-
oratory data.

Introduction
Deriving models of dynamic processes is important for
design, optimization and model-based monitoring and
control in many engineering applications . Many sys-
tems are too complex or poorly understood to be com-
pletely modeled based on physical principles . Appropri-
ate functions for parts of the equations which describe
the system behaviour have to be found . This is usu-
ally done in an iterative procedure using a priori and
empirical knowledge of the system to be modelled and
measurements .
When a possible model candidate has been postulated,
qualitative simulation techniques can be used to study
the behaviour of that model without knowing the pre-
cise values for all model parameters, i.e . before running
a time consumingquantitative parameter identification .
This behaviour can then be compared to the observed
behaviour of measured variables to check whether the
candidate should be considered further.
Over the last decade, research on qualitative reason-
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ing has produced many approaches to investigate such
ill-defined systems, (Weld and de Kleer 1990). These
approaches can be seen as an extension and general-
ization of traditional, quantitative modeling and sim-
ulation techniques, (Kuipers 1994) . However, due to
the inherent ambiguity of qualitative calculus, some of
the set of behaviours produced by a qualitative simula-
tor do not correspond to any of the possible behaviours
of the underlying physical system . These spurious solu-
tions make it difficult to apply qualitative simulation to
large, complex systems . Reducing the amount of spu-
rious solutions is an area of intense research . Recently,
(Bonarini and Bontempi 1994) proposed a qualitative
simulation approach, based on interval simulation, that
does not generate spurious solutions.
In this contribution we use an interval simulation
method as well to systematically identify possible model
candidates, numerical ranges of the unknown param-
eters and initial conditions and thereby verifying the
structure of the system equations. Qualitative interval
simulation is also used to assess a worst case scenario
of an exothermic process.

Fuzzy and Interval Simulation
Fuzzy sets allow subjective or imprecise knowledge to
be incorporated into models . A set of differential equa-
tions with fuzzy parameters and fuzzy initial conditions
forms a fuzzy dynamical model. The analytic basis to
handle and solve such a fuzzy dynamical model is pro-
vided by Zadeh's extension principle (Zadeh 1975) and
Nguyen's identity (Nguyen 1978).

Several fuzzy qualitative simulation methods that
generate solutions of fuzzy dynamical models have been
proposed, e.g . Qua.Si I and II (Bonarini and Bontempi
1994), Qua.Si III (Bontempi 1996), FuSim (Shen and
Leitch 1993), and FRenSi (Keller, Wyatt, and Leitch
1999). FRenSi, Qua.Si II, and Qua.Si III do a fuzzy
simulation by splitting the fuzzy region, formed by the
fuzzy values of system variables and model parameters,
into a-cuts using Nguyen's identity, i.e . the fuzzy sim-
ulation problem is transformed to several interval sim-
ulation problems . For these, all imprecise system vari-
ables and model parameters are represented by inter-
vals . The intervals of each interval simulation problem
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are combined to form a hypercube with the dimension
n+k (n = model order; k = number of imprecise model
parameters) and the evolution of this hypercube is sim-
ulated . In the special case that all initial conditions are
intervals, it is demonstrated in (Bonarini and Bontempi
1994) that it is sufficient to generate the evolution of the
external surface only to determine the model behaviour .

Integrating the hypercube avoids the introduction of
spurious behaviours ; only those system trajectories that
are possible from the initial uncertainty andimprecision
in the variables and parameters of the model are gen-
erated. This is due to the fact that interaction between
the system variables is maintained over the entire sim-
ulation, see below.

In the work reported here, the imprecision is exclu-
sively represented by intervals. In the following we will
always refer to intervals and interval dynamical models
but it is important to note that the same can be applied
to a wider class of fuzzy sets .
A simplified interval simulation algorithm has been

developed. Equally distributed samples are taken from
the initial region of uncertainty and integrated numeri-
cally. Since some initial conditions were known exactly,
the interior of the initial region of uncertainty had to be
sampled as well . From these simulations, the minimum
and maximum values for each time point are extracted.
Although this method generates an under-bound be-
haviour, good simulation results and a computationally
efficient solution are achieved. It is only for external
purposes, e.g . calculation of the model output, that the
hypercube is mapped back to individual non-interacting
interval values .

To demonstrate the above mentioned concept of in-
teraction, which avoids spurious solutions, the following
example is considered . Equations 1-3 are first evaluated
using the well-known rules of non-interacting interval
mathematics:

In Equation 1 and 2 the model parameters M,N are
calculated from the system parameters A, B. Without
loss of generality the fuzzy values of A, B are defined
as intervals A = [0,1], B = [-1, 0] . The results from
Equation 1 and 2 are then used in Equation 3, which
yields Y = [-2, 2], i.e .

	

beside the true solution [0, 0],
spurious solutions are obtained . In our approach we use
the system parameters A,13 directly in Equation 3:

Y = A+B- (A + 13) = [0, 0] ,

	

(4)

thus getting the only true solution . In the interval sim-
ulation problem mentioned above, interacting interval
mathematics are used, hence avoiding spurious solu-
tions as well .

Interval Identification Approach
The interacting interval simulation techniques intro-
duced above generate envelopes which enclose all phys-
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ically possible solutions without introducing any spu-
rious behaviours . However, for many applications not
only the envelopes enclosing the measured or simulated
variables at certain times are of interest, but as well -
or even more - the (qualitative) development over time.
The interval simulation techniques are not able to pre-
dict the possible shapes of curves within the region of
uncertainty.
In Figure 1 such an envelope is shown together with

t

Figure 1 : Sketch of an envelope (- - -) with measure-
ment data of the respective variable (") . The envelope
bounds the curve formed by the data points but cannot
predict the (qualitative) temporal shape of that curve

noisy measurements of the same variable xi . The mea-
sured variable has a maximum and decreases until it
reaches a stationary value. This behavior is certainly
very important, e.g for modelling or process supervi-
sion . Even though all measured points are within the
bounds calculated for that variable, interval simulation
based solely on the system equations cannot predict this
and other possible behaviours generated by the initial
region of uncertainty. To overcome this problem, first a
suitable form to represent the temporal shape of a vari-
able qualitatively over time will be defined. Then an
interval identification technique is deduced, which al-
lows the detection of behaviours like the one in Figure
1. Finally, the way the interval identification technique
is implemented is described.

Qualitative Description of Measured Data

The procedure described here follows the concept
presented in (King, Schaich, Miinker, and Hellinger
1997) . To overcome measurement noise which is usu-
ally present in real data the time series are smoothed
with spline functions in a first step . Experimental and
domain experience has been used to choose the type of
smoothing function . These curves are then divided into
sections of the same qualitative state.
(De Kleer and Brown 1984) defined a set of qualitative
numbers as the sign of the respective quantitative val-
ues, i.e . +,0 and -. Based on this, the qualitative state
of a continuous quantitative variable x(t) is defined as
the triplet of the qualitative value of the variable v and
the first dv and the second ddv derivative of the vari-
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M = A+5 (1)

A( = -(A + 8) (2)
Y = M +N . (3)



able, (Cheung and Stephanopoulos 1990, Coghill 1992).

A time interval, in which this triplet does not change, is
called an episode. If any of the above properties changes
value, a new episode starts . The time at which this
change between two episodes occurs, is the transition
time. The temporal shape of any variable is described
here with a sequence of episodes, called a history of
episodes or qualitative history and associated transi-
tion times.
All combinations for dv and ddv, which are physically
possible, are shown in Figure 2. Thus, all possible

Figure 2: Episodes

episodes are defined by the types from Figure 2 and
the sign of the value itself denoted by a superscript,
e.g . A+ or D- .
Thus, with this procedure, noisy, quantitative informa-
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Figure 3: Abstracting the noisy, quantitative mea-
surement information (") of Figure 1 into a qualita-
tive form by smoothing (-) and division into Episodes
(A+B+C+) .

tion can be transformed into a simple qualitative rep-
resentation, which contains important features of the
original time series . In Figure 3 the smoothed curve

reaches a maximum value for the transition time tl (first
pair of dotted lines), then decreases until it changes its
curvature at t2 (second pair of dotted lines) and reaches
an equilibrium value. Numerical values ofthe transition
times can be calculated, however, tt and t2 are treated
as intervals too. This accounts for the imprecision and
bias introduced by using a smoothing function to de-
scribe the behaviour of the variable.

Extension of the Interval Simulation
In order to use this qualitative description based on
episodes, the interval simulation technique has to be
extended to include the generation of information, with
which the observed episodes can be validated.
The process under consideration is described by a sys-
tem of ordinary differential equations, Equation 5.

dX (t)
dt

	

-
f(t,X(t), P),

	

X (t = 0) = Xo

	

(5)

X(t) is the vector of state variables (dimension n) and P
the vector of parameters (dimension k) . The elements
of the variable vector Xi(t), the initial conditions Xi,o
(i = I...n), and parameters Pj (j = 1. ..k) are inter-
vals, i.e . the region of uncertainty has the dimension
N = n + k. All elements of the vector of the right-
hand side f are continuous and differentiable . Since
all variables and parameters are expressed as intervals
Equation 5 is an interval differential equation (IDE).
In order to not only compare the envelopes but as well
the (qualitative) shapes of the measured variables, the
first and second derivative must be determined together
with the values of the measured variables. The differen-
tial equation system describing the process under con-
sideration, Equation 5, is differentiated once, yielding :

It should be noted, that no additional uncertainties are
introduced by differentiating Equation 5, since the rela-
tionships between the variables in Equation 5 and 6 are
conserved when _f is differentiated analytically. Since
N is not increased, it is not necessary to differentiate
Equation 6 again to calculate the second derivative . X
is calculated by Equation 6.
If an interval simulation is done for Equation 8 every
point of the state hypercube corresponds to a consis-
tent triplet X, X, and k of the original problem stated

IR7

Type A B C D E F G

x

dv + - - + + - 0

ddv - - + + 0 0 0

+ if x(t) > 0
v 0 if x(t) = 0

- if X(t) < 0

+ if XI(t) > 0
dv 0 if x'(t) = 0

- if x' (t) < 0

+ if X11 (t) > 0
ddv 0 if x" (t) = 0

- if x"(t) < 0

d2X(t) of
8f

- + X (6)
dt2 8t OX_

with the following initial condition:

X(t = 0) = f(0, Xo,P) (7)

Finally, Equations 5 and 6 can be rewritten as:

dU(t) =
g(t, Z(t), p), Z(t = 0) = Z (8)

with

=
Zt

Xi for i 1, . . ., n_
- {

(9)
Xi_n, for i = (n + I),_, 2n



in Equation 5. This extended interval simulation now
yields the envelopes for X, X, and X, which have to be
evaluated together . Figure 4 shows a sketch of these
combined envelopes. The qualitative history of the
measured variable A+B+C+ can nowbe compared with
the envelopes of Xi, Xi, and Xi. The first episode A+
is consistent with the behaviour generated by the IDE
since the regions Xi, Xi, and Xi cover, include the signs
of this episode. The same is true for the change from
episode A+ to B+, which corresponds to the crossing
of the abscissa by the envelope of Xi within the time
interval tl . However, the transition from B+ to C+ can
not be explained by the given IDE, since the envelope
for Xi covers only negative values for the time interval
t2 . Based on this, it can be concluded that the IDE
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Figure 4: Sketch of the combined envelopes for Xi, Xi,
and Xi (- - -) with the transition time intervals ti
and t2 (. . .) indicating the changes of the qualitative
temporal shape of the smooth curve (-) from Figure 3

which created the envelopes Xi, Xi, and Xi can not
explain the observed data points (") in Figure 4.
In the following step, the intervals for the parameters
and initial conditions are varied, if this is physically pos-
sible (see below) . That way, all combinations of inter-
vals which can explain the observed data are identified .
If no such interval is found, the functional structure
of the IDE is not capable of reproducing the observed
process dynamics .

Implementation of the Interval
Identification Technique

Currently, only the signs which the envelopes cover are
checked against the respective episodes . This is done
with a certain margin of error. It does not make sense
to check the numerical values of the first and second
derivatives of the spline function against the ranges the
respective episodes cover, because the smoothing of the
measurement data is a biased and data-only driven pro-
cedure, whereas the mathematical model used to gener-
ate the envelopes, contains structural knowledge of the
system .
In the current version, the interval identification tech-
nique has been implemented using a simplified ver-
sion of the interval simulation algorithm. Equally dis-
tributed samples are taken from the initial region of
uncertainty and integrated numerically. From these
simulations, the minimum and maximum values for
each time point and observed variables are extracted.
Through the number of samples the approximation er-
ror can be influenced .
For efficiency reasons, only the original Equation 5 is
integrated and the first xi(tk) and second -ii (tk) deriva-
tives of the measured state or non-state variables are
calculated from a five point Lagrange interpolation of
Xi(tk)
The interval identification technique is used within
TAM-C (Tool for the Automatic Modelling of
Chemical reaction systems), a software tool which au-
tomates the modelling process of exothermic chemical
reactions, see Figure 5. All procedures depicted in a
dashed box in Figure 5 are integrated in TAM-C and
run without any interaction by the user . Therefore,
the process of building adequate mathematical models
of reaction systems is substantially accelerated . The
qualitative techniques used are described in detail in
(Schaich and King 1999, Schaich, Miinker, Hellinger,
and King 1998, King et al . 1997) .
Models with different rate equations beginning with

simple expressions for formal kinetics are set up for
the investigated reaction system in an automated pro-
cedure . A priori rule-based knowledge is used at this
stage to restrict the amount of possible models .
The interval identification technique has been imple-
mented as an alternative to an order of magnitude sim-
ulation, a non-interacting interval simulation algorithm.
To verify if a postulated model is a possible candidate
for subsequent quantitative identification, the described
qualitative representations of the measured variables
are extracted from measured data . Those qualitative
models, which do not generate behaviors correspond-
ing to the qualitative phases of measured variables, are
rejected . In the following step, the substantially more
time-consuming quantitative structure and parameter
identification is applied only to the remaining candi-
dates, which can at least qualitatively describe the mea-
sured data . For this the interval identification also gives
a first rough estimate of the unknown parameters .
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Order of Magnitude
Parameter Identification
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Model Based
Monitoring and Control

Figure 5: Modelling process in TAM-C, (Schaich and
King 1999)

Drawbacks of the Interval Identification
Technique
In the current version a drawback of the proposed tech-
nique is that it can not be proved, that the envelopes
calculated encapsulate all physically possible behaviors.
This is because the simulator samples the initial region
of uncertainty. However, the sampling simulation was
chosen for its efficiency, since in TAM-C all possible
combinations of parameter intervals are studied which
amounts to up to several thousand interval identifica-
tion runs .
The interval identification technique presented here is
independent of the underlying simulation algorithm and
can be replaced by any alternative fuzzy or interval sim-
ulator . An interacting interval simulator which uses
optimization techniques to determine the envelopes is
currently under development. This will improve the
performance of the interval identification technique as
well as guarantee that all possible behaviours are found.

Applications
In the first application, a parameter identification for
a three step reaction system is performed. The ini-
tial ranges of the parameters are too wide to be evalu-
ated directly with a gradient based method . Therefore,
more narrow subintervals are formed and with interval
identification combinations of subintervals are identi-
fied, which can explain the observed behaviour.

The second application comprises a structure and pa-
rameter identification of an exothermic reaction and a
subsequent safety assessment .
As mentioned above, the approximation error for the
calculated envelopes can be influenced through the
number of samples. For the two applications a sam-
ple number of 10 for each parameter was sufficient to
yield an error below 0.1% .

Identification of valid parameter ranges

Ethylenoxide (EO) reacts with ammonia (NH3)
yielding monoethanolamine (MEA), diehanolamine
(DEA), and triethanolamine (TEA), (Steiner 1993) :

Assuming mass action the following simple rate equa-
tions are formed :

ri

r2

r3

where ci denotes the concentrations of the different
compounds (i = EO, NH3 , etc .) . The unknown kinetic
rate constants ki , k2, and k3 had to be determined,
given measurement data for CMEA, CDEA, and CTEA .
As mentioned above, the initial ranges of the estimated
parameters were too wide to be evaluated directly with
a gradient based method . Therefore, narrow subinter-
vals for the parameters were formed and with interval
identification combinations of subintervals were iden-
tified, which explained the observed behaviour. The
found combinations of subintervals were the starting
point for the subsequent parameter identification .
The smoothed data for the measured concentrations
CMEA, CDEA, and CTEA resulted in the qualitative

k,CEOCNH3

k2CEOCMEA

k3CEOCDEA

Table l : Qualitative episodes and transition times for
the measured concentrations CMEA, CDEA, and CTEA

initial, very rough estimate for all parameters was the
interval [1 . . . 11] 1/mole/h, which was estimated from
the overall turnover of this process. This range was
divided into subintervals of width 2 1/mole/h for each
parameter and all 125 possible combinations were eval-
uated in an automatic procedure using interval identi-
fication with an interacting and a non-interacting sim-
ulator . Only with an interacting simulator the interval
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EO + NH3 -~ MEA

EO +MEA --3 DEA
EO +DEA --~ TEA

episodes and transition times given in Table,l . The

Qualitative Transition time
History intervals [h]

CMEA A+B+C+ 0.2 . . . 0 .3 [0.42 . . . 0.52
CDEA D+A+ 0 .01 . . . 0.11
CTEA DA 0.19 . . . 0.29



identification technique was able to find only the true
combination, k1=[3 . . . 5], k2=[l . . . 3], and k3=[l . . . 3],
see Figure 6.
This identified set of intervals provided the starting
point for the subsequent quantitative parameter iden-
tification in which the following values were deter-
mined: k1 =4.0244 1/mole/h, k2=2.471 1/mole/h, and
k3=1 .486 1/mole/h . The quantitative parameter iden-
tification was done with a quasi-newton algorithm and
the weighted sumof all three residuals as objective func-
tion .
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Figure 6: The combined envelopes of the value, first
and second derivative for MEA, DEA, and TEA (- - -)
with the measured data (o) and the simulated curve
with the identified parameters (-)

Assessment of Safety Critical Reactions
The assessment of the safety of exothermic processes is
based on the dynamics of the heat evolution, which is
described by the kinetic rate equation of the chemical
reaction . The standard experimental technique to gain
insight into this dynamic is thermal analysis . For most
industrial exothermal batch- or semi-batch processes
this thermal signal (temperature or heat evolution rate)
is the only time series measurable in practice, because
often all occurring compounds are generally difficult to
analyse, highly toxic or exist only for a very short time
or under extreme conditions .
(Leonhardt 1997b) compared isothermal, isoperibolic
and adiabatic calorimeters and a power-compensated
DSC by running experiments of a simple reaction in
each of them . In this model reaction phenylisocyanate
(PIC) and 2-butanol (BuOH) with toluene as a solvent
form carbamate (Car) :

PIC + BuOH --> Car

	

-OH

	

(10)

First, a structure and parameter identification for the
kinetic rate equation was done automatically with
TAM-C. It was based on the description of the isoperi-
bolic experiments in (Leonhardt 1997b) and the data of
isoperibolic experiments at different temperatures given
by (Leonhardt 1997a) . The first rate equation, pro-
posed by the model generator (which always starts with
the least complex possible rate equation for the system
under investigation), which was not rejected by the rule-

E
based model library was: r = k,,,, e - RT CPICCBvOH .
Three out of 125 possible combinations for the unknown
parameters k ... E, and -OH, were not rejected by in-
terval identification . However, the combinations found
were rejected by the subsequent quantitative param-
eter identification . Although the simulated evolution
showed the same qualitative behaviour, the quantita-
tive deviations exceeded the allowed error tolerance.
Thus, by using interval identification, it was shown,
that within the full range of the initially proposed in-
tervals for the parameters only three narrow combi-
nations can create the observed qualitative behaviour.
This reduction of the search space avoided more time-
consuming quantitative identification runs. Moreover,
with this technique it was possible to automatically de-
tect that the chosen kinetic expression was unable to
explain experimental data . Without this quantitative
assessment it would not be possible to automatically
explain why a qualitative identification does not con-
verge. This was necessary, however, as the main goal
of TAM-C is the automatic modelling of reaction sys-
tems . It should be avoided that a human expert is
responsible to stop a non-converging identification run .
The next rate equation proposed by TAM-C was able
to reproduce the observed behaviour within the given

error tolerance, r = k,,e-lfrCpjccBuOH. This result
is identical to the one given by (Leonhardt 1997b) .
Furthermore, (Leonhardt 1997b) made a systematic
study, using different types of calorimeters and found
different kinetic parameters, depending on the type of
calorimeter. For each type of calorimeter, several ex-
periments were carried out under identical initial con-
ditions but different courses of temperature. Subse-
quently, the kinetic parameters of the performed ex-
periments were determined for each calorimeter in an
uniform manner by evaluating several measurements si-
multaneously . However, a simultaneous evaluation of
measurements from different calorimeters was not done.
Instead, the following averaged equation was deduced,
which accounts explicitly for the differences of individ-
ual identification runs :

with

r = k(300 K)e- [3-00-KR- +] c-P"CB.OH

	

(11)

n

	

= 1.05±0.1

	

-
k(300K)=(1 .33±0.3) X 10-4

	

mole' -2,12,-l s- 1

E

	

=

	

41±3

	

kJ mole- '
-OH

	

=

	

85±5

	

kJ mole- '

19 0



To assess the effect of these imprecisions, this rate equa-
tion was used in a simple design case study using an
interacting simulator . In practice, such an exothermic
process would be realized in a semi-batch reactor with
a controlled cooling jacket, keeping the reactor isother-
mal.
Based on this, the following worst case scenario was
studied:

. Complete cooling failure

. All compounds already in the reactor'

A complete cooling failure means that the reactor ex-
hibits an adiabatic behaviour. The maximum adiabatic
temperature rise is given by :

with X as the overall turnover and the b-factor, ac-
counting for the heat capacity of the vessel to be b ;zt~ 0.
However, it is important to know with which rate
and acceleration this maximum temperature is reached.
Since the given kinetic parameters are imprecise, this
was studied with an extended interval simulations, as
proposed above, see Figure 7. The fastest rate, with

OTad = mAH+ b)

	

(12)

Figure 7: Assessment of the Temperature evolution in
case of a cooling failure for the carbamate formation
reaction

which the temperature would increase, is for the setup
used in Figure 7, 4.2 K/min. Thus, the extended inter-
val simulation is an ideal tool to study such scenarios .

Conclusion
The objective of this paper was to introduce interval
identification, a technique to identify intervals of pa-
rameters and initial conditions for nonlinear dynamic
systems based on an imprecise mathematical model and
measurements of system variables.
First, the evolution of the measured data is described
by representative smoothing functions. The smoothed
curve is divided into sections of the same qualitative
behaviour defined by episodes, i.e . by the sign of the
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value and the first and second derivative . The evolu-
tion of the measured data is described by the sequence
of episodes .
Next, an interacting interval simulator is used to calcu-
late numeric envelopes for the measured variables and
their first and second derivative .
Finally, in the interval identification step the qualitative
sign information represented by the episodes is checked
against the numerically calculated envelopes. If the en-
velopes bound the behaviour represented by the quali-
tative history, the identification is successful . Otherwise
the assumed interval differential equation cannot create
the qualitative dynamic behaviour observed .
Two different applications were presented: A parameter
identification of a three-step reaction system in which
the interval identification technique proved to be more
efficient than a non-interacting simulator by identifying
the correct set of intervals.
And a structure and parameter identification of an
exothermic reaction, which was subsequently used for
an assessment of the safety using an imprecise repre-
sentation of the kinetic equation .
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