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Abstract

Stochastic qualitative reasoning is an effective way
to grasp approximate behavior of complex sys-
tems such as air conditioning systems . The ap-
propriateness of the stochastic qualitative model
can be identified by comparing the behavior de-
rived by reasoning that is represented as the tran-
sition of states with the actual measured behavior .
Since the states are derived based on all conceiv-
able combinations of rule application, the number
of derived states exponentially increases with the
size of the qualitative model . If the model is large,
reasoning cannot be completed in real time .
This paper proposes a method of high-speed
stochastic qualitative reasoning . In this method,
model division and states composition are intro-
duced . First, the partial models are constructed
by dividing the entire model . Next, reasoning is
executed in each partial model . Finally, the states
in the entire model are generated by composing
derived states in each model . By this method,
the number of derived states is reduced, and the
reasoning time is shorter than for the one by the
previous method and reasoning can finish regard-
less of model size .
This method was applied to an actual air condi-
tioning system . It was confirmed that stochas-
tic qualitative reasoning with model division and
states composition derived the same results as the
previous method did .

Introduction
Qualitative reasoning can effectively approximate the
behavior of a system (Kuipers and Berleant 1992)
(Lackinger and Obreja 1991) (Lackinger and Nejdl
1993) . One of its advantages is that complicated phys-
ical mechanisms are expressed simply through a sym-
bolic causal relationship . Fault detection is an impor-
tant application of qualitative reasoning, in which a
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part that does not work can be identified by compar-
ing the results of reasoning with the actual measured
values .

Stochastic qualitative reasoning for fault detection in
air conditioning systems has been developed (Mihara et
al . 1994) (Arimoto et al . 1995) (Yumoto et al . 1996a) .
In this method, the probabilistic process is used for
state transitions which are based on the stochastic qual-
itative model, and several types of behavior are derived
as a series of qualitative values (Yumoto et al . 1996b)
(Yamasaki et al . 1997) .
In stochastic qualitative reasoning, the derived be-

havior that is represented by a transition of states in
the model is compared with the actual behavior of a
target system in order to estimate how much the former
follows the latter . Because states are derived from all
conceivable combinations of rule application, the num-
ber of states explosively increases with the size of the
qualitative model . The reasoning cannot finish in real
time for the large-scale model . Therefore, it is neces-
sary for actual reasoning to execute reasoning at a high
speed .

This paper proposes a method of high-speed stochas-
tic qualitative reasoning . In this method, partial mod-
els are constructed by dividing the entire target model,
the states are derived independently from each one . By
composing these derived states, the states of the en-
tire model are generated . By the model division and
the state composition, the number of derived states is
reduced and reasoning time is shorter than by the pre-
vious method .

This method is applied to an actual air conditioning
system, the VAV system in the final section . We show
the effectiveness of our new method through this appli-
cation : although the number of derived states on partial
models are less than one on entire model, the reasoning
gives the same results as the previous method .
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Stochastic Qualitative Reasoning
Stochastic Qualitative Model
Figure 1 illustrates an example of a qualitative model
of an air conditioning system . The qualitative model is
constructed from nodes, directed arcs with propagation
rules, and functions .
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g_1 : one-arity function 'disturbance'

h_2 : two-arity function 'control'

f_3 : three-arity function 'heat flow'

Figure 1 : A stochastic qualitative model .

The nodes represent factors that determine the sta-
tus of a target system, such as the real value of the sup-
plied air temperature, the measured value of the room
temperature and heat resources as a disturbance . Each
node is characterized by some of the qualitative values,
as can be seen in Table 1 .
A node representing a component that is measured

by a sensor is called a measured node. The nodes
with a gray pattern in Figure 1 are measured nodes .
Their qualitative values must correspond to the mea-
sured ones .

Table 1 : An interpretation of the qualitative values .

An arc connects two nodes . The direction of the arc
shows the direction of influence propagation . Propa-
gation rules are attached to an arc . The five types of
propagation rules which are shown in Table 2 are de-
fined by the way of the influence . More than one prop-
agation rule is often attached to an arc : therefore, each
rule has a choosing probability.
The other type of causal relationship is expressed by

a function . A function receives one or more qualitative
values of nodes as input, and gives the change in direc-
tions and their probabilities as output . The three types
of change in directions on function are shown in Table

+2(-2)

std

Up
Down
Const .

Table 2 : Types of propagation rules .

Table 3 : Types of change in directions in a function .

Table 4 : An example of a function .

3 . A function is represented by probabilities of these
types of changes in direction such as in Table 4 .

State Transition

If the source node of the arc changes,
the destination node changes in the same
(opposite) manner as the source node
two time units later .
If the source node of the arc changes,
the destination node changes in the same
(opposite) manner as the source node
one time unit later .
If the source node of the arc changes,
the destination node will still be unchanged .

The destination node value increases .
The destination node value decreases .
The destination node value is unchanged .

Stochastic qualitative reasoning is executed by a series
of recursive state transitions in the qualitative model .
The state of a system in the qualitative model is defined
as one definite set of qualitative values of all the nodes
in the model . When the qualitative values of nodes 1,2
and 3 in Figure 2 are, respectively, B, B and C, the
state of this model is expressed simply as [ B, B, C ] .

Arc
Node 1

	

Node 2
std ao^ie~-
+1 so%

Figure 2 : A simple qualitative model .

An example of a state transition of the model in Fig-
ure 2 is shown in Figure 3 . Each state has a proba-
bility of occurrence . The probability of occurrence of
each new state is calculated based on the probability of
occurrence of the previous state and the choosing prob-
ability of the applied rules and functions . The prob-
ability of occurrence of the initial state is 1 .0 . The
behavior of the qualitative model is represented by the
state transition .
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Input Output
Set

temp .
A

Up

0

Probability(Yo)
-I Const. I _Down

60 40
B 0 80 20
C 10 80 10
D 20 80 0
E 40 60 0

Qualitative
value Interpretation

A extremely hot
B hot_

normal
D cold
E extremely cold



Node1 Node2 Node3
[ C B C ]

Figure 3 : An example of a state transition .

Reasoning Process
The procedures for stochastic qualitative reasoning can
be summarized as follows :
Step 1 . Predict all possible states from current ones
according to the function and propagation rules, and
obtain each probability of occurrence .
Step 2. Rank the states in descending order of the
probability of occurrence . Add all of these until the
sum is more than the threshold. Then eliminate all
the remaining ones .
Step 3. Compare the surviving states with the actual
measured values . Discard the inconsistent ones.
Step 4. Normalize the probability of occurrence of the
surviving states . These states will act as the current
states in the next stage . Repeat all steps until there
are no surviving states or until all of the stages are
finished .
In Step 2, `threshold', which is a predefined param-

eter, expresses the maximum sum of the probability of
occurrence . Eliminating states by using the threshold
avoids the need for an enormous amount of time and a
large amount of memory in order to generate all possi-
ble states . The lower the threshold, the more approx-
imate dash but the more quickly a simulation can be
performed .

For further details of the algorithm, see the refer-
ence(Arimoto et al . 1995) . Figure 4 shows a sample
of simulation practice . First, ten states are generated
based on the initial state SO in Step 1 . The sum of those
states' probability of occurrence is 1.0 . In Step 2, the
states are sorted in order of their probability of occur-
rence. After the sum of probabilities reached 0.7, which
is a predefined threshold, remaining states, namely, SI,
S4, S7, S9 and S10, are eliminated . S6 and S2, which
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disagree with the real measured values pattern, are dis-carded in Step 3 . Since S3 and S5 are the same states,
they are unified into one state S3 and their probabil-
ities of occurrence are added. In Step 4, probabiliti
of occurrence of survived states S3' and S8 are divided
by the sum of them, namely, 0.42. Then those states
become the next current states, and simulation is con-tinued .

Procedure
Step

3

0.27 0.15
The current states
of the next stage 3

Pl
P1

Threshold= 0.7

Figure 4: Simulation processes .

In Step 3, the state which are not in agreement with
the measurements are discarded . If most of the new
states are discarded, the state transition does not ac-
curately reflect the real behavior of the target . On the
other hand, if most of the states survive, the state tran-
sition is accurate . We have introduced an evaluation
parameter that can estimate the degree of agreement
of the simulation result with the measured behavior,
agreement rate, based on this property .

Agreement rate R,, is formally defined as follows:

A . . .

	

P11X

	

X

	

)
T

P Pn

(PI X P2 X . . .XPn)^

0
In this definition, Pi is the sum of the probability of
occurrence which is the states after the elimination in
Step 2, and Pi is the sum of the probability of occur-
rence of the states that survive in Step 3 at the i-th
cycle of the simulation process, n is the number of cy-
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( B B C
probability of
occurrence 1 .0

]

rule : std
funs . : const .

[ B B C ]

rule : std 1 .0 x 0.4 x 0.8 = 0.32
func . : down

-+ [ B B D ]
1 .0 x 0.4 x 0.2 = 0.08rule : up

func. : const .
-- [ B A C ]
1 .0 x 0.6 x 0.8 = 0.48

rule : up
func . : down

- [ B A D ]
1 .0 x 0 .6 x 0.2 = 0.12



cles of the simulation(the simulation time), and B is the
threshold value.
The value for agreement rate Ra is an indicator that

shows how consistent a model is with the series of mea-
sured values if any state remained until the final step .
The higher this value, the higher the possibility of the
behavior represented by the simulation model. If there
are no state left in a simulation cycle, the value of the
agreement rate Ra is calculated as zero and the simu-
lation is terminated immediately.

High-Speed Stochastic Qualitative

Reasoning

Background
In stochastic qualitative reasoning, state transition is
performed whether the derived states agree or disagree
with real behavior on the target system . Since states
are generated from all conceivable combinations among
elements, the number of derived states exponentially
increases with the size of the qualitative model . Table
5 shows a rough relationship between the model scale
to the number of derived states and its reasoning time .
If the number of nodes is more than about 40, the rea-
soning is impossible because of memory size .

Table 5: Rough relationship between model scale to the
number of derived states and reasoning time .

In order to solve this problem, we introduce model
division and states composition techniques. Increase
of the number of derived states is prevented by using
divided qualitative models. The states of the entire
model are generated by composing each survived state
on divided models .

Model Division
In the model division phase, partial qualitative mod-
els called blocks are constructed by dividing the entire
model. The closely connected elements (nodes or func-
tions) are included in the same partial model.
One node, called a common node, is owned jointly

between adjoining blocks in order to keep consistency
between partial models and a whole model. This is
because the common nodes must have the same qual-
itative values at any time . A method of propagating
qualitative values between common nodes is introduced
here .
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Propagation of Qualitative Value
Figure 5 shows the relationship between adjoining
blocks . The common node of one block supplies the
same common node of the others with qualitative val-
ues. The former block is called an output block. The
latter block is called an input block . The arc is accompa-
nied with the propagation of qualitative values and the
probabilities of occurrence between the common nodes.
In one block, the other blocks are regarded as black
boxes, and the predicted states are derived from the
received qualitative values .

,.Output block.- .- .. ... ..,

	

(. . .Input block. .._ .__.. .,

Qualitative value and
probability of occurence

Figure 5 : The relationship between blocks

In the stochastic qualitative reasoning, qualitative
values are propagated through a function or an arc be-
tween nodes. The basic idea is unchangeable between
common nodes.

In the reasoning process, the qualitative value of
nodes (except for the measured node) are not fixed as
a unique value, these have probabilities of occurrence .
For example, the probability of `C' is 12.5%, one of `D'
is 75%, and one of `E' is 12.5% at reasoning unit time
1 in Table 6. These values must be exactly alike on
each common node. Therefore, for every reasoning unit
time, the probabilities of occurrence are calculated and
then transfered between each common node .

Table 6: Example of probabilities of occurrence.

States Composition
An increase in the number of the derived states can be
prevented by reasoning in partial models . However, the
state of the entire model is needed in order to grasp
the behavior of the target system, and to compare de-
rived behavior with the real behavior . The state of
the entire model can be generated by composing each
state of partial models . As mentioned above, the com-
mon nodes must indicate the same qualitative value.
Therefore, the entire states are generated by compos-
ing each derived partial state whose qualitative values
on the common node are the same . This states compo-
sition method guarantees that the composed states can
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Number
of modes

Number of
derived states

Reasoning
time

5 500 1 min.
10 1000 5 min.
15 3000 10 min.
20 5000 20 min.
25 10000 50 min.
30 25000 120 min.
35 40000 4001 in .
40 reasoning impossible ==O== ==I== ==2== ==3==

A 0 .000 A 0.000 A 0.000 A . . . . .
B 0.000 B 0.000 B 0.000 B . .'. . .
C0.000 C0 .125 C0.123 C . . . . .
D 1 .000 D 0.750 D 0.753 D . . . . .
E 0.000 E 0.125 E 0.123 E . . . . .



be the same states by using the previous method . As
space is limited, the proof is excluded .

Condition for Model Division

It is not comparatively important how to divide a target
model by the mentioned states composition method .
However, in order to execute reasoning efficiently, some
limitations must be added for the actual model division
process:

1. Each block includes only directly connected nodes
and functions .

2. At least one measured node is included in each block.

3. The nodes that are connected by an arc must not be
separated.

Because the propagation of the influence happens be-
tween connected elements, the 1st condition is to be
considered . In the reasoning process, unlikely reasoning
states where the qualitative value of a measured node
differs from the real measured value are eliminated . By
the 2nd condition, these unlikely states are eliminated
in each block. The 3rd condition means that the divi-
sion on the node whose qualitative values are uniquely
determined is useless.

Application to VAV Systems

A Stochastic Qualitative Model of a VAV
System

Experiments have been done in regard to the VAN'
(Variable Air Volume) system of a building in Tokyo.

Figure 6 shows a diagram of a VAV system . It con-
sists of one fan, one refrigerator, and three VAV valves
and sensors . This system controls the room temper-
ature by controlling the supplied air temperature and
the room air volume.
The air is absorbed from the outside by a fan . The

supplied air is generated by a refrigerator and is sepa-
rated in order to send it to each VAV valve. The room
air volume is controlled by each valve according to the
gap in room temperature between the preset value and
the measured one. The volume of supplied air controls
the room temperature. Figure 7 illustrates a qualitative
model of the VAV system in Figure 6 . This qualitative
model can be constructed with three parts which corre-
spond to each VAV valve, because the VAV valves are
independent of each other.

In Figure 7, the entire model is divided into five
blocks : supplied air volume, supplied air temperature,
VAV1, VAV2, and VAV3. The common nodes are "Sup-
ply air volume" between supplied air volume block and
VAV1, 2, 3 block and "Supply air temperature" be-
tween the supplied air temperature block and VAV1, 2,
3 block.
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Figure 6: VAV system instrumentation diagram.

Supplied air
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temp. Block

. .. .. .. .. .

	

. .. .. .. .. . ... . ... . ... . .... . .. .. ..... ..... ..
i

a
I
i
v
i

Measurer)
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temp.
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VAV2
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Figure 7: A qualitative model for the VAV system .



The Results

In the entire qualitative model in Figure 7 and the par-
tial models (the nodes with a gray pattern are common
nodes), stochastic qualitative reasoning was executed .
The reasoning time was six unit times (one unit time is
15 minutes), and threshold value is 1 .0 . Table 7 shows
the number of derived states and execution time for
each VAV model .

Table 7 : Number of derived states and execution time .

In this table, the sum of the derived states number
in partial models is drastically less than the one in the
entire model . Also, the reasoning time is shorter, but
the agreement rate has the same value . From the re-
sults, the stochastic qualitative reasoning is executed
efficiently by the method of model division and states
composition .

Conclusion
This paper presents a method for model division and
states composition within stochastic qualitative reason-
ing, that has the following features :

" In the application to VAV system, it is confirmed
that the reasoning time is shortened to one-fifth by
the proposed method .

" By states composition, the derived states can reap-
pear as the same ones for the entire model . This rea-
soning can produce the same results as the previous
method .

" The parallel reasoning for divided blocks using mul-
tiple processors will help for much more high-speed
reasoning.
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unit
time

entire
model

air
vol .

air
temp .

,\-AVl VAV2 VAV3

0 125 1 1 5 5 5
1 575 5 4 20 32 82
2 1030 5 4 120 140 129
3 4559 15 10 272 510 321
4 22197 15 12 1021 715 301
5 22197 15 12 1021 715 518
6 22197 15 12 1021 715 518

time 95min . Imin . lmin . 4min . 7min . 5min .
rate 0.231 0.231


