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Abstract

The knowledge-based automated modeling framework
such as CML can be applied only to the systems where
their valid background knowledge is available . The
conventional model equation discovery systems such
as BACON require experimental environments to ac-
quire their necessary data . The mathematical tech-
niques, e.g ., linear system identification and neural
network fitting, presume the classes of equations to
model a given observed data set . The study reported
in this paper proposes a novel method to discover an
admissible model equation from a given set of observed
data while the equation is ensured to reflect first prin-
ciples governing the objective system. The power of
the proposed method comes from the use of the scale.-
types of the observed quantities, a mathematical prop-
erty of identity and quasi- bi-variate fitting which iden-
tify the admissible solutions from the given data set .
Its principles and automated algorithm are described
with moderately complex examples, and its practical-
ity is demonstrated through the real application to a
socio-psychological modeling task .

Introduction
The knowledge-based automated modeling of an ob-
jective system has been a major research field of quali-
tative reasoning. One of the representative methods in
this field was proposed by B . Falkenhainer and K. For-
bus under the framework of compositional modeling
(Falkenhainer and Forbus 1991) . Later, a language,
CML, to describe the knowledge of the model frag-
ments and the modeling process has been provided in
a reusable and shared manner for engineers (Falken-
hainer et, al, . 1994) . Some recent work developed
collaborative environments for the CML-based mod-
eling to enhance its usability (Iwasaki et, al. 1997) .
Concurrently, a number of recent researches proposed
new ontology to extend the range of domains of the
knowledge-based automated modeling . The represen-
tatives are the hybrid representations of quantitative
and qualitative models (Mosterman and Biswas 1997)
and the qualitative representations of causal time (Ki-
tamura et, al . 1997) . Moreover, a new approach to
modify the generated model through the comparison

QR99 Loch Awe, Scotland

Yuji Niwa
I . N . S . S ., Inc .

64 Sata, Mihamacho, Mikatagun,
Fukui 919-1205, Japan

with the observed behaviors have been assessed by N.
Smith (Smith 1998) . An advantage of the knowledge
based automated modeling framework is its capabil-
ity to construct a model of an objective system based
on the domain background knowledge even when any
observation of the system behavior is not available .
Another advantage is its capability to develop the
model reflecting the first principles underlying the ob-
jective system, if the associated background knowledge
is valid . However, the applicability of this framework
is limited to the systems, e.g ., physical systems, where
their valid background knowledge is available .
Another framework of the automated modeling is

the approach driven by experimental data, and this is
explored through the research field of scientific discov-
ery in AI context . The most well known pioneering
system to discover scientific law equations from exper-
imental data is BACON (Langley et, al . 1985) . It
searches for a complete equation governing the data
measured in a continuous process, where the. complete
equation is an equation constraining n quantities with
n. -1 degree of freedom 1 . FAHRENHEIT (Koehn and
Zytkow 1986), ABACUS (Falkenhainer and Michalski
1985), etc . are the successors that basically use simi-
lar algorithms to BACON to discover a complete law
equations . To reduce the high computational cost of
their algorithm, some subsequent discovery systems,
e.g ., FAHRENHEIT, ABACUS and COPER (Kokar
1985), introduced the use of the unit dimension of
physical quantities to prune the meaningless solutions .
A difficulty of this approach is the narrow applicability
only to the quantities whose units are clearly known .
On the other hand, the most recent scientific law dis-
covery system, SDS, has overcome the difficulties of
the past systems (Washio and Motoda 19970 (Washio
and Motoda 1998) . It discovers scientific law equations
by limiting its search space to mathematically admis-
sible equations in terms of the constraints of ,Scale-type
and identity . These constraints come from the basic

'The equation x12 -bxz2
+. ..+an t = 0 is not complete,

since the values of all n quantities is 0 . i .e ., n quantities are
constrained with no degree of freedom . On the other hand,
.rl -)- x2 -f . . . -{. x � = () is complete .
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characteristics of the quantities' definitions and the re-
lations necessarily standing in the objective systems .
The admissible equations discovered by SDS are con-
sidered to have valid structures reflecting the relations
among quantities in the fundamental mechanisms gov-
erning the objective system . The equations having
such valid structures is called first, principle equations
in this paper . The detailed characterization of the first
principle equations can be seen elsewhere (Washio and
Motoda 1998) . Since the knowledge of scale-types is
widely obtained in various domains, SDS is applicable
to non-physical domains including biology, sociology,
economics, etc .
A major drawback of these approaches is the limited

applicability to practical situations . They require the
experimental environment and the interaction to con-
trol and measure the system states . The number of
controllable quantities is quite limited, and even none
of them are controllable due to some practical reasons
in many scientific and engineering domains . For in-
stance, the astronomical experiments to control the
parameters of fusion reactions in the distant huge stars
are physically impossible . The economical experiments
to cause financial panics are unacceptable for our soci-
ety. Under these situations where only passive observa-
tion is possible, the mathematical techniques, e.g., lin-
ear system identification (Ljung 1987) and neural net-
work, have been traditionally applied to derive quanti-
tative relations among observed quantities . However,
the derived relations are not ensured to represent the.
first principle because they presume some structures of
the model equations such as linear formulae and hier-
archical siginoid formulae . The discovery of the first
principle equations under the passive observation will
play highly important role to understand the funda-
mental mechanisms underlying the variety of the ob-
jective systems . To achieve this aim by the technique
of the aforementioned scientific discovery, the current
framework must be changed to discover the first prin-
ciple equations by using only the data obtained under
the passive observation .
The past scientific, discovery is for the class of the

problem to discover the law equations under the exper-
imental environment . Its algorithm basically consists
of two operations. The first is called bi-?Yariate fitting
which identifies the relation within a pair of quantities,
Pij = Jxi . a j } C X, where X = {XI, r2, . . . ; X,,} is the
set of all quantities to represent the objective system .
It derives the pairwise relation within Pij from the ex-
perimental data in which the values of all quantities in
the rest X - Pij is fixed by the experimental control .
This pairwise relation is noted as fx_pii(Xi,Tj) = 0 .
The bi-variate fitting is required to identify the in-
trinsic structure of the relation within Pij under the
exclusion of the influence from the other quantities .
The second operation is to merge the multiple pair-
wise relations into an equation . Through the itera-
tion of these two operations, the complete equation
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0(r1 , a;2, . . ., X-) = 0 to represent the entire objective
system is derived . In the new class of the problem
to discover the law equations under the passive ob-
servation environment, the experimental control of the
values of X - Pij is not allowed . Accordingly, the con-
ventional bi-variate fitting is not applicable . In this
paper, "quasi-bi-variate fitting", an extension of the bi-
variate fitting based on a polynomial approximation, is
proposed to enable the application of the framework of
SDS to this class of the problem .
The proposed quasi-bi-variate, fitting requires some

assumptions which are feasible in many practical ap-
plications . One is that the scale-types of all observed
quantities are known . This does not limit the applica-
bility of the proposed method because the scale-types
of the measurement quantities are widely known based
on the measurement theory as shown later . Another
assumption is that the observed data are uniformly dis-
tributed over the value range that each quantity can
take within the possible states of the objective system .
If the observed data points are concentrated within
the vicinity of a value for some quantity, the data set
does not provide any meaningful information on the
relation of the quantity with the others . Accordingly,
the discovery of the first principle equations becomes
difficult if this assumption is strongly violated . How-
ever, this requirements is not limited to our proposed
approach . The lack of the uniform distribution of the
data over a certain value range of a quantity implies
the low observability of the quantity (Ljung 1987) . It
is well known that the conventional approaches such as
the linear system identification and the neural network
do not derive valid models of the objective systems un-
der the low observability condition . This limitation is
generic for any data-driven modeling approaches, and
further discussion on this issue is out of scope of this
paper .
The objectives of this paper are (i) to propose. the

principles and an algorithm of the quasi-bi-variate fit-
ting under the framework of SDS, (ii) to evaluate the
basic performance of the proposed approach through
simulations and (iii) to demonstrate its high practical-
ity through a real application .

Background Principles
Before proposing quasi-bi-variate fitting, some back-
ground principles are explained to facilitate the com-
prehension . The details of the principles are de-
scribed in our papers on SDS (Washio and Motoda
1997) (Washio and Motoda 1998) . Only its outline is
explained in this section .

Scale-type Constraints
The rigorous definition of scale-type was given by
Steven-, (Steven-, 1946) . He defined the measurement
process as "the assignment of numerals to object, or
e17ents according to some rules." He claimed that dif-
ferent. kinds of scale-types and different kinds of mea-
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sureinent are derived if numerals can be assigned under
different rules, and categorized the scale-types of quan-
tities based on the operation rule of the assignment.
Quantitative measurement quantities are mathemati-
cally characterized and categorized into three major
quantitative scale-types of interval scale, ratio scale
and absolute scale . Examples of the interval scale
quantities are temperature in Celsius and sound tone
where the origins of their scales are not absolute, and
are changeable by human's definitions . Its operation
rule is "determination of equality of intervals or dif-
ferences'", and its admissible unit conversion follows
"Generic linear group: x' = kx, + c" . Examples of the
ratio scale quantities are physical mass and absolute
temperature where each has an absolute zero point . Its
operation rule is "determination of equality of ratios",
and its admissible unit conversion follows "Similarity
group: .r,' = kx". Examples of the absolute scale quari-
tities are dimensionless quantities . It follows the rule
of "determination of equality of absolute. value", and
"Identity group: .r,' = x" .
Lute claimed that the basic formula of the func-

tional relation among quantities of ratio and interval
scales can be determined by their scale-type features,
if the quantities are not coupled through any dimen-
sionless quantities (Lute 1959) . Under this condition,
the quantities should share some common basic dimen-
sions, and consequently the unit change of a quantity
affects the value of other quantity . Suppose x and
y are both ratio scale quantities, and y is defined by
:r; through a continuous functional relation y = u(x) .
Suppose the form of u(x) is logarithmic, i .e ., y = log x .
We multiply a positive constant k, to x, i. e ., a change of
unit, without violating the group structure of the ratio
scale quantity x, then this leads u(kx) = log k + log x, .
This fact causes the shift of the origin of y by log k,, and
violates the group structure of y which is the ratio scale
quantity. Hence, the direct functional relation from :r;
to y must not be logarithmic . Based on the admissibil-
ity condition of the relations among ratio and interval
scale quantities, we mathematically derived the follow-
ing two theorems to represent the generic formulae of
the relations (Washio and Motoda 1997) . z

Theorem 1 (Extended Buckingham 11-theorem)
If kX1, X2,111,3, . . ., :r,,� ) = 0 is a complete equation, and
if each, argament is one of interval, ratio and absolute
scale-types ; then the solution, can be written in the form,

F(IIi ,II 2 , . ..,I1- w ) _ 0,
a7here m, is the number of arguments of ~), and eu is the
basic number of bases in xi, T2, T3-., :r �,, respectively.

Bases are such basic scaling factors and origins inde-
pendent of the other bases in the given 0, for instance .

2 Thc original Buckingham 11-theorent (Buckingham
1914) and Product Theorem (Bridgman 1922) represent the
generic relation among only ratio scale quantities .
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as length [L], mass [M] and time [T] of physical unitand as temperature origin [to] of Celsius and elevation
origin [ho ] of potential energy for interval scale grim_tities . The relation of each IIi with the arguments of0 is given by the following theorem .
Theorem 2 (Extended Product Theorem)
Assuming primary quantities in a set, R are ratio scale-type, and those in, another set I are interval srale,type, the function p relating a secondary quantity IIto xi E R U I has one of the forms

II

	

-

	

( 11 Ix=1a')( fl ( 1: bkllx~l +lk)°k)
.;ER

	

Ik EP x,Elk

II

	

=

	

~at log 1xtI+

	

ak log( E bkr lxj I + ck)
;ER

	

1kEP9 x.,Elk

+ 1: bnela;el+c e

where R and I can be null sets, P is a partition of
I, and, Py is a, partition of I - Ia where Ia All
coefficients except II are constants.
The formula in Theorem 1 is called an "ensemble
equation" and those in Theorem 2 "reginte"s .
Table 1 shows all admissible bi-variate relations de-

duced from the "Extended Product, Theorem" . The co- -
efficients Gij and Hij can be dependent on the other
quantities except :ri and xj . Thus, they are represented
as Gij(X - Pij) and Hij(X - Pij), while aij is inde-
pendent, and remains constant . These consequences
play an important role in the quasi-bi-variate fitting
explained later.

Table 1 : Admissible bi-variate relations within a
regime

Identity Constraint
When the scale-types of quantities are absolute and/or
unknown as the case of "ensemble equation", the scale-
type constraints are not applicable . In such cases, the
identity constraint is used to determine the admissible
equation .
The basic principle of the identity constraints comes

in by answering the question that "'tohat kind of re-
lation holds among Oh, Bi and Oj, if Bi = fa j (0h)
and (3j = fo,(0h) are known?" For example, if Bi =
Ghi(Bj )Bh -1- Hhi(gi) and Bj = Gh? (Hi)Bh + HLj (yi) are
given, the following identity equation is obtained by

scale-types
xi

	

xj

	

admissible relations
ratio

	

ratio

	

x

	

=G;j 1x ; a
ratio

	

interval

	

x, = G; ; 1x .; 1 a 'i + Hij
x; = ati log* I + Ht;

interval

	

ratio

	

xy, = G;;Ix ; + H;j a

xj = G;, exp a-,, x ;
interval

	

interval

	

xj = a,ix, + G; ;
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Li-variate

	

general relation
relation

G ij
gi = Hij Bi

Table 2 : Identity constraints

03 = Gil& i +Hi,

	

F(AiE2LQ)&,(PT-Aid1ELR) a ' 11B,EA i 63 = 0

11(AiC2PQ)8,(P~AidcEPR)
exp(ai 116lEAi log 0j) = 0

LR is a set of pairwise terms having a bi-variate linear
relation and LQ = U,ELRC . PR is a set of pairwise terms
having a bi-variate product relation and PQ = U,EPRC"

solving each for Oh-
l

	

Hhi(oj) _

	

1

	

Hhj (0i)
Bh

	

0j -
Ghj 0iGlaiLBj Gh i(B

	

Gh B

Because the third expression is linear with Bj for any
Ai, the second must be so . Accordingly, the following
must hold .

1lGhi (Bj)
Hhi(0j)/Ghi(0j)

- alej - 01,
a2 Bj + 132.

By substituting these to the second expression .

Oh + cY 1 0i0j + 010i + a2 0j + /32 = 0

is obtained . Thus, by knowing some bi-variate linear
relations among the quantities, the admissible equation
formula for the whole quantities is derived .
This principle is generalized to various bi-variate re-

lations f among multiple quantities . Table 2 shows
such relations for linear relations and product rela-
tions .

Quasi-bi-variate Fitting

As noted in the first section, the conventional bi-variate
fitting requires experimental control of some quanti-
ties, and is not applicable to the passive observation
environments . To overcome this difficulty, we propose
the "quasi-bi-variate fitting" procedure which extracts
a bi-variate relation between two quantities under the
approximated constant values of the other quantities .

Fitting for Scale-type Constraint

A.T,k = I0'.A - X'k0 < Ek .
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Ek determines the size of the vicinity. This vicinity is
indicated by a rectangular cube in the upper figure of
Fig . 1 . Every admissible bi-variate formula indicated
in Table 1 is generally represented by the form

F;j(Pij,aij,Gij(X-Pij),Hij(X-Pij))=0 . (2)

Here, Gij and Hij are dependent on the quantities in
X-Pij, while ail remains constant . Given an OBSijg ,
if each Fk is moderately small, the values of Gij and
Hi ,~ become slightly dependent on X - Pij, and their
polynomial approximation of the order p can be ap-
plied .

Ho a +

i,
Fij(Pij,aij , Gij9 +

	

(Gijkp07Jk) "

r~ n
(Hijk.~Axk)) = 0,

	

(3)

where Gjkg
and HijkQ stand for the coefficients of the

h-th order of Azk at Xg . The least square fitting of
Eq . (3) approximately provides the functional relation
within Pij and the coefficient ail as depicted in the
bottom figure of Fig . 1 . while almost excluding the
influence of the other dimensions X - Pij.

After the least square fitting of this formula to
OBSj . Q , the goodness of the fitting is evaluated by
the following F-test .

Here, eTij 2 , aii 2 and .7 ., 2 are the correlation of .Ti and
:r, j, the squared summation of :ri and the squared sum-
mation of fitting error respectively . nijg is the total
number of data points in OBSij, and F(1, nijQ - 2, ex)
the lower bound of F value under the degree of free-
dom (1, nij9 - 2) and a risk rate a . The value of nil,
is subject to the size of the vicinity fks. a is set. t o be
0.05 throughout, this paper. The quasi-bi-variate fit-
ting and the F-test are repeated for multiple OBSijgs
defined by q different XQs . This repetitiorl is to con-
firm the stability of the P-test consequences . q is set to
be 10 which is sufficient enough to check the stability
of the consequences of the F-test . After these trials,
the following X2 -test over the q trials is conducted to
check if ail in Eq.(3) is identified as constant .

1, a)

	

(5)
j is constant else not constant,

Ea,ija
z),

aijn)2 1q,Xo =U.ij2/,,,j

standard error of ajj9 estimated
from the residual error of the quasi-bi-variate fitting .
X2 (q - 1 . (y) stands for the upper bound of X2 value
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If Fo > F(l,nij, -2,a) (4)

then the. fitting is acceptable else unacceptable,
Where

hR =
z 2 z

-, Ve = aee /(R'i?R Z) . F0 =Vjz/Ve .

Figure 1 shows the outline of its principle for the ad-
XoIf xzmissible bi-variate relations in Table 1 . Let OBS = < (q -

{Xl, X2 , . . ., X�, be a set. of observations where each then a.
Xh(h = 1, . . ., n) is a m-dimesional vector of observed
values of the m, quantities in X . The fitting of a can- where 2

Coil =
didate bi-variate formula for a pair of two quantities
Pij = f.Tj,xj}(C X) is applied to a subset of OBS.

RThis subset OBSijg is chosen in such a way that every 2quantity rk E (X - Pij) takes a value in the vicinity (T ,. j

of the value of a;kg, where XQ = l:Ll9, X2Q , . . . ., Xmq } E g=1
OBS is an arbitrary chosen observation vector . The Here, Saijg is the
vicinity of X k,7 is defined as
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Fij(Pij,aij,Gij(X-Pij),
Hij(X-Pij))=0

Figure 1 : Outline of quasi-bi-variate fitting

under the degree of freedom (q - 1) and the risk level
cx . The approximated bi-variate formula Eq.(3) that
passed these tests is considered to be a part of the
admissible model equation indicated in Theorem 1
and 2 . The expectation value of aij is estimated as
aij = (E'_-1 aij9)lp .

Fitting for Identity Constraint
For the bi-variate relations of the identity constraints
indicated in the first column of Table 2, the simi-
lar scheme of the quasi-bi-variate fitting is applied .
Let OBS = {01,02, . . .,(� } be a set of observations,
where each nh(h = 1, . . ., n) is a vector of observed
values of the m' quantities in n =
The fitting of a candidate, bi-variate formula for a pair
of two quantities Pij = {Bi,0j}(C n) is applied to
OBSijg . OBSijg is a subset of OBS in the vicinity
of the value of Okq, where O = {81g, 02s, . . ., 0M, y } is
arbitrary chosen in OBS. Every bi-variate formula in-
dicated in Table 2 is generally represented by the form

Fj(Pij .,Gij((4 - Pj),Hi,(0 - Pij))=0 . (6)
Again . the terms of Gij (n - Pij) and Hij (n - Pij) are
approximated by their polynomials . After the least
square fitting of the approximated formula to OBSijg ,
the goodness of the fitting is evaluated by the F-test
in the similar manner .

In the quasi-bi-variate fitting, the number of data in-
cluded in OBSijg increases by relaxing the size of the

vicinity of Xg and ()g . This has an effect of reducing
the statistical error of the quasi-bi-variate fitting . oil
the other hand, if the size of the vicinity is too larg e
the higher order approximation is required to absorb
the influence of the values of X -Pij and On -Pij . ]10,w_
ever, excessively high order approximation may intro-
duce some systematic error due to the over-fitting to
the data. Accordingly, some appropriate values of eksand P must be used for the given data .

Algorithm
As the details of the algorithm to discover a comple t e
model equation in the frame work of SDS are repre-
sented in our previous paper, only its essential contents
related to the quasi-hi-variate-fitting are explained in
this section (Washio and Motoda 1997) . Initially, a
set of ratio scale quantities R.Q, a set of interval scale
quantities IQ and a set of absolute scale quantities
AQ which are required to express the objective model
equation are given together with a set of observed data
OBS of these quantities.

Step (1-1)

	

The quasi-bi-variate fitting for scale-type
constraints is applied to the bottom formula in Ta-
ble 1 for pairwise interval scale quantities . The least-
square fitting of the formula using the approximation
of Eq.(3), F-test to check the goodness of fitting to
the data of each subset OBSij9 and x2-test to check
the constant value of aij are conducted . Subsequently,
the expectation value aij is estimated, and the formu-
lae together with the values of dij are stored into an
equation set IE.

This step is now demonstrated by an example of a
moderately complex system depicted in Figure 2 . This
is an electric circuit where the model of this system
based on the first principle is represented by the fol-
lowing equation involving eight quantities .

RBE

	

1

	

(Vi - V2)I- ' - R 3 ,

	

(7)hFE R1/R2 + 1
where RBE is the resistance between the base and

the emitter and h.FE the ratio between the base cur-
rent and the collector current, respectively . Vi and
1/~) are interval scale, and hFE is absolute scale . The
rests are ratio scale . The observed data set is obtained
by a numerical simulator . The values of parameter
quantities are set to be R 2 = 100052, RBE = 10652 and
hFE = 100 . The value ranges of the variable quantities
are taken to be O52 < R. 1 < 100052, OS), < R3 < 100052
and OV < Vz < Vl < 30V. The values of these vari-
ables are generated by using uniform random numbers
over their value ranges in the simulation . Only the five
variable quantities R1, Rs , V1, V2 and I are assumed ob-
servable in this demonstration . Thus, IQ = {V1.V2},
R.Q = {R1, P, .3 , I} and AQ = 0 . The values of the
parameter quantities are implicitly assumed to be con-
stant . The total number of data points provided in
OBS is 500, and no observation noise is added here .
Our proposed method has been implemented in a pro-
totype program . The size of each vicinity ek, has been
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set at 15% of the difference between the maximum and
the minimum values of Xk . The 0th order approxima-
tion is used because the observation is not distorted
by any noise in this case . As the interval scale quanti-
ties are limited to V, and Vz , the bottom linear equa-
tion in Table 1 is immediately applied to this pair, and
the relation 0 .98V, - VZ = Gv,v, is identified . Thus
IE={0.98Vi-VZ=Gv,v,1 .
Step (1-2) This step first, applies the following
triplet-tests . For a triplet of the linear formulae among
{Xi,Xj,Xhl in IE,

ai = ahixh +Ghi,

	

xj = a,ijxi +Gij .,

	

r.h = Ail, aj +Gjh,
if they are mutually consistent in terms of as, the
following condition should be met .

dija,jl,ahj = 1 .

Because of the existence of the noise and the fitting
error, this condition does not, hold in exact manner,
even if the three formulae are consistent . Thus. the
following normal distribution test judges if the l.h .s .
and the r.h .s . of the above expression are equal .

Figure 2 : An electric circuit.

Here, M2j	baZj~)lP, and bath and hrzhj are

similarly defined .

	

N(0, a2 , a/2) stands for the upper
bound of the error under the normal distribution and
the risk level a . This test is applied to every triplet of
equations in IE, and every maximal convex set MC,S
is searched . A convex set is a set where each triplet of
equations among the quantities in this set has passed
the test Eq.(8) . And, the maximal convex set MCS is
a convex set where any superset of the set is not a con-
vex set . In addition, every formula in IE which does
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not belong to any consistent triplet is also regarded as
a tiny MCS . Once all MCSs are found, the formulae
are merged into the following form in every MCS.

_,EMC3

where I' is an intermediate quantity which appears in
the reasoning process . Before the final value of ae is
determined, the following integer-test is applied .

If [a. s - [as]l < 2ba a tlien a, = [a.,] .

	

(9)
where [as] is the nearest integer of a,,,

and ha s std . error of a., .

This is based on the observation that the majority of
the first principle based equations have integer power
coefficients and integer linear coefficients for interval
scale quantities .
In the current circuit example, an MCS is uniquely

determined because IE = {0.98Vi - V2 = Gv, v, } con-
tains only one forinula, and thus the triplet test is not
required . The example of the triplet test is shown in
section 6 . The above integer-test set ai;, the coeffi-
cient of Vi , to be 1 because 26av, = 0.092 . Thus, we
obtain IE = {Vl - VZ = Gv, v, } . Furthermore, V, and
VZ in IQ is merged into Gv,v,, and Gv,v, is stored into
a quantity set TQ as TQ = {Gv, y, } . Gv, v, is a new
ratio scale quantity by the mutual cancellation of the
basic origins of Vi and V,) . Finally, TQ = TQ + RQ
becomes {R.i , R3, I ; Gv, v, } .
Step (2-1)

	

Similarly to step (1 - 1), the quasi-bi-
variate fitting, F-test and X2-test are performed on the
quantities included in TQ. Then, the discovered equa-
tions are stored in an equation set RE. The unique
difference from step (1-1) is to apply the formulae ex-
cept the bottom one in Table 1 in the qua91-bi-variate
fitting . In the circuit example, only the pair of I and
Gi., v, is found to satisfy the first formula in Table 1 as
I = GIG,, �, Gvov°a . Thus, RE = {I = GIG,, v, Gvv; }

Step (2-2) The triplet-test among the formulae in
RE is conducted . The basic procedure is identical with
the step (1-2) . In the example, as RE contains only
one formula again, a unique MCS becomes {I, Gv}

o$§,and they are merged into a term GIG,,
'
, .Z = IIGVIV,

The value aG ,,I v2 = 1.003 is modified to 1 in the in-
teger test since 26aG,, v2 = 0.014 . Thus, GIG,, v2 =

IlGv, v, . Then, TQ becomes {Ri , R.3 ., GIG,, v2 }, and
finally TQ = TQ + AQ = {Ri, R3 . GIGv,v, } .

Step (3) This is the step to apply the quasi-bi-
variate fitting for identity constraints . A formula is ar-
bitrary selected from the first column of Table 2 . In our
current program, a linear formula Oj = GijOi + Hij has
the first priority in the selection and a power formula
Hj = Hz ..0Gi' the next priority.

	

The quasi-bi-variate
fitting of the formula and F-test are applied to each
pair of quantities in TQ. If some pairs of the quan-
tities are judged to well fit to the bi-variate formula,
the identity constraints is applied . In the example of
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If No < N(0, a2 , a/2)then aij, o,jh, and , 8.1, j (8)
are mutually consistent else inconsistent,

where
No = [1-ll.ijlljhahjl,
U2 = (ajhahjbaij)Z +(a,ija, injfJa,jh)Z +(a,i,j6jh6Jahj) 2 .



TQ = {R1 , R3, GIG,,,., }, the bi-variate linear relations
in the pairs of {Rl, GIGS,, va } and {R3, GIG, , ,, } are
accepted through the F-test, and thus the following
inulti-linear formula obtained from the principle of the
identity constraints is applied to the entire data set .

0 = ao + q,i GIGS,, v2 +- a2 R, -}- a3 R3 + Ri R3

Its least square fitting is accepted by F-test, and thus
AE = {0 = ao + a1GIG,,,, + a2Rl + a3R3 + RIR3} .
The values ao = 107 , a l = -103 , a2 = 104 and a3 = 103
are obtained by the integer-test . By substituting the
formulae in IE and RE to GIG,, ,2, the final solution
of the admissible model equation of

0= a.o+a1(Vl - VZ)/I+a2R1+a3R3+RiR3 (10)

is resulted . As th values of ao -a3 correspond to the re-
lations ao = RBER2/hFE,a, = - R2 , a2 = RBEIhFE
and a3 = R2 , this equation is known to be equivalent
to Eq.(7) .

Step (4) Finally, when multiple candidate model
equations remain, a parsimony criterion is applied to
prioritize the candidates . Though MDL principle is a
representative criterion, AIC, which is widely used in
statistics to determine an appropriate numerical model
equation, is applied in our program (Akaike 1978) . The
index of AIC is calculated through the expression

where n = JOBS1. V0 the residual error variance of the
model equation and M the number of the coefficients
included in the model . The model equation having less
value of AIC is preferred in the sense of the parsimony
criterion . This is not used in the example of the cir-
cuit, since the unique solution Eq.(10) is obtained . Its
example is given in latter section 6 .

Evaluation through Simulation
Table 3 indicates the required computation time for
various examples . "Ideal Gas" is the simulation of the
state equation of the ideal gas . "Coulomb", "Stoke's"
and "Momentum" are the simulations of Coulomb
force law, Stoke's equation and the momentum balance
equation . "Circuit*1" is the case of the aforementioned
electric circuit where R2, RBE and hFE are hidden pa-
rameters, and `Circuit*2" is the case of the identi-
cal circuit where all quantities are observable . They
are represented by various number of quantities . The
computation time of the proposed algorithm has been
evaluated for various numbers of the data points for
each example. The computation time does not change
significantly with the increase of the data size . This is
because the 10 vicinities selected in the quasi-bi-variate
fitting cover only a limited portion of the given data
when the data size is large . Thus the required compu-
tation time increases very slowly. In contrast, the com-
putation time is sensitive to the size of the objective
system . The increase is almost order of O(m2 ) where
m is the number of the quantities in the data. This
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AIC = nlnV, + 2M,

	

(11)

Table 3 : Required computation time

Number of

	

CPU time (sec)
Example quantities

Ideal Gas 4
Coulomb 5
Stoke's 5
Circuit*1 5
Momentum 8
Circuit*2 8

Table 4 : Relative Error of Coefficients

is due to the quasi-bi-variate fitting having the, com-
plexity O(.a, 2 ) . Though the most complex process is
the triplet-test which is O(m3 ), this test is very simple
compared with the data fitting to many data points.

Table 4 shows the average of the relative error of the
coefficients under several conditions of the data size,
the relative noise level and the order of the approx-
imation of the quasi-bi-variate fitting in case of the
aforementioned electric circuit . The size of the vicin-
ity ek; is kept at 15% . When the amount of the data
is very limited, the error rate increases significantly .
This is because the data points covereq by a vicinity
is so small that the sufficient statistic accuracy is not
maintained . The accuracy of the coefficients is also in-
fluenced by the approximation order . In general, the
1st order approximation shows the good performance .
This tendency becomes significant, when the number of
the data is very limited, and/or the noise level is high .
The 0th order approximation does not effectively re-
duce the influence of (X - Pig), when the data points
are sparse in the state space . Besides, the 2nd order
approximation also becomes erroneous due to the over
fitting effect, when the data is sparse and/or the noise
level is high .

Automated Modeling in
Socio-Psychology

The proposed method has been applied to a real world
problem . The objective of the application is to discover
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Num. of
data

Relative
noise Order=0 Order=l Order=2

77
50 47 0

~I 77 0

0 0 0 o 0% 0 0
500 0. 5 i> 2.8% __ 0 . 9 0

50 3.20 2.80 0. o
0'o

.0000 0.5 0

1.5 0 -

50
data

500
data

5000
data

25.9 46.1 67,9
40.5 77.6 112.9
46.3 82.6 119.8
43.8 81.6 115.8
151 .4 271 .0 385 .3
135 .2 255 .7 371 .7



a model formula representing a generic law to govern
the mental preference of people on their houses . We
assume that a generic law governs the mental prefer-
ence subject to the cost for buying the house and the
social risk at the place of the house . The validity of
this assumption is assessed through this application,
and the model formula is derived . We designed a ques-
tionnaire sheet to ask the preference of the house in the
trade off between the frequency of huge earthquakes :r 1
(earthquake/year) and the price x 2 ($) with the other
conditions being equal . In the questionnaire, 9 cases
of the combinations of the price, and the earthquake
frequency are presented, and each person chooses its
preference level from the 7 grades for each combination .
We distributed this questionnaire sheet to the people
owning their houses in the suburb area of Tokyo, and
totally 400 answer sheets are collected back . The an-
swer data has been processed by following the, method
of successive categories which is widely used in the
experimental psychology to compose an interval scale
preference index y (Torgerson 1958) . Through these
research process . OBS = {X1, X2, . . ., X4oo } where
Xi = [Ti1, : ri2, yi] is obtained .
The proposed method has been applied to figure out

a first-principle-based model equation y = f(x1, r 2 ),
where :r 1 and :e2 are ratio scale quantities . Hence,
RQ = {X1,x,2} " IQ = {y} and AQ = 0 . Because IQ
contains only one quantity, steps (1-1) and (1-2) are
skipped, and the quasi-hi-variate fitting of lst order ap-
proximation is applied to RQ = R.Q+IQ = 1X1, T2, y}

in step (2 - 1) . First, the top formula in Table 1 is
tested for the relation between x1 and T2 ., and

y

y

-xl = a(y)x, 0 . 25

is obtained . Next, the second and third formulae are
tested for x1 and y . Then,

y

	

=

	

a,(X2)xi
0 .23 +

b(x2)

y

	

=

	

0.62109 x, +b(X2)

have been identified, respectively. Both of them were
accepted by the F-test . Similar search has been 1naie
for T2 and y, and

0 .026
y

	

=

	

a(xl)x2

	

+ b(xl)

y = 0.34109 x2 + h(XI)

are derived . In step (2 - 2), the triplet-test among
{ :c1, x2, y} is conducted . As the admissible formu-
lae in Theorem 2 for these quantities are limited to
y = hx ' 4z+c and y = a, log x1+a2109 T2+c, the con-
sistency among the coefficients obtained in step (2 -1)
are checked by following these formulae . As a result,
the consistency has been confirmed for both . Conse-
quently . we obtained the following two candidates .

0.62 log x 1 + 0.34 log :r 2 - 2 .9
(AIC = [-1537 .-1326,-1121)

	

(12)
-0.61x_ 0 .23X,2 .026 +3.2
(AIC = [-810, -599.-394])

	

(13)
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Figure 3 : Plot of Eq . (12)

Figure 4 : Plot of Eq.(13)

Step (3) is skipped, since the other quantities to be
merged do not. exist . In step (4), the value and its un-
certainty range of AIC are evaluated for each candi-
date . The expression AIC = [L . M, U] represents the
lower bound L, the expected value M and the upper
bound U of the AIC . Since the former Eq.(12) has the
smaller AIC value, the former is preferred . Moreover,
because the upper bound of Eq.(12) is smaller than
the lower bound of Eq.(13), Eq.(12) is uniquely chosen
to be a model equation y = f ( :r l , T2) . Figures 2 and
3 shows the plots of the two equation curves together
with the average values " of the 400 answered prefer-
ence level y for the 9 cases of the price and the earth-
quake frequency. The high accuracy of the Eq.(12) is
clearly observed in those figures . Eq.(12) can evaluate
the subjective preference in the accuracy of almost fl
levels of the questionnaire from the values of :x1 and
:r,2 .

Discussion and Related Work
A scientific discovery system called LAGRANGE (Dze-
roski and Todorovski 1994) is also applicable to the
condition of the passive observation . It uses the prin-
ciples of ILP and generate/test . Though no equation
classes are presumed in this approach, many spurious
solutions can be derived due to the, weakness of the
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search heuristics . Also, it indicates high computational
complexity. TETRAD (Glymour 1995) is another sys-
tem to identify the models of the objective system from
the passive observation . Its basic framework takes the
bottom up modeling approach . However, the class of
the model formulae is presumed such as linear expres-
sions . In contrast, `the method proposed in this paper
has a strong mathematical background to characterize
first principle equations . Moreover, it has a high ap-
plicability to the passive observation data, while main-
taining the flexibility of the bottom up modeling ap-
proach taken by the conventional scientific discovery
systems .
The source of the advantage of our proposed method

is the systematic use of the constraints of scale-types
and identity with the approximation in quasi-bi-variate
fitting . This is considered to be a typical example
that Ginsberg claimed (Ginsberg and Geddis 1991) .
He claimed that any domain-dependent control rules
can be replaced with a domain-independent control
rules and modal sentences describing the structure of
the search space . The knowledge of the scale-types
and the quasi-bi-variate approximation have been im-
plicitly used by scientists as domain-dependent con-
trol rules of their reasoning . In our work, these
rules have been replaced as Ginsberg claimed . The
constraints and the approximation are formalized as
generic domain-independent control rules applicable to
any objective system represented by numerical quan-
tities . The modal knowledge required to control the
reasoning by these generic rules is concentrated on the
scale-type information of each quantity and the em-
pirical quasi-bi-variate relation . On the other hand,
Minton argued that in many cases, domain-dependent
control rules cannot, in a practical sense, be, derived
clue to the complexity of the reasoning that would be
required (Minton 1996) . Since the concepts such as
the scale-types and the quasi-bi-variate approximation
have been established based on massive experience of
the scientists for hundreds of years, his argument also
holds .

Conclusion
In this paper, quasi-bi-variate fitting, an extension of
the bi-variate fitting based on an polynomial approxi-
mation, has been proposed . This extension enables to
handle the new class of the problem to discover the law
equations under the passive observation environment .
Its basic: performances in terms of computation time
and noise robustness have been evaluated through sim-
ulations . The evaluation indicates the satisfactory per-
formance to discover the model equation based on the
first principle of objective system of moderately large
size under practical noise levels . Finally, a real appli-
cation to discover a law equation in socio-psychology
was demonstrated, and its practicality has been read-
ily confirmed .
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