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Abstract

SQCA is an implemented technique for the semi-
quantitative comparative analysis of dynamical sys-
tems . It is both able to deal with incompletely speci-
fied models and make precise predictions by exploiting
semi-quantitative information in the form of numeri-
cal bounds on the variables and functions occuring in
the models . The technique has a solid mathematical
foundation which facilitates proofs of correctness and
convergence properties . SQCA represents the core of a
method for the automated prediction of experimental
results .

Introduction
In many situations it is important to compare the be-
havior of dynamical systems. A population biologist,
for instance, may want to predict the consequences of
the introduction of a new species into an ecosystem.
For an engineer monitoring a chemical process, it may
be critical to know whether a particular perturbation
could explain observed deviations from the normal be-
havior .

If quantitative models and precise quantitative infor-
mation about the initial conditions are available, a com-
parative analysis (CA) of the behaviors of the systems
is straightforward. One simply compares the behav-
iors predicted by means of numerical simulation at the
time-points of interest . Often, however, the available
information about the systems is incomplete . In such
cases we can resort to qualitative models to describe
the systems, predict behaviors from an initial qualita-
tive state by means of qualitative simulation (Kuipers
1994), and use qualitative CA techniques to compare
the behaviors (Weld 1988 ; Neitzke & Neumann 1994;
de Jong & van Raalte 1997).
A disadvantage of qualitative CA techniques is the

imprecision of their conclusions, which hampers their
upscalability. When comparing the behaviors of more
complex systems, with several structural differences
and differences in initial conditions, de Jong and van

*A shorter version of this paper appears in the proceed-
ings of the 16th International Joint Conference on Artificial
Intelligence, IJCAI-99, Stockholm, 31 July - 6 August 1999 .
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Raalte's CEC* is likely to generate a large number of
possible comparative behaviors. Besides these ambigu-
ities, due to the qualitative nature of the available in-
formation, it only characterizes differences as higher or
lower, without giving an indication of their magnitude.

In this paper we introduce SQCA, a technique which
arrives at more precise conclusions than qualitative CA
techniques, while retaining their ability to deal with
incomplete information. The technique exploits semi-
quantitative information about the systems, in the form
of numerical bounds on the variables and functions oc-
curring in the models . Although SQCA will be pre-
sented as a self-contained technique, it can also be inte-
grated as a filter on comparative behaviors into a qual-
itative CA algorithm. The implementation of SQCA
has been used to answer CA questions involving struc-
tural differences in combination with differences in the
initial conditions of the systems.
SQCA forms the core of a method for the automated

predictions of experimental results that is currently be-
ing developed. The approach predicts an estimated
value of an unperformed measurement by exploiting
available knowledge about experiments already carried
out. To this end it uses an integration of techniques
from the field of automated modeling and rVasoning
about physical systems.
The presentation starts with a brief review of semi-

quantitative simulation, since semi-quantitative mod-
els and behaviors form the input of SQCA . Semi-
quantitative CA is basically a constraint propagation
process. The next section describes how the requisite
constraints are derivable from the models and behaviors
of the systems to be compared . The SQCA algorithm
is then presented, together with guarantees on its cor-
rectness and convergence. In the following sections the
results obtained by means of SQCA are given, followed
by a short description of the approach to the automated
prediction of experimental results. A brief discussion
and ideas for further work conclude this article.

Semi-quantitative simulation
We employ the semi-quantitative simulation techniques
Q2+Q3, which function as filters on qualitative be-
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Figure 1 : QDEs for an object fired upwards in a gravitational field, where the gravitational field is (a) constant, (b)
height-varying and completely specified, and (c) height-varying and incompletely specified . In (b) and (c) friction istaken into account, whereas in (a) it is neglected . (d) Ranges and envelopes which turn the QDEs into SQDEs. The
variable h stands for height above the Earth surface, v for velocity, a for acceleration, g for gravitational constant, r
for Earth radius, x for distance from the center of the Earth, and k for a constant dependent on the air density p,
projected area A of the object in the direction of motion, object mass m, and drag coefficient c.

haviors obtained by means of QSIM (Kuipers 1994 ;
Berleant & Kuipers 1997) . Although other simulation
techniques could have been used as well (e .g ., Vescovi,
Farquhar, & Iwasaki (1995) ; Kay & Kuipers (1993)),
we have chosen Q2+Q3 because they produce a semi-
quantitative annotation of the behaviors while preserv-
ing their underlying qualitative structure .
The models used for semi-quantitative simulation are

semi-quantitative differential equations (SQDEs), that
is, qualitative differential equations (QDEs) enhanced
with numerical information (figure 1) . We use a nota-
tion for QDEs which emphasizes their abstraction from
ODES and which simplifies the propositions in later
sections . Besides the basic qualitative constraints in
QSIM, it allows the use of composite qualitative con-
straints (Vatcheva & de Jong 1999) . For instance, the
constraint

QV (a) = -QV(g) QV
(r)2

- QV(k)QV(v)QV (I v [)QV(x)2

in figure 1(b) is composed of QV(a) = QV(p l ) +
QV (p2),

QV(pi) = -QV(g)QV(r) 21QV(x) 2 , and
QV(p2) = -QV (k)QV(v)QV (I v l),

	

( 1 )
the latter two being composite constraints themselves .
Generally speaking, we deal with constraints QV(y) =
f(QV(xi), . . . , QV (x.)) (or QV(y) = f(QV (x))),
where f is a qualitative constraint between the vari-
ables y, xl, . . . , xn .
The semi-quantitative information completing the

QDE takes several forms. In the first place, numeri-
cal ranges are added to landmarks . For a landmark li,
range(li) is defined as an interval [li, li] with li, li E R* .
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Second, envelopes can be added to monotonic function
constraints in the QDE. An envelope(f) of a mono-
tonic function is defined as a pair of functions f,f, with
_f(x) < f(x) < 7(X), for all x in the domain of f.
Q2 is a technique which uses the ranges and envelopes

of the SQDE to refine a qualitative behavior tree pro-
duced by QSIM . Given ranges for the variables in the
initial qualitative state, it builds a constraint network
and propagates the initial ranges through this network.
The constraint network relates the variables at each
distinguished time-point through constraints on their
ranges . Constraint propagation is achieved by recur-
sively evaluating the constraint expressions by means of
interval arithmetic and by updating the range of a land-
mark through intersection of the present range and the
newly calculated range. Q2 either rules out qualitative
behaviors or produces qualitative behaviors in which
the qualitative values are annotated with numerical
ranges, so-called semi-quantitative behaviors (SQl3s).
Q3 improves upon the results obtained by means of

Q2 by following an approach called step-size refinement .
First, it. locates or creates a gap in a semi-quantitative
behavior, that. is, it takes a pair of adjacent distin-
guished time-points ti and ti+i, such that ti < ti+i .
Then, it interpolates a new state in this gap at an aux-
iliary time-point taux, ti < taux < ti+1, and provides
initial ranges for the qualitative value of the variables
at taux . The newly created state adds new landmarks
and constraints to the constraint network. A new round
of constraint propagation by means of Q2 results in a
refined or refuted semi-quantitative behavior .

Figure 2 shows two semi-quantitative behaviors pro-
duced by QSIM and Q2+Q3 from the models in fig-
ure 1. Both behaviors describe an object falling back
to its initial height, in the first case in a constant gravi-
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QV(h) = QV(v) QV(h) -= QV(v)
QV(h) = QV(v) QV(v) = QV(a) QV(v) = QV(a)
QV(v) = QV(a) QV(a) = -QV(g)

QV(x)2
- QV(k)QV(v)QV(I vl ) QV (a) = -QV (g)f(QV(x)) -7(QV(v)),

QV(a) = -QV(g) with f = M- , j = Mo
Q V(g) = (0, std) QV(x) = QV(r) + QV(h), QV(r) = (0 . std) Q V(g) = (0, std)

(a) QV (9) = (0, std), QV(k) = (0, std) (b) (c)



tational field without friction and in the second case in
a height-varying gravitational field. with friction .
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Figure 2: SQBs obtained from the models in figure 1(a)
and (b), respectively.

RIVs and RIV constraints

Relative interval values

Consider two SQBs, either topologically equal or topo-
logically different (Weld 1988). Topologically equal be-
haviors show the same sequence of transitions between
qualitative states and the (shared) variables have the
same qualitative value in the corresponding states of
this sequence .
Let to, . . . , t, and to, . . . , t, be the sequences of dis-

tinguished time-points in the first and the second SQB,
respectively. The behaviors are compared at meaning-
ful pairs of comparison (de Jong & van Raalte 1997).
A pair of comparison pc is a pair (t, t) of time-points
in the behavior of the first and second system ., it is
meaningful ifone of the following conditions is satisfied:
(1) t and t are the initial time-points to and to ; (2) t
and t are the end time-points t� and t�,, ; or (3) t and
t are time-points at which a variable reaches the same
landmark 0, -oo or oo in both systems. Pairs of com-
parison can be ordered by a partial ordering relation :
Pco :~ pcl, iff to < tl and to < tl, where pco = (to, to)
and pcl = (t 1 , tl) . pe, is called a successor of pco. A
comparison of the behaviors in figure 2 yields the mean-
ingful pairs of comparison pco = (to, to), pcl = (t i , tl),
and pct = (t2,Q, with pco :~ pcl _~ Pc2.
A comparison of the shared variables of the systems

at a pair of comparison gives rise to relative interval val-
ues (RIVs) . They provide an estimate of the difference
AX(Pc) = ~(t) - x(t) of variables x at pc = (t, t) .

'As a notational convention, ° denotes variables in the
behavior of the second system .
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Definition 1 The R1V of a shared variable x at a pair
of comparison pc is defined as range(Ax(pc)) .

The RIVs at a pair of comparison are related to
each other, and to the RIVs at predecessor and suc-
cessor pairs of comparison . The RIV constraints ex-
pressing these relations are derived from the SQBs and
the SQDEs of the systems which we want to compare.
Several types of RIV constraints exist.

Constraints from SQBs
A direct way to obtain a range for the difference of
a variable at a pair of comparison is to examine the
numerical information in the states of the SQBs .

Proposition 1 At pc = (t, t) the relative interval value
of x is given by

range(Ax(pc)) C range(:i(i)) - range(x(t)) .

A special case of this proposition is the difference in
the duration of the behavior fragments T and T, defined
by two successive pairs of comparison pco = (to, to) and
Pci = (ti, ii ):

range(AT(pco, pcl)) C (range(tl) - range(to)) -
(range(tl) - range(to)) .

The behaviors in figure 2 show that the range
of the acceleration in the first and second system
is range(a(to)) = [-9.83, -9.83] and range(a(to)) =
[-11 .0, -10.3], respectively. Applying proposition 1 at
pco yields range(Da(pco)) = [-1 .17, -0.47] .

Constraints from SQDEs at a pair of
comparison
Suppose the qualitative value of a shared variable x is
constrained in the first and second system as follows:

QV (x) = .f(QV(r)) ;

	

QV(_,~) = g(QV(s)),

	

(2)

where f and g represent qualitative constraints, and r
and § are vectors of variables. We will allow the models
of the two systems to be structurally different, so f and
g as well as r and s may be different.

In order to derive an RIV constraint from (2), f and
g need to be made comparable first. This is attained by
bringing f and g in the form of a single constraint, the
so-called comparison constraint. Let q be the vector
of variables occurring both in r and s, and a a vector
of newly introduced auxiliary variables with specified
qualitative values, so-called comparison values . The
constraints f and g are comparable through a compar-
ison constraint h,

QV(x) = h(QV (q), QV (a)) ;

QV(:~) = h(QV (4), QV (a)),
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under the following condition : h is satisfied iff f and
g are satisfied for every QV(r), QV (s) given the com-
parison values QV(a), QV(a) .

In contrast with (de Jong & van Raalte 1997), the
existence of such a comparison constraint can be guar-
anteed . The set of basic qualitative constraints is re-
stricted and for every pair of f and g a comparison con-
straint can be easily found due to the simple form of f
and g. When f and g are composite, a comparison con-
straint is obtained by decomposing f and g into basic
constraints and composing the corresponding compari-
son constraints into a composite comparison constraint
h (Vatcheva & de Jong 1999) .
The acceleration constraint from the model in fig-

ure 1(b) can be decomposed as in (1) and the accelera-
tion constraint in figure 1(a) as

QV (pi) = -QV(g) and QV(a) = QV(pi) .

The comparison constraint of the first qualitative
constraints in (1) and (4) is defined as QV(pl) =
-QV(g)QV(al) with comparison values QV(al) =
(l,std) and QV(dl) = QV(r"2/d'2). The compari-
son constraint of the second constraints is QV(a) =
QV(pi) + QV(a2) with comparison values QV(a2) =
(0, std) and QV(&2) = QV(p2) . Their composition de-
fines h as

QV(a) = - QV(g)QV (ai) + QV (a2) .
Proposition 2 Suppose that QV(x) and QV(i) are
constrained by f and g, as in (2). Let h be the compar
ison constraint of f and g. The RIV of x at pc = (t, t~
is given by :

range(Ax(pc)) C range(dq)t - range(Oq(pc)) +
range(da)' - range(Aa(pc)),

with dq and da vectors of partial derivatives of the
function corresponding to the comparison constraint,
i.e ., dq,i = q-h(mq, ma) and daj = aa~h(mq,ma) .2
Further, mqi lies between qi(t) and qt(t), and maj be-
tween aj(t) and dj(t) .
Proof. The constraints in (3) are abstractions of the
mathematical equations

x(t) = h(q(t), a(t)) ; x(t) = h(d(t), a(t)),
where h is a continuously differentiable function . Sub-
tracting x(t) and x(t) and applying the generalized
mean value theorem, one finds

OX(pc) = 1:
a h(mq, ma)(gi(t) - qi(t))

a+E_as , h(mq, ma)(aj (t) - aj (t)),
j=l j

2Throughout this paper h is used to refer both to con-
straint and the mathematical function from which the con-
straint is abstracted . Whenever a confusion is possible, we
explicitly speak of the constraint h or the function h .
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where mqi lies between qi(t) and di(i), and maj betwee
aj(t) and dj(t) .
Ranges for the partial derivatives of h are derived

from interval extensions Dq,i and Da,j of dq,i and
da,jrespectively (1`Ioore 1979). It can be easily shown that

such interval extensions always exist and are uniquely
specified (Vatcheva & de Jong 1999).

In this way,

range(d9,i) = D9,i(range(mq), range(ma)) with

range(mat) = span(gi(t), di(t))
rnax(4i(t), 4i(t))]

Similar expressions are obtained for range(maj) and
range(da,j) .

In the example above we find at pco the RIV con.
straint
range(Da(pco)) C -span(al(to),al(io)) -range(Og(pco))

-span(g,g) range(Aal(pco))+range(Da2(pco)),

with span(al(to),ai(to)) = span(l,r2/J;2(to)),
range(Dal(pco)) = range(T2/d'2(jo)) and
range(Da2(pco)) = range(p2(to)) .

Constraints from SQDEs between pairs of
comparison
Between pairs of comparison the behavior of a shared
state variable x is determined by the derivative con-
straints in the SQDEs:

QV(x) = QV(r);

	

QVO) = QV(s) .

	

(6)

Derivative constraints give rise to additional RIV
constraints. Consider the pairs of comparison pco =
(to, to) and pcl = (t i, tl), which define primitive behav-
ior fragments [to, tl] and [to, il l, that is, behavior frag-
ments without intermediary distinguished time-points.
The intervals will usually contain auxiliary time-points
taux ; E]to, tl [ and iauxj E]to, tl [, which have been inter-
polated during simulation .

Since in general to 34 to, we will synchronize the be-
havior fragments first by means of a procedure which
shifts the uncertainty in to and to to subsequent time-
points . The ranges of the synchronized time-points is
in the behavior fragment of the first system are defined
as : range(to) = [0, 0], range(ti) = [t l - to, tl - to], and
range(ta�xi ) = [tauxi - to, tauxi - to]. Synchronization of
the behavior fragment of the second system is accom-
plished in the same way. We will henceforth assume
that the behavior fragments have been synchronized al-
ready.
We now introduce auxiliary- pairs of comparison by

means of the auxiliary time-points . These pairs of com-
parison allow one to improve the prediction of differ-
ences at qualitatively important time-points.
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t, E [3 .05 . 3 .561

	

t_, = 3.8

	

tau, = 4 .32

	

t�� z, = 4 .85

i, E [2 .9. 3 .521

	

3.98

t, E 10,01 t_, E [0-24,0 .751

	

t-, E [0 .76,1 .27] tn� =, E [1 .29,1 .81
PC-,',Pct

i, E [0 .01

	

ia�, E [0 .46,1 .08]

	

i_, E [1 .09,1_72]

Definition 2 Suppose two systems are compared over
primitive behavior fragments defined by pco and pct
with n and m auxiliary time-points . Setting taux � + , =
t i and faux,., +1 = tl, we define auxiliary pairs of com-
parison

pCauxk = (tauxo taux;), range(taux;) <_ range(t1), or

pCauxk - (taux,,taux,), range(taux,) :5 range(t,)

where 1<<i_<n+1,1 _< j _m+1,and1 <k<
n+m+1 .

E [1 .83, 2 .451

	

i2 E [2 .45 . 4 .451

Notice that we introduce auxiliary pairs of compar-
ison only conditionally. The condition taux ; <_ tl for
pcauxk ensures that taux ; is a time-point really occurring
in the (synchronized) behavior fragment of the second
system .
Figure 3(a) shows primitive behavior fragments of

an object launched upwards . Q3 has interpolated
three auxiliary time-points in each behavior fragment .
The synchronized behavior fragments and the auxiliary
pairs of comparison are shown in figure 3(b) . The pairs
of comparison have been ordered with respect to the

relation .
With the help of the auxiliary pairs of comparison,

the RIV of the shared state variable x at pct can be
expressed in terms of the RIVs of x at auxiliary pairs
of comparison between pco and pct .

Proposition 3 Given the qualitative constraints (6)
and k auxiliary pairs of comparison defined by defini-
tion 2 . The relative interval value of a shared state
variable x at pcaux; (1 < i <_ k) and pct is defined as
follows

range(Ax(pcaux;)) C n {range(Ax(pcaux,)) +

(span(S(taux, ), S(taux ; )) - span(r(tauxi ), r(taux ; )))
(range(taux ;) - range(tauxi))}
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1 2 E [1 .85, 5 .89]

t 1 E [5 .41,8.94]

i2 E [5 .97, 7 .351

PCI

PCavr,

PCat, 2

PCaUra

Figure 3 : (a) Behavior fragments [t1, t2] and [t1, t2] of the behaviors in figure 1 .

	

(b) The synchronized behavior
fragments with the auxiliary pairs of comparison and (c) the ordered (top to bottom) auxiliary pairs of comparison .

range(Ax(pcl)) C n {range(Ax(pcaux;)) +

span(s(t aux , ), A(il)) - (range(il) - range(taux , )) -
span(r(taux,),r(t1)) - (range(t1) - range(taux,))}

where PCaux i are direct predecessor pairs of comparison
of Pcauxi and pct, and PCauxo is set to pco .
Proof.

	

Let

	

Pcauxi	_

	

(taux ;, taux ; ),

	

pcaux

	

=
(taux,,taux,), pcaux; _-~ pcaux; . Applying the mean
value theorem for x and x in the time interval
[taux,,taux ;] and subtracting the resulting expressions
we get

AX(pcaux;) = Ax(pCaux;) +

MM_	- r(mtaux))(taux; - taux, ),
where mtaux, mtaux E]taux;, taux, [ . Taking into account
that r and s are qualitatively uniform between the ad-
jacent time-points to, t1 and to, ii, respectively, and
hence between the auxiliary time-points taux, , taux ; ,
we conclude that r(mtaux) E span(r(taux,),r(taux));
and S(mtaux) E span(S(tauxi ),S(taux;)) . The expres-
sion above can then be transformed into

	

`

range(Ax(pcaux ;)) C range(Ax(pcaux ;)) +

(span(S(taux, ), S(taux ; )) - span(r(tauxi ), r(taux ; )))
(range(t auxi ) - range(tau.,M .
Since pcaux ; may have more than one direct prede-

cessor Pcaux;, there can be a number of estimations of
the RIV of x at Pcaux i computed by means of the RIV
of each pcaux, . Hence, the relative interval value of x at
pcaux ; is given by the intersection of these estimations .
The proof of the second part of the statement is ac-

complished in an analogous way.
In the example of figure 3 the proposition contributes

6 RIV constraints for each of the variables h and v .
As a special case, consider the situation that x is

constant in both systems, i.e.
QV

	

(0, std) ;

	

QV(x) _ (0, std) .

	

(7)
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Without proof we add the following proposition.

Proposition 4 Suppose that QV (x) and QV(.~) are
constants, as in (7), and we compare the systems over
behavior fragments determined by pco and pcl . The
RIV of x at pcl is now simply range(Ox(pci)) _
range(Ox(pco)) .

For example, for the gravitational constant g we have
range(Og(pco)) = range(Og(pcl)) = (0, 0] .

Redundancy of constraints
Proposition 2 relies on the mean value theorem to ob-
tain more precise estimates of the RIVs of variables
at pairs of comparison. One can prove that there are
situations in which the RIV constraints thus defined
do not improve upon the RIV constraints defined by
proposition 1 . In particular, this occurs when the semi-
quantitative differential equations are completely spec-
ified . An SQDE is completely specified when it does
not contain monotonic function constraints.

Theorem 1 Suppose the SQBs of two completely
specified systems are compared . If range(Ax(pc)), is
the RIV of a variable x at pc determined by propo-
sition 1, and range(Ox(pc))1+2 the same RIV deter-
mined by proposition 1 and 2, then range(Ax(pc)), C
range(Ox(pc) )1+2 .

Since the models are completely specified, h does not
contain monotonic function constraints . In this case the
corresponding function and its partial derivatives are
real-valued rational functions with corresponding nat-
ural interval extensions . The statement is then proved
by analogy of the proof of proposition 2 using basic
propositions from interval arithmetic .

SQCA algorithm
The algorithm for semi-quantitative comparative analy-
sis takes as input two behaviors SQB,SQB and the cor-
responding models SQDE,SQDE of the systems, where
SQDE and SQDE are assumed to consist of basic qual-
itative constraints only. SQCA generates RIVs for all
shared variables at the pairs of comparison from a set of
initial relative interval values . The algorithm consists
of the following three steps:

1 . Establish the meaningful pairs of comparison implied
by SQB and SQB.

2. Generate the RIV constraints from SQB, SO and
SQDE, SQDE, and build a constraint network.

3. Resolve the constraint network for the initial RIVs .

Propositions 1 to 4 define constraint schemata which
are instantiated in the second step to yield appropriate
RIV constraints from SQB, SQB and SQDE, SQDE.
In order to obtain tighter bounds for the RIVs, propo-
sition 2 is not only applied to qualitative constraints
of type (2), but also to algebraically equivalent con-
straints . If q is the n-vector of the variables occuring

QR99 Loch Awe, Scotland

both in r and 9, n additional variants of the qualitative
constraints (2) can be formulated

QV(qi) = fi(. . . , QV(rk_1), QV(x), QV(rk+1), . . . ),

QV(4i) = gi( . . . , QV(sI_1), QV (x), QV(S1+1) . . . . ),
where rk =qti and sd = qi . These variants yield n addi-
tional RIV constraints by means of proposition 2. The
constraints thus generated form a constraint network
linking together the differences Ox of shared variables
at the pairs of comparison .

In the third step the constraint network is resolved for
the initial RIVs by means of the propagation algorithm
included in Q2. The result of the constraint propaga-
tion is an RIV for each shared variable x at each pair
of comparison pc. If some RIV is 0, the initial RNs
are not consistent with the models SQDE, SQDE and
behaviors SQB, SO from which the RIV constraints
have been derived.
SQCA has been shown to be sound and incomplete

(Vatcheva & de Jong 1999) . Call range(Ax(pc)) o,, t the
range for a shared variable x at a pair of comparison pc
that has been produced by SQCA. We now find :

Theorem 2 SQCA is sound, in that for any pair of
solutions of ODES consistent with the SQCA input it
holds that OX(pc) E range(Ox(pc))out for all x and pc .
Theorem 3 SQCA is incomplete, in that for some
value riv in range(Ax(pc)) otit there may be no solu-
tions of ODES consistent with the SQCA input, such
that Ox(pc) = riv .

Soundness is aconsequence of the sound derivation of
RIV constraints from SQDEs and SQBs and the sound-
ness of the constraint propagation algorithm. Incom-
pleteness is caused by the possibility of excess width
in interval arithmetic (Moore 1979) and the use of the
weak mean value theorem in propositions 2 and 3.
An important property of SQCA is its convergence.

Theorem 4 The relative interval values calculated by
SQCA converge to a point value as the ranges in the ini-
tial qualitative states converge to a point value and the
maximum step-size in the semi-quantitative behaviors
converges to 0.

The theorem rests on the convergence of Q3 andholds
under the same conditions (Berleant & Kuipers 1997) .

Results
The SQCA algorithm has been implemented in Com-
mon Lisp . The program interacts with available imple-
mentations of QSIM and Q2, and our own implementa-
tion of Q3 (Vatcheva 1998): it takes semi-quantitative
behaviors produced by QSIM and Q2+Q3 as input and
calls Q2 functions for building and resolving constraint
networks . In contrast with the implementation of CEC*
the process of deriving propagation constraints from
the SQBs and SQDEs has been completely automated.
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This is possible due to the fact that the models in
the SQCA input consist of basic qualitative constraints
only.

In the first half of the table below the results of ap-
plying SQCA to the behaviors in figure 2 are shown.
The trajectory of an object fired upward in a con-
stant gravitational field without friction is compared
with that in a height-varying gravitational field with
friction (figure 1(a-b)) . Although the initial height
and velocity are incompletely known in both systems
(with ranges [0,8] and [30,35], respectively), they are
known to be equal, so that the initial relative in-
terval values range(Ah(pco)) and range(Ov(pco)) are
both [0,0] . The SQCA results show that one cannot
predict with certainty whether the maximum height
reached by the second object will be higher or lower,
i.e . range(Ah(pcl)) = [-27.4,27.8] . The structural dif-
ferences work in different directions, the height-varying
gravitational field tending to increase and friction tend-
ing to decrease range(Ah(pcl )), while the uncertainty in
the initial conditions is too large to distinguish between
the two. The prediction of the difference in maximum
height is more precise than that obtained in qualitative
CA, however.

In the second half of the table two identical sys-
tems are compared, both described by the incompletely
specified SQDEs in figure 1(c) . In this case the initial
relative interval values are range(Oh(pco)) = [-4, -2]
and range(Av(pco)) = [16,201, which work in differ-
ent directions . Can we tell whether the higher ini-
tial velocity compensates the lower initial height, even
though our knowledge of the systems is incomplete?
The results show that the maximum height is greater by
[44 .6,136 .8] in the second system (range(Ah(pcl))), so
that the higher velocity compensates the lower height .
In this case, CEC* generates 15 comparative behaviors
and does not unambiguously answer the question . After
combining the comparative behaviors with the SQCA
Output, only 3 remain.
Omitting theRIV constraints from proposition 2 does

not influence the results in the first example. How-
ever, for the incompletely specified models in the sec-
ond example SQCA gets worse results without these
constraints : range(Da(pc2)) = [-1 .55,3.87] instead of
range(Aa(pc2)) = [-1 .55,3.561 . In both examples we
obtain worse results when the RIV constraints from
Proposition 3 are omitted. This shows that semi-
quantitative CA cannot be reduced to the trivial ap-
proach of subtracting simulation values at pairs of com-
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parison (proposition 1) .
SQCA has been tested on a number of examples, in-

cluding brittle fracture systems in fracture mechanics
and prey-predator systems in population ecology. It
successfully answers CA questions involving structural
differences in combination with differences in the initial
conditions of the systems.

Application

SQCA will be embedded in a system for the automated
prediction of experimental results in the domain of ma-
terial science. This system is currently being developed
at the University of Twente, as a part of a research
project directed at the model-based analysis of scien-
tific measurements (see also de Jong et al. (1998)).
Suppose a database or a knowledge base with ex-

perimental results is available, a so-called measurement
base . More specifically the base consists of property
measurements obtained in experiments, supplemented
by a description of the experimental circumstances.
The description contains general information about the
type of experiment, the geometry of the system and en-
vironmental conditions . We refer to this description as
an experimental context. The reported measurements
are assumed to bound the true value of the correspond-
ing quantity, that is, the value that would have been
obtained in an ideal experiment . Suppose a user is in-
terested in an experimental result which is not in the
measurement base. That is, no experiment matching
the experimental context specified by the user is found.
Is it possible to give an estimation of the desired value
by means of the other measurements stored in the mea-
surement base? We suggest an approach that combines
techniques for (automated) model construction, semi-
quantitative simulation and comparative analysis .
Assume the following question is posed: "What is

known about the property measurement md, resulting
from an experiment carried out in the desired experi-
mental context £Cd?" . Suppose this unknown rpeasure-
ment is bounded by the numerical interval [md, and] .
First, the measurement base is consulted for a direct
answer, i.e ., for a measured value of the same property,
performed in an experiment specified by an actual ex-
perimental context ECQ, that completely matches £Cd.
If the measurement base is not able to provide a direct
answer, it is scanned for experimental contexts describ-
ing conducted experiments of the same type. Suppose
a measurement ma with bounds [ma ,ma] of the same
property is found with the experimental context £Ca .

In order to make a prediction of md, given £Cd, £Ca
and ma , an approach that consists of the following ma-
jor steps can be followed (figure 4) :

1 . Use the actual EC,, and the desired£Cd experimental
contexts to automatically construct adequate3 mod-
3Informally, a model is adequate if at least one of the

simulated behaviors gives correct and precise enough bounds
for the measurement of interest .
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RIV h v a
pco 0, 0 [0,01 -1 .17, -0.47
pcl [-27.4,27 .8] [0,01 [1.4,2 .4] x 10-
pc2 [0,01 [-16.2,11 .7] [0.45,1 .23]

pro [-4, -2] [16,20] -1.76, -0.7
pcl I [44.6,136 .8] [0,01 [1 .25,4.391 x 10-4
pct [-4, -21 [-35 .6, 20 .7] [-1.55,3 .561



Figure 4: General approach to the automated predic-
tion of experimental results

els Ma and Md.

i
relative interval values

prediction

2. Simulate the models Ma and Md to obtain two sets
of possible behaviors: Ba,l, . . . , Bo ,,,, and Bd,i, ...I
Bd,n .

3. Use SQCA to compare each pair of behaviors Ba,i and
Bd,j from the sets determined in the previous step .

4. Combine the resulting RIVs to infer interval bounds
for md.

If s = n x m pairs of behaviors are compared,
SQCA will infer a set of relative interval values
range(AM)o.t,k = [Lk, Vk], 1 <_ k <_ s. The interval
[md - ma , and - m-0 ] representing the actual difference
between the two measurements will be contained in the
output value range(AM) out,k (theorem 2) . We therefore
conclude that

rnd = [end , md] C Uk-i [Lk +nt., Uk + ~ ]
An estimate of and can be obtained by perform-

ing semi-quantitative simulation only. The suggested
approach improves the bounds resulting from simula-
tion by using knowledge about measurements of the
same property obtained in similar experimental con-
texts . Further, SQCA assures that the estimation of
the unknown property value will be contained in the
range obtained by simulation (theorem 2 and proposi-
tion 1) .
The algorithm is straightforward to generalize when

more than one experiment in the measurement base
matches ECd. The predicted value of and will be es-
timated by the intersection of the resulting interval
bounds . Assuming that the measurement base is free
of errors, this intersection will not be empty (for error
identification, see de Jong et al. (1998)) . It is also possi-
ble that several adequate models for each experimental
context are constructed. In this case all models deter-
mined from ECd have to be simulated and each of the
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predicted behaviors has to be compared with the sim-
ulated behaviors of the models determined from EC,

Semi-quantitative reasoning is essential in the de-
scribed approach. Incomplete descriptions of experi-
ments occur in a variety of cases when either precise
numerical information is not available or one would
like to abstract to more general cases. Further, mea-
surements are usually reported in the form of intervals,
more specifically confidence intervals obtained from sta-
tistically processing a set of individual measurements
of a property. SQCA plays a crucial role because it
allows one to deal with incompletely specified experi-
ments while exploiting numerical information to obtain
predictions of property values as precise as possible . In
addition, SQCA provides guarantees on the correctness
of these predictions .

Discussion and related work

SQCA borrows ideas from both semi-quantitative sim-
ulation and qualitative comparative analysis . As in
Q2+Q3, the problem is reduced to a constraint prop-
agation problem. However, SQCA employs constraints
dealing with ranges ofvalue differences instead of ranges
of values . The constraints are derived from a pair of
models instead of a single model, with the additional
complication that SQDE and SQDE may be struc-
turally different and fragments of SQB and SQB un-
synchronized .
To our knowledge, only de Mori and Prager (1989)

have studied the semi-quantitative comparative anal-
ysis of dynamical systems, but their approach is re-
stricted only to linear, time-invariant systems and em-
ploys semi-quantitative information on a coarser level
of granularity. Moreover, unlike SQCA their technique
for qualitative perturbation analysis cannot deal with
structural differences between systems and with topo-
logically different behaviors.
The application of SQCA presented ,in this paper

aims at the prediction of unknown property measure-
ments by given a hypothetical description of an exper-
iment . In this respect, the approach can be compared
with approaches to answering prediction questions (e.g .,
Rickel & Porter (1994)) . Such methods provide an an-
swer of a query about the behavior or the value of a
certain quantity in a dynamical system by a specified
scenario description: Answering the query is achieved
by combining automated model construction and simu-
lation . When the question asks for a value of a quantity
the predictions obtained by semi-quantitative simula-
tion alone are often unnecessarily broad intervals. In
our approach this inaccuracy is reduced by comparing
the model of the hypothetical experiment with models
of performed experiments of similar type .
Given that the SQCA input is valid, the relative in-

terval values range(Ax(pc))ovt produced by SQCA con-
tain the actual difference Ax at pc (soundness) . How-
ever, they may overestimate this value due to a loss of
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information in the process of generating and propagat-
ing constraints (incompleteness) . By using techniques
for the solution of interval CSPs that are more power-
ful than the constraint propagation algorithm currently
employed in SQCA (e.g ., Benhamou & Older (1997)),
the problem of excess width could be reduced. Also,
the RIV constraints defined by proposition 3 can be
improved by replacing in some cases the mean value
theorem with explicit integration (Vescovi, Farquhar,
& Iwasaki 1995) .
Even when the predicted RIVs are as tight as possi-

ble given the input, they may turn out not to be precise
enough . The imprecision of the results is inherent to
the incomplete models of the systems we want to com-
pare . For instance, broad intervals for the initial time-
points of the two behavior fragments being synchro-
nized introduce wide intervals for the auxiliary time-
points and hence for the corresponding relative interval
values . The convergence theorem shows that by inter-
polating additional auxiliary time-points in the SQBs,
and thus introducing new auxiliary pairs of comparison
and new RIV constraints, we can improve the results
of SQCA. This suggests an approach in which the pre-
cision of SQCA's predictions is dynamically increased
by iterating between semi-quantitative simulation and
comparative analysis .

Conclusions and further work

SQCA is a technique for the semi-quantitative anal-
ysis of dynamical systems which is both able to deal
with incompletely specified models and arrive at precise
predictions by exploiting available numerical informa-
tion . The technique has a solid mathematical founda-
tion which facilitates proofs of correctness and conver-
gence properties . SQCA has been fully implemented,
including the derivation of propagation constraints .
Future work will concentrate on the improvement of

the precision of the technique, along the lines mentioned
in the previous section, and its integration into asystem
for the automated prediction of experimental results in
the domain of material science.
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